UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA, INFORMÁTICA Y MECÁNICA

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

TESIS

DISEÑAR UNA BATERÍA DE BIODIGESTORES ALIMENTADO POR UNA FAJA TRANSPORTADORA, PARA GENERAR BIOGÁS A PARTIR DE 8.227 TN/DÍA DE RESIDUOS SÓLIDOS EN LA CIUDAD DE CALCA

PRESENTADO POR:

BACH. JORGE HUMBERTO JORDAN DIAZ

PARA OPTAR AL TÍTULO PROFESIONAL DE INGENIERO MECÁNICO

ASESOR:

MGT. EFRAIN WALTER SEQUEIROS PEREZ

CUSCO - PERÚ 2023

INFORME DE ORIGINALIDAD

(Aprobado por Resolución Nro.CU-303-2020-UNSAAC)

El que suscribe, Asesor del trabajo de investigación/tesis titulada: BIODIGESTORES ALIMENTADO POR UNA FAJA TRANSPORTADORA, F	DISEÑAR UNA BATERÍA DE
PARTIR DE 8.227 TN/DÍA DE RESIDUOS SÓLIDOS EN LA CIUDAD DE C	
presentado por: BACHILLER JORGE HUMBERTO JORDAN DIAZ con	DNI Nro.: 45885620
para optar el título profesional/grado académico de INGENIERO	O MECÁNICO
Informo que el trabajo de investigación ha sido sometido a revisión	
Software Antiplagio, conforme al Art. 6° del Reglamento para Usa	o de Sistema Antiplagio de la
UNSAAC y de la evaluación de originalidad se tiene un porcentaje de	

Evaluación y acciones del reporte de coincidencia para trabajos de investigación conducentes a grado académico o título profesional, tesis

Porcentaje	Evaluación y Acciones	Marque con una (X)
Del 1 al 10%	No se considera plagio.	X
Del 11 al 30 %	Devolver al usuario para las correcciones.	
Mayor a 31%	El responsable de la revisión del documento emite un informe al inmediato jerárquico, quien a su vez eleva el informe a la autoridad académica para que tome las acciones correspondientes. Sin perjuicio de las sanciones administrativas que correspondan de acuerdo a Ley.	

Por tanto, en mi condición de asesor, firmo el presente informe en señal de conformidad y adjunto la primera página del reporte del Sistema Antiplagio.

Cusco, .15... de ...ENERO de 2024........

Firma

Post firma...MGT. EFRAIN WALTER SEQUEIROS PEREZ

Nro. de DNI...23853221

ORCID del Asesor... 0000-0002-0645-683X

Se adjunta:

1. Reporte generado por el Sistema Antiplagio.

2. Enlace del Reporte Generado por el Sistema Antiplagio: oid:27259:304074423

https://unsaac.turnitin.com/viewer/submissions/oid:27259:304074423?locale=es-MX

NOMBRE DEL TRABAJO

AUTOR

Diseñar una batería de biodigestores ali mentado por una faja transportadora, par a generar biogás a p

Jorge Humberto Jordan Diaz

RECUENTO DE PALABRAS

RECUENTO DE CARACTERES

11558 Words

116823 Characters

RECUENTO DE PÁGINAS

TAMAÑO DEL ARCHIVO

157 Pages

30.7MB

FECHA DE ENTREGA

FECHA DEL INFORME

Jan 15, 2024 1:27 PM GMT-5

Jan 15, 2024 1:29 PM GMT-5

• 2% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base o

- 2% Base de datos de Internet
- Base de datos de Crossref
- 1% Base de datos de trabajos entregados
- 0% Base de datos de publicaciones
- Base de datos de contenido publicado de Crossr

Excluir del Reporte de Similitud

- Material bibliográfico
- Material citado
- · Fuentes excluidas manualmente
- Material citado
- Coincidencia baja (menos de 10 palabras)

DEDICATORIA

A mis padres, León Jordan Santa Cruz y Rosario Diaz Cusiyupanqui, por estar siempre apoyandome, aun en los momentos más dificiles de mi vida académica.

A mis hermanos, que espero este paso que doy sea un ejemplo a seguir para ellos.

AGRADECIMIENTO

A mi familia, quienes siempre confiaron en mi, a pesar de las circunstancias.

Gracias a mi casa de estudios, Universidad Nacional de San Antonio Abad del Cusco; la Facultad de Ingeniería Eléctrica, Electrónica, Informática y Mecánica; Así como a mi Escuela Profesional de Ingeniería Mecánica.

A los ingenieros, por su enseñanza y motivación que brindan al interior de las aulas.

A mis amigos que siempre estan motivándome a seguir adelante y cumplir mis metas.

PRESENTACIÓN

Señor: Decano de la Facultad de Ingeniería: Eléctrica, Electrónica, Informática y Mecánica. Señores Dictaminantes.

Presento ante ustedes mi trabajo de tesis titulado "Diseñar una batería de biodigestores alimentado por una faja transportadora, para generar biogás a partir de 8.227 Tn/día de residuos sólidos en la ciudad de Calca".

El trabajo que presento ante ustedes es fruto de una ardua y exhaustiva investigación, sobre nuevas tecnologías en el tratamiento de residuos sólidos.

Esperando que el contenido de este trabajo de investigación motive a nuestros futuros colegas a explorar más sobre las energías renovables.

Bach. Jorge Humberto Jordan Diaz

RESUMEN

El nivel de residuos sólidos generados diariamente en la ciudad de Calca, en el año 2019 alcanzó las 8 Tn/día, situación que nos llamó la atención debido al alto índice de contaminación, por el cual requiere la adopción de medidas de gestión tecnificadas para el aprovechamiento energético de los residuos sólidos, previniendo así la contaminación ambiental por un mal manejo de los residuos sólidos.

Dentro los residuos sólidos generados en la ciudad de Calca, existe la presencia de residuos orgánicos, el cual representa un 57.18 % del total de residuos según el infrome de la Gerencia de Medio Ambiente (2019).

El residuo orgánico es la materia prima que alimenta a la batería de biodigestores; al interior de la batería de biodigestores se producirá la degradación del residuo orgánico, generando una mezcla de gases denominados biogás, entre los cuales destacan el metano (CH_4) y el dióxido de carbono (CO_2) .

El rango de temperatura en los cuales se desempeña los biodigestores variará entre los 15° y 65°C; este rango de temperatura es ideal para la multiplicación y reproducción de las bacterias encargadas de la degradación o descomposición de los residuos orgánicos, destacando en este rango de temperatura las bacterias mesophilicas y termophilicas, las cuales nos proporcionan menores tiempos de retención hidraulica (TRH), variando de entre 60 y 10 días, respectivamente.

Con lo señalado anteriormente, se realizó cálculos de diseño de una batería de biodigestores que contará con un mezclador y 4 biodigestores; el mezclador tiene como función homogenizar los residuos orgánicos antes de depositarlos al interior de los reactores los cuales se encargarán de la producción del biogás, la capacidad de cada reactor sera de 259.85 m^3 , con una proporción de 80 % de sustrato y un 20 % de biogás.

El diseño de nuestra batería de biodigestores se realizó utilizando el programa de SOLID-WORKS, en el cual se calculan los esfuerzos que soportará nuestros reactores, por el método de von Mises o método de energías de deformación; se selecciona el tipo de material, espesor e incluso el tipo de soldadura a utilizar.

Por último, se cálcula la cantidad de biogás producido, con un FORSU de 4.704 Tn por día, el cual será equivalente a 470,400 litros de biogás, o 470.4 m^3 de biogás.

Palabras clave: Biogas, Biodigestores, Fracción Orgánica de Residuos Sólidos Urbanos (FORSU), energías equivalentes, equivalencia de FORSU y agua, Ácidos Grasos Volátiles (AGV), Proporción, Hidrólisis, Acidogénesis, Acetogénesis, Matanogénesis, Digestivo, Digerido, Inhibidores, Nutrientes, Alcalinidad, Factor de seguridad, Deformación unitaria, Desplazamiento estático, von Mises, Simetria, Aristas, Peso espesífico, Reactor, Tiempo de Retención Hidraulica (THR), Fase de latencia, Fase estacionaria, Fase de muerte, Volumen de Carga Orgánica (VCO), Residuos Sólidos Urbanos (RSU), Residuos Sólidos Orgánicos (RSO), Psicrophílico, Mesophílico, Termophílico.

ABSTRACT

The level of solid waste generated daily in the city of Calca, in 2019, reached 8 Tn/day, a situation that caught our attention due to the high pollution index, which requires the adoption of technical management measures for the energy use of solid waste, thus preventing environmental pollution due to poor management of solid waste.

Among the solid waste generated in the city of Calca, there is the presence of organic waste, which represents 57.18 % of the total waste according to the Gerencia de Medio Ambiente (2019) report.

The organic waste is the raw material that feeds the biodigester battery; Inside the biodigester battery, the degradation of the organic waste will occur, generating a mixture of gases called biogas, among which methane (CH_4) and carbon dioxide (CO_2) stand out.

The temperature range in which the biodigesters operate will vary between 15° and 65°C; This temperature range is ideal for the multiplication and reproduction of the bacteria responsible for the degradation or decomposition of organic waste, highlighting in this temperature range the mesophilic and thermophilic bacteria, which provide us with lower hydraulic retention times (TRH), varying between 60 and 10 days, respectively.

With the above, design calculations were carried out for a battery of biodigesters that will have a mixer and 4 biodigesters; The function of the mixer is to homogenize the organic waste before depositing it inside the reactors which will be responsible for the production of biogas. The capacity of each reactor will be 259.85 m^3 , with a proportion of 80 % substrate. and 20 % biogas.

The design of our biodigester battery was carried out using the SOLIDWORKS program, in which the stresses supported by our reactors are calculated, by the von Mises method or deformation energy method; The type of material, thickness and even the type of welding to be used is selected.

Finally, the amount of biogas produced is calculated, with a FORSU of 4,704 Tn per day, which will be equivalent to 470,400 liters of biogas, or 470.4 m^3 of biogas.

Palabras clave: Biogas, Biodigestores, Fracción Orgánica de Residuos Sólidos Urbanos (FORSU), energías equivalentes, equivalencia de FORSU y agua, Ácidos Grasos Volátiles (AGV), Proporción, Hidrólisis, Acidogénesis, Acetogénesis, Matanogénesis, Digestivo, Digerido, Inhibidores, Nutrientes, Alcalinidad, Factor de seguridad, Deformación unitaria, Desplazamiento estático, von Mises, Simetria, Aristas, Peso espesífico, Reactor, Tiempo de Retención Hidraulica (THR), Fase de latencia, Fase estacionaria, Fase de muerte, Volumen de Carga Orgánica (VCO), Residuos Sólidos Urbanos (RSU), Residuos Sólidos Orgánicos (RSO), Psicrophílico, Mesophílico, Termophílico.

Índice general

De	Dedicatoria			II
Ag	radeo	cimient	tos	III
Pr	esenta	ación		IV
Re	sume	n		V
Ab	strac	t		VI
1.	Gen	eralida	ides	1
	1.1.	Antece	edentes	1
		1.1.1.	Antecedentes Internacionales	1
		1.1.2.	Antecedentes Nacionales	1
		1.1.3.	Antecedentes Locales	2
	1.2.	Proble	ema de Investigación	3
		1.2.1.	Descripción del Problema	3
		1.2.2.	Formulación del Problema	3
			1.2.2.1. Problema General	3
			1.2.2.2. Problema Específico	3
	1.3.	Objetiv	ivos	4
		1.3.1.	Objetivo General	4
		1.3.2.	Objetivo Especifico	4
	1.4.	Justific	cación	4
	1.5.	Hipóte	esis	5
		1.5.1.	Hipótesis General	5
	1.6.	Alcano	ces y limitaciones	5
		1.6.1.	Alcances	5
		1.6.2.	Limitaciones	5
	1.7.	Metod	lología de la investigación	6
	1.8.	Marco	teórico	6
		1.8.1.	Residuos sólidos	6
		1.8.2.	Residuos orgánicos	6
			1.8.2.1. Composición de los residuos orgánicos	6
		1.8.3.	Biodigestor	7
		1.8.4.	Digestión anaerobia	7
			1.8.4.1. Campos de aplicación	
		1.8.5.	Ventajas y desventajas del biodigestor	8
		1.8.6.	Clasificación de biodigestores	8

		1.8.7.	Partes de	un biodigestor	15
			1.8.7.1.	Tanque o reactor	15
			1.8.7.2.	Sistema de alimentación	15
			1.8.7.3.	Control de presión	15
			1.8.7.4.	Válvula de seguridad	15
			1.8.7.5.	Sistema de salida de gas	15
			1.8.7.6.	Filtro de gases	15
			1.8.7.7.	Sistema de purga	15
			1.8.7.8.	Mezclador o agitador	15
		1.8.8.	Alimenta	ción de los biodigestores	15
			1.8.8.1.	Alimentación de microorganismos anaeróbicos	15
			1.8.8.2.	Generación de biogás de los residuos	16
2.				a de Biodigestores	19
	2.1.	Batería	de biodig	gestores	19
		2.1.1.	Caracterí	sticas de los residuos sólidos	19
			2.1.1.1.	Residuos domiciliarios	20
			2.1.1.2.	Residuos comerciales	21
			2.1.1.3.	Residuos institucionales	23
			2.1.1.4.	Humedad	24
			2.1.1.5.	Densidad	24
		2.1.2.	Temperat	tura	27
			2.1.2.1.	Influencia de la temperatura en la digestión anaerobia	27
			2.1.2.2.	Fases de temperatura	28
		2.1.3.	Volumen	de carga orgánica (VCO)	28
		2.1.4.		le retención hidráulica (THR)	29
		2.1.5.	Dimensio	onamiento y número de biodigestores	32
			2.1.5.1.	Dimensionamiento Primario	32
			2.1.5.2.	Recalculando	35
	2.2.	Calculo	os de diser	ĭo	39
		2.2.1.	Fuerza ej	ercida sobre la base del biodigestor	39
		2.2.2.	Presión e	ejercida en el biodigestor	39
	2.3.			erial de construcción	43
	2.4.	Manter	nimiento d	e Biodigestores	44
		2.4.1.	Mantenir	niento preventivo	44
		2.4.2.	Mantenir	miento correctivo	45
	2.5.	Diseño	de biodig	estor mediante SOLIDWORKS	45
		2.5.1.			45
			2.5.1.1.	Cuerpo del biodigestor	45
3.	_		-	ción de biogas	56
	3.1.		_	visionamiento	56
	3.2.			nto del Sustrato Previo a la Producción del Biogás	56
	3.3.	_			58
		3.3.1.		la fermentación	59
		3.3.2.	-	s de la combustión	62
		3.3.3.		ón de metano	63
	3.4.	Cálculo	o de la Pro	ducción de biogás	64

	3.5.	Sistem	a de Prote	ección Contra Sobrepresión y Antorcha	69
4.	Dise	ño de F	aja o Cint	ta Transportadora	70
	4.1.	Faja o	Cinta Trar	nsportadora	70
		4.1.1.	Reseña F	Histórica	70
		4.1.2.	Definició	ón	70
		4.1.3.		os de una cinta transportadora	71
	4.2.	Criterio		cción	72
		4.2.1.		dades	72
		4.2.2.		querido para la correcta selección	72
		4.2.3.		ros de selección	73
		4.2.4.		n	73
			4.2.4.1.	Selección primogenia	73
			4.2.4.2.	Selección Secundaria	75
			4.2.4.3.	Potencia absorbida por la cinta	77
			4.2.4.4.	Tipo y número de telas en la cinta	81
			4.2.4.5.	Adaptación del diametro de los tambores al número de	01
			1.2.1.3.	telas de la cinta	85
5.	Aná	lisis de d	costos		88
	5.1.	Presup	uesto de e	laboración del proyecto	88
	5.2.	Costo	de adquisi	ción de materiales y equipos	89
	5.3.			o anual por venta de biogás	89
	5.4.			AN y el TIR	89
6.	Con	clusione	es		90
Bil	bliogr	afía			92
An	exo				96

Índice de figuras

1.1.	Almacenamiento de Residuos Sólidos actualmente	3
1.2.	Biodigestor tipo Taiwanés o tubular	9
1.3.	Biodigestor de domo flotante	9
1.4.	Biodigestor de domo fijo	10
1.5.	Biodigestor de estructura flexible o de manga	10
1.6.	Biodigestor de Tanque Tradicional y Cúpula de Polietileno	11
1.7.	Biodigestor de tercera generación	11
1.8.	Biodigestor industrial	12
1.9.	Cuadro de residuos recomendable y prohibidos	16
1.10.	Generación de biogás de los residuos	17
	Equivalencia entre biogás y gas envasado	17
	Cuadro de cantidades y equivalencias de FORSU y agua	18
2.1.	Caracterización de Residuos Sólidos Zona B	20
2.2.	Caracterización de Residuos Sólidos Zona C	20
2.3.	Caracterización de Residuos Sólidos de Establecimientos Comerciales	21
2.4.	Caracterización de Residuos Sólidos de Mercados	21
2.5.	Caracterización de Residuos Sólidos de Restaurantes	22
2.6.	Caracterización de Residuos Sólidos de Hospedajes	22
2.7.	Caracterización de Residuos Sólidos de Instituciones Educativas	23
2.8.	Caracterización de Residuos Sólidos de Instituciones Públicas	23
2.9.	Densidades de las Zona B y Zonas C	24
2.10.	Densidad de Residuos Sólidos en los Establecimientos Comerciales	25
2.11.	Densidad de Residuos Sólidos en Mercados	25
2.12.	Densidad de Residuos Sólidos en Restaurantes	25
2.13.	Densidad de Residuos Sólidos en Hospedajes	26
	Densidad de Residuos Sólidos en Instituciones Educativas	26
2.15.	Densidad de Residuos Sólidos en Instituciones Públicas	26
2.16.	Relación de velocidad de crecimiento de bacterias metanogénicas y tempe-	
	ratura	27
2.17.	Crecimiento Microbiano al Interior del Biodigestor	30
	Relación Entre las Etapas y Tiempo	31
	Producción Volumétrica de Biogás en Función del TRH y la Eliminación	
	de Sólidos volátiles	31
2.20.	Dimensión del reactor	34
	Tiempo de Retención	35
	Dimensión del reactor.	38
	Flujo del sustrato y TRH	38
	Norma API 650	41

2.25.	Características del metal
2.26.	Características del metal
2.27.	Dimensionamiento y Propiedades del Material ASRM A36, de 12.7 mm de espesor
2.28.	Dimensionamiento y Propiedades del Material ASRM A36, de 4.76 mm de
2 20	espesor
	Sujeción y Carga, para planchas de 4.76 mm de espesor
	Conector de Soldadura Artística para placa de espesor de 12.7 mm
	Conector de Soldadura Artística para placa de espesor de 4.76 mm
	Ficha Técnica del Electrodo AWS E10018-D2 H4R
	Tensión de von Mises Para un material de 12.7 mm de Espesor
	Tensión de von Mises Para un material de 4.76 mm de Espesor
2.36.	Desplazamiento del Material cuyo espesor es de 12.7mm; "5.64mm como máximo"
2.37.	Desplazamiento del Material cuyo espesor es de 4.76mm; "23.4mm como máximo"
2.38	Deformación Unitaria de un material de 12.7mm de espesor
	Deformación Unitaria de un material de 4.76mm de espesor
	Factor de Seguridad para un material de 12.7mm de espesor
	Factor de Seguridad para un material de 4.76mm de espesor
3.1.	Mapa de Proceso
3.2.	Flujo del sustrato y TRH
3.3.	Etapa Simple
3.4.	Etapa Doble
3.5.	Fases de la Fermentación
3.6.	Agrupando en dos Etapas
3.7.	Agrupacion de fases
3.8.	Cuadro de energías equivalentes
3.9.	Contenido de Metano en un m^3 de Biogás
3.10.	Comparación energética de biogás y otros combustibles
3.11.	Producción de Metano
3.12.	Relación Entre Producción de Biogás por Unidad de Carga y la Velocidad de Carga Orgánica
3.13.	Relación Entre Producción de Biogás por Unidad de Carga y la Velocidad de Carga Orgánica
3.14.	Selección del material para gasómetro
	Sistema de protección
4.1.	Partes de Cinta Transportadora
4.2.	Elementos de una Cinta Transportadora
4.3.	Ángulos de Sobrecarga y Reposo
4.4.	Tabla de Parámetros 001
4.5.	Ampliación de la Tabla de Parámetros 001
4.6.	Tabla de Parámetros 002
4.7.	Ampliación de la Tabla de Parámetros 002
4.8.	Tabla de Parámetros 003
4.9.	Tabla de Parámetros 004

4.10. Esquema en "V"de Rodillos Dobles (Polines)	77
4.11. Cinta Horizontal	78
4.12. Tabla de parámetros 005	78
4.13. Ampliación de la Tabla de parámetros 005	79
4.14. Tabla de parámetros 006	79
4.15. Ampliación de la Tabla de parámetros 006	80
4.16. Tabla de parámetros 007	80
4.17. Ampliación de la Tabla de parámetros 007	81
4.18. Arco de Abrazamiento	82
4.19. Tabla de parámetros 007	82
4.20. Ampliación de la Tabla de parámetros 007	83
4.21. Tabla de parámetros 008 N_y 12.5	83
4.22. Tabla de parámetros 009 N_y 20	84
	84
4.24. Ampliación de la Tabla de parámetros $009 N_y 20 \dots \dots $	84
4.25. Tabla de parámetros 010 Cinta de Algodón	85
4.26. Ampliación de la Tabla de parámetros 010 Cinta de Algodón	86
4.27. Tabla de parámetros 011 N_y 12.5	86
4.28. Tabla de parámetros 012 N_2 20	86

Índice de Tablas

1.1.	Rendimiento de gas metano para diferentes sustratos
1.2.	Residuos orgánicos
1.3.	Análisis de alternativas para biodigestores
1.4.	Ventajas y desventajas de los biodigestores
1.5.	Proporción de FORSU y agua
2.1.	Caracterización de Residuos Sólidos
2.2.	Humedad Promedio
2.3.	Densidad Promedio de los Residuos Sólidos Domiciliarios
2.4.	Densidad Promedio de los Residuos Sólidos no Domiciliarios
2.5.	Densidad Promedio Total
2.6.	Rangos de Temperaturas Óptimas y Tiempo de Fermentación
2.7.	Parámetros de Dimensionamiento
2.8.	Parámetros de Dimensionamiento para el reactor
2.9.	Dimensionamiento para el reactor
2.10.	Redimensionamiento del reactor
2.11.	Valores de Diseño
2.12.	Cálculo de fuerza
	Valores de diseño
2.14.	Presión ejercidad por un gas ideal
2.15.	Presión total
2.16.	Valores de diseño
2.17.	Presión ejercida por un gas ideal
	Presión total
2.19.	Esfuerzos para un espesor de pared de 12.7 mm
2.20.	Esfuerzos para un espesor de pared de 4.76 mm
3.1.	Composición del Biogás
3.2.	Caracteristicas y propiedades del biogás
3.3.	Composición del Sustrato
3.4.	Biogás
3.5.	Generación de Biogás por Material Orgánico
3.6.	Alimentación del biodigestor
3.7.	Producción de biogás por día
3.8.	Producción de biogás al mes
3.9.	Parámetros para la producción
3.10.	Presión ejercida por el biogás
3.11.	Dimensionamiento del gasometro
<i>1</i> 1	Datos de Salaggión

5.1.	Presupuesto de elaboración del proyecto	88
5.2.	Costo de adquisición de materiales y equipos	89
5.3.	Ingreso de dinero anual por venta de biogás	89
5.4.	Calculando el VAN y TIR	89

Capítulo 1

Generalidades

1.1. Antecedentes

1.1.1. Antecedentes Internacionales

Biodigestores; segun el (Congreso de la Republica, 2018), Esta tecnología nace debido a la crisis del petróleo en 1973, durante ese periodo se busca nuevas fuentes de energía, evolucionando la digestión anaerobia en paises europeos, asiáticos, así como en algunos paises de latinoamérica.

- En la tesis titulada, biodigestores de escala a 50 litros, una solución para la producción de gas, abono y aprovechamiento de los residuos sólidos orgánicos; tiene como objetivo diseñar un biodigestor para la generación de biogás y abono orgánico a partir de residuos orgánicos, utilizando una metodológía de investigación mixta (cualitativa, cuantitativa); Mediante varios ensayos se realizó el ensamble de un prototipo de biodigestor de 50 litros para iniciar el proceso de caracterización, pretendiéndose realizar el proceso de obtención de biogás en contenedores plásticos de 1,000 litros, para observar el comportamiento del material Zea Beltrán et al. (2016).
- La tesis titulada, Diseño de un biodigestor de polietileno para la obtención de biogás a partir del estiércol de ganado en el rancho de verónica; tiene como objetivo el diseño de un biodigestor de polietileno para obtener biogás con el uso de estiercol de ganado en el rancho de verónica, utilizando una metodología de investigación mixta; la tesis nos brinda unos cálculos de diseño para una producción per cápita de estiércol de 615 Kg/día, con una cantidad utilizable de 186.5 kg/día de estiércol fresco y con factor de seguridad de 5 % a un THR de 40 días se obtiene una capacidad de biodigestor de 4,849 litros; obteniendo 4 tanques de 5,000 litros plastigama colocados de forma continua Toala Moreira (2014).

1.1.2. Antecedentes Nacionales

A nivel Nacional se tiene varias propuestas de generación de biogás apartir de residuos sólidos, como en el relleno sanitario de Chilla-Juliaca, relleno sanitario de Bagua-Amazonas, etc.

- PETRAMAS ubicado en la Región Lima, es pionero en la transfomación de residuos sólidos en biogás (https://youtu.be/bly4Rctsn4), posee varias planta de energía térmica las cuales proveen energía eléctrica a la red interconectada los cuales se mencionara a continuación:
 - Central Térmica Biomasa Huaycoloro : 28,295 MWh/año.
 - Central Térmica Biomasa Gringa V: 14,020 MWh/año.
 - Central Térmica Biomasa Doña Catalina: 15,500 MWh/año.
 - Central Térmica Biomasa Callao: 14.500 MWh/año.
- La tesis titulada, Estudio de factibilidad para la implementación de un biodigestor y la producción de biogás en la bases aeronaval del Callao; El objetivo es realizar un estudio de factibilidad para poder conocer la posibilidad de implementar un biodigestor para la producción de biogás en la base aeronaval del Callao, El estudio realizado logró demostrar que es viable implementar un biodigestor, puesto que es muy rentable económicamente frente al gasto por la compra del GLP de manera mensual; comprobando así que, un prototipo tipo Bach de circuito cerrado con contenedores de 55 galones y aun en situaciones menos favorables la producción de biogás se puede realizar, llegando a un ahorro económico del 66 %, considerando un mantenimiento de cada 3 meses (Linares Carrion, 2022).
- La tesis titulada, Diseño de un sistema de biodigestores para el aprovechamiento energético de los residuos orgánicos del camal municipal de Jaen-Perú; tiene como objetivo Diseñar un sistema de biodigestores para aprovechar la energía generada por los residuos orgánicos del camal de Jaen y satisfacer la demanda energética; La cantidad de materia orgánica es de 646.5 kg en total, el cual demanda un diseño de 3 digestores de forma tubular que funcionan en paralelo, estimando una producción de biogás 18.91 m³ al día, pudiendo variar dependiendo de las condiciones de operación y composición de la materia orgánica (Collasos Correa and Vargas Pérez, 2019).

1.1.3. Antecedentes Locales

- La tesis titulada, Análisis y mejora del proyecto de instalaciones mecánicas de la planta de tratamiento de aguas residuales de Quillabamba La Convención Cusco; El objetivo, es desarrollar un analisis económico para mejorar el proyecto de las instalaciones mecánicas de la planta de tratamiento de aguas residuales, así como calcular las redes de colección de biogás y gas residual procedentes del reactor anaerobio, seleccionando equipos de manejo y disposición de gases. Durante el desarrollo del proyecto se utilizó un reactor anaerobio (UASB), en el cual se realizo la evaluación del caudal de biogás obteniendose 205 Nm³ de biogás (Oporto Jimenez, 2023).
- La tesis titulada, Diseño de un sistema de suministro de energía eléctrica y térmica de 25 KW de potencia a partir del uso de un gasificador de biomasa; tiene como objetivo, Diseñar un sistema de generación de energía térmica y eléctrica con el uso de un gasificador de biomasa para generar 25 KW de potencia, analizando y seleccionando la biomasa agricola a utilizar como una fuente de combustible; Se determino el volumen de gas producido es de 16.88Nm³/h a partir de un flujo másico de 6.33 kg/h a temperatura ambiente (Barazorda Ramos, 2020).

1.2. Problema de Investigación

1.2.1. Descripción del Problema

Los residuos sólidos arrojados en la ciudad de Calca ascienden a 8.227 TN/día, dentro de los cuales el 57.18 % representan residuos orgánicos; estos residuos generan un malestar general a la ciudad de Calca, debido a la generación de malos olores y gases contaminantes (metano, dióxido de carbono, sulfuro de hidrógeno, etc.), producto de la descomposición; el Congreso de la Republica (2018) con su ley 3198 declara que el metano es hasta 23 veces más contaminante que el dióxido de carbono.

Es por ello que se plantea:

¿Como aprovechar los residuos sólidos municipales producidos en la ciudad de Cálca?. Amparandonos en la ley N° 27314, Ley General de Residuos Sólidos (LGRS) y su Reglamento, Decreto Supremo N°057-2004-PCM, esta ley del ministerio de salud (DIGESA, 2004), en su primer artículo nos habla de la gestión y manejo de residuos sólidos, sanitaria y ambientalmente adecudas; mediante esta ley el Perú empieza su incursión de manera oficial en el ambito de las energías renovables.

En el Artículo 10, de la ley N°27314 LGRS, indica:

■ Los Residuos Sólidos deberán ser conducidos a la planta de tratamiento, Transferencia o lugar de disposición final autorizado por la municipalidad.

Basando la investigación en el artículo 10 de la ley N°27314, se observa el estado actual de como se lleva a cabo el manejo de los residos sólidos en la Municipalidad Provincial de Calca.

Figura 1.1: Almacenamiento de Residuos Sólidos actualmente Fuente: Elaboración Propia (21/11/2021)

1.2.2. Formulación del Problema

1.2.2.1. Problema General

PG ¿Como aprovechar los residuos sólidos producidos en la ciudad de Cálca?

1.2.2.2. Problema Específico

 PE_1 ; Para qué diseñar una batería de biodigestores alimentado por una faja transportadora?

- PE_2 ¿Por qué diseñar una batería de biodigestores alimentado por una faja transportadora?
- PE_3 ¿Para que es necesario es necesario diseñar una batería de biodigestores alimentado por una cinta transportadora?

1.3. Objetivos

1.3.1. Objetivo General

OG Diseñar una batería de biodigestores alimentado por una faja transportadora, para generar biogás a partir de 8.227 TN/día de residuos sólidos en la ciudad de Calca.

1.3.2. Objetivo Especifico

- OE_1 Diseñar la bateria de biodigestores alimentado por una faja transportadora, para mantener una alimentación constante de material orgánico y evitar la acumulación externa.
- $OE_2\,$ Diseñar la batería de biodigestores alimentado por una faja transportadora, para calcular la producción de biogás, a partir de la degradación del material orgánico acumulado dentro de la bateria de biodigestores.
- OE_3 Diseñar la batería de biodigestores alimentado por una faja transportadora, es necesario para calcular los esfuerzos generados por el material orgánico y biogás producidos dentro de la bateria de biodigestores y obtener el materiales de construcción a utilizar.

1.4. Justificación

Técnica

Los biodigestores es una tecnología de aprovechamiento energético, el cual consiste en generar energía renovable, a partir de una materia príma poco usual y utilizada; como: Residuos Sólidos Municipales (RSM); el cual producto de la degradación (fermentación) del material orgánico llega a producir un producto denominado "biogás", a travez de un proceso de digestión anaerobia.

Social

El uso de biodigestores genera un alto beneficio social, tanto al ciudadano interno y externo; esto debido a que se llega a generar un flujo constante de visitantes dentro de la ciudad, por oportunidades laborales, directas e indirectos.

Directos: personal disponible en la selección y alimentación de los biodigestores, encargados del mantenimiento, etc.

Indirectos: micro y pequeñas empresas, beneficiados por el movimiento de capitales dentro de la ciudad (restaurantes, hospedajes, comercios).

Económica

El estudio desarrollado genera beneficios económics en forma de productos como: el biogás y los abonos orgánicos los cuales pueden ser aprovechados por la población, para el consumo y recuperación de terrenos de cultivo respectivamente, los cuales son económicamente más baratos que los combustibles fósiles y abonos químicos.

Ambiental

Los biodigestores generan a su vez beneficios ambientales: evita las emisiones de gases contaminantes al ambiente así como productos lixiviados que contaminan el suelo y los rios.

■ Teórica

El presente estudio nos brinda un aporte teórico científico sobre la generación de energías renovables (biogás) a partir de los resíduos sólidos orgánicos municipales.

1.5. Hipótesis

1.5.1. Hipótesis General

HG El diseño de la batería de biodigestores alimentado por una faja transportadora, genera biogás a partir de 8.227 Tn/día de residuos sólidos en la ciudad de Calca.

1.6. Alcances y limitaciones

1.6.1. Alcances

La trascendencia de esta investigación radica en la produción de biogas a partir de la degradación de los residuos orgánicos, al interior de la bateria de biodigestores, desde una etapa acidogénica concluyendo en la etapa metanogénica. La importancia de diseñar la bateria de biodigestores es reducir la contaminación por emisiones de metano y dióxido de carbono al medio ambiente en la ciudad de Calca.

1.6.2. Limitaciones

En el desarrollo de la investigación se encontraron las siguientes limitaciones:

- La ausencia de normas nacionales limitan el diseño de tanques para biodigestores o tenques de almacenamiento.
- La capacidad del biodigestor esta en función de la temperatura de trabajo que implica variación en los tiempos de retención.
- Poca información bibliográfica sobre el uso de acero estructural en la construcción de biodigestores a nivel nacional.
- La selección del material de construcción (acero estructural) en la batería de biodigestores, se limitará al cálculo teórico.
- No existe normas sobre el aprovechamiento energético de los residuos sólidos municipales a nivel nacional.

1.7. Metodología de la investigación

Para el desarrollo de la investigación se utilizo el libro de Hernández Sampieri et al. (2018) titulada metodología de la investigación.

Enfoque:

Cuantitativo.- Es secuencial y probatorio, se miden las variables, se analizan las mediciones y se extrae una serie de conclusiones.

■ Diseño de la investigación:

No experimental.- Se observa el fenómenos como se da en su contexto natural. Transversal o transeccional.- Recolecta datos en un solo momento o tiempo único.

■ Tipo de investigación:

Exploratorio.- Se trata de una exploración inicial en un momento determinado, aplicable a problemas de investigación poco conocidos, constituyendo un preámbulo de otros diseños.

1.8. Marco teórico

1.8.1. Residuos sólidos

Montalbán Romero (2020) nos indica que: los residuos sólidos son sustancias sólidas o semisólidas generados por la actividad humana, de los cuales los residuos orgánicos podríamos considerar como insumos aprovechables.

1.8.2. Residuos orgánicos

Todo aquel material de especie floral o de fauna susceptible a descomposición; "restos, sobras o productos de desecho" (Eastern Research Group, 2017); por otra parte Sencia Choquenaira (2020), denomina a los residuos orgánicos como biomasa, el cual es un material orgánico no fosilizado y biodegradable de origen vegetal, animal y microbiano.

En este proyecto de investigación apuntaremos a los residuos orgánicos (insumos) para la producción de biogás.

1.8.2.1. Composición de los residuos orgánicos

Mientras más complejos los residuos orgánicos, más ácidos grasos volátiles (AGV) se producen, y el rendimiento de CH_4 es mayor (Yaniris Lorenzo Acosta, 2005).

Nota.- La tabla nos muestra el rendimiento de gas en función de kg de sólidos volátiles (SV) destruidos y no totales, debido a que no todos los SV son biodegradables (no todos producen biogás), y al rededor del 10 % de materia orgánica se emplea en la síntesis celular (Yaniris Lorenzo Acosta, 2005). Los residuos orgánicos utilizables en la fermentación metanogénica, son de origen vegetal, animal, agroindustrial, forestal, doméstico, etc. (Prof. María Teresa Varnero Moreno, 2011) los cuales mencionaremos en el siguiente cuadro.

Cuadro 1.1: Rendimiento de gas metano para diferentes sustratos

Componente	$\% CH_4$	$\frac{m^3}{kgSV}$
		destruido
Carbohidratos	50	0.886
$(C_6H_{10}O_5)$		
Grasas ($C_{50}H_{90}O_6$	70	1.335
Proteínas	84	0.587
$(6C.2NH_3.3H_2O)$		
_ /		2005

Fuente: (Yaniris Lorenzo Acosta, 2005)

Cuadro 1.2: Residuos orgánicos

Residuos de origen animal	estiercol, orina, guano, camas, residuos de mataderos
	(sangre y otros), residuos de pescado
Residuos de origen vegetal	malezas, rastrojos de cosecha, pajas, forraje en mal
	estado
Residuos de origen humano	heces, basura, orina
Residuos agroindustriales	salvado de arroz, orujos, cosetas, melazas, residuos de
	semillas
Residuos forestales	hojas, vástagos, ramas y cortezas
Resuduos de cultivo acuáticos	algas marinas, jacintos y malezas acuáticas

Fuente: (Prof. María Teresa Varnero Moreno, 2011)

1.8.3. Biodigestor

El biodigestor se define como; un contenedor herméticamente cerrado dentro del cual se deposita los residuos sólidos orgánicos y trabaja de forma anaeróbica (en ausencia de oxígeno), Mamani Condori and Pacco Huarachi (2021) nos indica: dentro del biodigestor crecen bacterias que descomponen el material acumulado; estas bacterias llamabas metanogénicas, son las causantes de la producción de biogás.

1.8.4. Digestión anaerobia

Proceso mediante el cual microorganismos descomponen el material orgánico para producir dióxido de carbono y metano, denominado también proceso de conversión bioquímico (Sencia Choquenaira, 2020).

Segun BESEL (2007), La digestión anaerobia es un proceso biológico por el cual la materia orgánica en ausencia de oxígeno y en apoyo de un grupo de bacterias específicas descomponen la materia orgánica en productos gaseosos, llamados biogás y digestatos. Pelegrín Romera (2022), no indica que el fango o mezcla mixta que ingresa al reactor para la digestión anaerobia se denomina sustrato y el producto resultante se denomina digestato.

1.8.4.1. Campos de aplicación

La digestión anaerobia es aplicable a cualquier fuente de biomasa o materia orgánica que contenga proteinas, carbohidratos, grasas y celulosa; clasificandose en función de la materia orgánica (Sencia Choquenaira, 2020).

Tratamiento de aguas servidas.

- Tratamiento de residuos sólidos.
- Tratamiento de lodos depurados.
- Tratamiento de desechos agropecuarios y agrícolas.

1.8.5. Ventajas y desventajas del biodigestor

(Acosta Clavijo and Muñoz Santana, 2020), nos brindan información sobre las ventaja y desventajas del uso de biodigestores, los cuales se describiran a continuación.

Ventajas

- Productor de biogás.
- Mecanismo que favorece al medioambiente.
- Es capaz de producir fertilizantes orgánicos.
- Evita malos olores, previene la proliferación de vectores y roedores.
- Previene la contaminación hídrica.

Desventajas

- Debe estar siempre cerca del punto de recolección de residuos y del agua.
- Debe estar ubicado en un lugar de facil acceso.
- Debe contar con personal permanente.
- Proceso lento en climas frios.
- El sulfuro de hidrógeno producido es toxico al ser humano y corrosivo a los equipos utilizados.
- Puede generar incendios y explosiones si no se cumplen las normas de control y seguridad.

1.8.6. Clasificación de biodigestores

(Mamani Condori and Pacco Huarachi, 2021), Los biodigestores se clasifican por sus aspectos básicos, su método de carga y su construcción; entre los cuales tenemos.

Por su construcción.

- Biodigestores domesticos.- En propiedades donde se maneja una variedad de residuos orgánicos, de bajo precio y fáciles de manipular (Sotaquira Medina et al., 2015).
- Biodigestores de tipo comunitario.- Utilizados en pequeñas comunidades, alimentado entre varias viviendas (Sotaquira Medina et al., 2015).
- Biodigestores industriales.- Utilizados a gran escala, posee mayor tecnología y busca disminuir los gases de efecto invernadero (Sotaquira Medina et al., 2015).

Por su método de carga.

- Flujo por lote.- Se carga una sola vez, el proceso finaliza cuando ya no produce biogás (Mamani Condori and Pacco Huarachi, 2021).
- Regimen semicontinuo.- Carga por gravedad una vez al día, el volumen depende del tiempo de retención, producción de gas constante (Mamani Condori and Pacco Huarachi, 2021).
- Regimen continuo.- Diseñado para tratamiento de aguas negras, el cual podria contener otro tipo de residuos (Mamani Condori and Pacco Huarachi, 2021).

Por su aspecto básico.

■ Biodigestor tipo Taiwanés o tubular.- digestores de entre 2.2 a 13.5m³ (Sotaquira Medina et al., 2015).

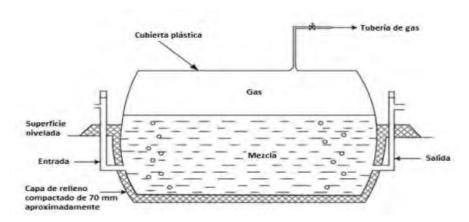


Figura 1.2: Biodigestor tipo Taiwanés o tubular Fuente: (Sotaquira Medina et al., 2015)

■ Biodigestor Domo Flotante o Biodigestor Indio.- Posee un depósito de gas móvil con forma de campana, el cual flota sobre la masa de fermentació o en un anillo de agua, posee una guía para el movimiento vertical (Sotaquira Medina et al., 2015).

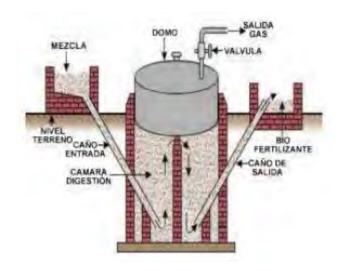


Figura 1.3: Biodigestor de domo flotante Fuente: (Sotaquira Medina et al., 2015)

■ Biodigestor de Domo Fijo o Biodigestor Chino.- De domo inmóvil, fijo y sellado de forma impermeable, de una vida útil de 20 años (Sotaquira Medina et al., 2015).

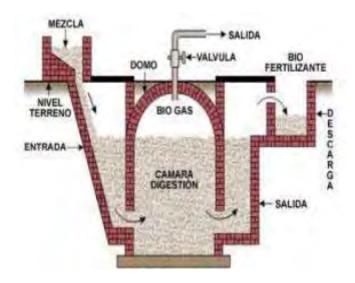


Figura 1.4: Biodigestor de domo fijo Fuente: (Sotaquira Medina et al., 2015)

■ Biodigestor de Estructura Flexible o de Manga.- Hecho de material plastico, polietileno, PVC, otros; su tiempo de vida es corta, entre 3 a 8 años; trabaja en rangos de presiones bajos (Sotaquira Medina et al., 2015).

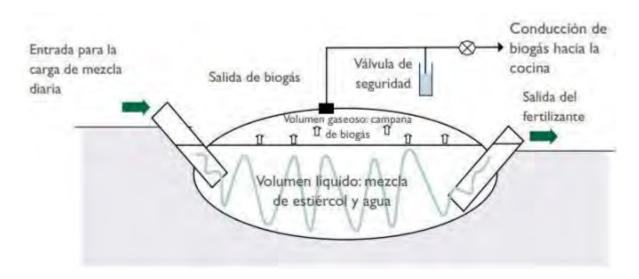


Figura 1.5: Biodigestor de estructura flexible o de manga Fuente: (Sotaquira Medina et al., 2015)

■ Biodigestor con tanque de almacenamiento tradicional y cúpula de polietileno.- De estructura semiesférica de polietileno delgado, y tanque de almacenamiento de piedra o ladrillo (Sotaquira Medina et al., 2015).

Figura 1.6: Biodigestor de Tanque Tradicional y Cúpula de Polietileno Fuente: (Sotaquira Medina et al., 2015)

■ Biodigestor de Alta Velocidad o Flujo Inducido.- Es un tipo reformado del modelo Hindú, de presión constante y tiempos de retención cortos, posee un sistema de agitación mecánica, permitiendo un mejor proceso en la obtención de biogás (Sotaquira Medina et al., 2015).

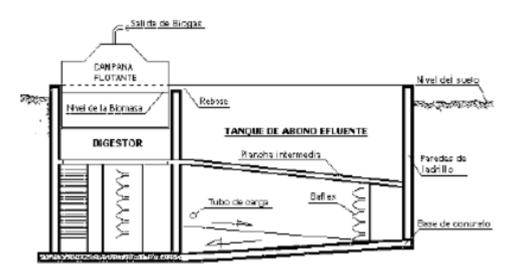


Figura 1.7: Biodigestor de tercera generación Fuente: (Sotaquira Medina et al., 2015)

■ Biodigestor industrial.- Fabricados en materiales resistentes; maneja altos volumenes, para la producción de biogás y de fertilizante; su objetivo es que el biogás llegue a todos los usuarios, utiliza filtros para control de olores, valvulas de corte y seguridad segun norma, y reduce costos en infraestructura (Sotaquira Medina et al., 2015).

Figura 1.8: Biodigestor industrial Fuente: (Sotaquira Medina et al., 2015)

Cuadro 1.3: Análisis de alternativas para biodigestores

Componentes a evaluar	Biodigestores de domo flotante o indio	Biodigestores de domo fijo o chino	Biodigestores de flexible	Biodigestores de almacenamiento tradicional	Biodigestores de alta velocidad	Biodigestor tipo Industrial. mezcla completa de alta tecnología
Vida útil	20 años	20 años	3 a 8 años dependiendo del material	10 años	3 a 8 años dependiendo del material	15 a 20 años
Efecto de presión del gas en el sistema	Presión constante fácil manejo	La presión es variada	La presión interna es baja	La presión del gas es continua	Trabaja a presión constante	Trabaja a presión constante
Materiales de construcción	Concreto o manpostería partes metálicas	Concreto o piedra Manpostería	Polietileno, o PVC	Piedra y ladrillo polietileno de película delgada	Concreto o manpostería partes metálicas	. ^A cero al carbono protegido, Acero inoxidable, Tanques de hormigón"

Fuente: (Sotaquira Medina et al., 2015)

14

Cuadro 1.4: Ventajas y desventajas de los biodigestores

	Ventajas	Desventajas
Biodigestores de domo flotante (India)	Su manipulación es simple y la presión de gas es constante, su construcción es sencilla	Altos costos de los materiales para el tambor de acero, tiempo de vida corto
Biodigestor de domo fijo (chino)	Costos de producción bajos, larga vida útil, su estructura subterranea estabiliza la temperatura, beneficia a la generación de empleo	Complicaciones con la permeabilidad para gases del recipiente de ladrillo para gas, solo puede ser supervisada por técnicos experimentados en biogás
Biodigestor flexible	Economico y facil de transportar por su bajo peso, promedio de vida de 20 años, facilidad de mantenimiento para ajustes y lavado	Facilidad de ser deteriorado por condiciones climáticas
Biodigestor Tipo	Este tipo de biodigestores permite garantizar	Requiere una inversión significativa, dependiendo de
Industrial. mezcla	una producción de biogás y, consecuentemente,	la escala y los tipos de sustratos a utilizar
completa de alta	de energía térmica y/o eléctrica constante las 24	
tecnología	horas del día los 365 días del año	

Fuente: (Sotaquira Medina et al., 2015)

1.8.7. Partes de un biodigestor

Segun (Sotaquira Medina et al., 2015), un biodigestor cuenta con las siguientes partes:

1.8.7.1. Tanque o reactor

Donde se produce la descomposición de la materia prima, su tamaño esta en función del biogás a producir y de la materia prima necesaria para alimentarlo.

1.8.7.2. Sistema de alimentación

Dispositivo por el cual se carga la materia prima al biodigestor.

1.8.7.3. Control de presión

Permite conocer la acumulación de gases en el interior del tanque, y liberarla en caso necesario.

1.8.7.4. Válvula de seguridad

Permite soltar los gases de forma automática, diseñado para activarse a una presión máxima.

1.8.7.5. Sistema de salida de gas

Posee una válvula de control que permite regular el caudal de biogás.

1.8.7.6. Filtro de gases

Elimina los gases no deseados, como el sulfuro de hidrógeno.

1.8.7.7. Sistema de purga

Mecanismo que facilita la extracción de material digerido en forma de lodo, el cual contiene nutrientes que podria utilizarse como fertilizantes.

1.8.7.8. Mezclador o agitador

Mecanismo que opera con velocidades elevadas y es empleado en líquidos poco viscosos (VASQUEZ ARANA, 2021). Este mecanismo mezcla el sustrato fresco con la población bacteriana, evita formación de costras, uniformiza la densidad bacteriana, evita formación de espacios sin actividad biológica, previene la formación de espuma y la sedimentación dentro del biodigestor; aumenta la producción de gas y disminuye el tiempo de retención hidraúlico (TRH) (Prof. María Teresa Varnero Moreno, 2011).

1.8.8. Alimentación de los biodigestores

1.8.8.1. Alimentación de microorganismos anaeróbicos

La Dra. Claudia E. Balagué (2019), menciona cuatro parámetros necesarios para la alimentación de los biodigestores.

- Residuos recomendables.- Residuos de origen animal o vegetal sirve de alimento a las bacterias microbianas.
- Residuos a evitar.- Residuos no orgánicos y/o contaminados que obstruyan el digestor.
- Tamaño de residuos.- Recomendable que no sean muy grandes, para evitar un mayor tiempo de degración y posibles obstrucciones.
- Agregado de agua.- Es necesario agregar agua al momento de la alimentación.

Figura 1.9: Cuadro de residuos recomendable y prohibidos Fuente: (Dra. Claudia E. Balagué, 2019)

1.8.8.2. Generación de biogás de los residuos

La cantidad de biogás generado depende de las características del alimento (Dra. Claudia E. Balagué, 2019).

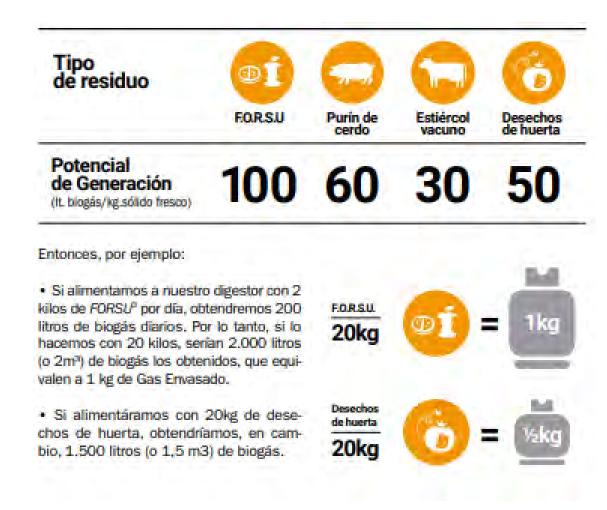


Figura 1.10: Generación de biogás de los residuos Fuente: (Dra. Claudia E. Balagué, 2019)

Nota: FORSU "Fracción orgánica de residuos sólidos urbanos".

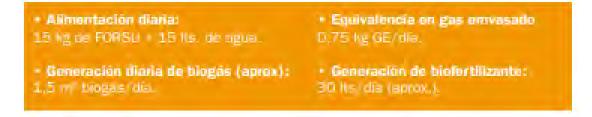


Figura 1.11: Equivalencia entre biogás y gas envasado Fuente: (Dra. Claudia E. Balagué, 2019)

Figura 1.12: Cuadro de cantidades y equivalencias de FORSU y agua Fuente: (Dra. Claudia E. Balagué, 2019)

Nota: Tomando un balde de 10 litro de capacidad como unidad de medida, tenemos que: 15 Kg de FORSU equivale a 5 baldes, por otro lado 15 kg de FORSU se le agrega 15 litro de agua que es equivalente a 1.5 baldes. Encontramos una proporción por unidad de volumen de 2 en 7, el cual nos indica que: por cada 7 unidades de FORSU debemos agregar 2 unidades de agua, para una adecuada producción de biogás.

Cuadro 1.5: Proporción de FORSU y agua

Balde de agua 1.5 2/7 Balde de FORSU 5

Por cada 7 volumenes de FORSU agregamos 2 volumenes de agua. Fuente: Elaboración Propia

Capítulo 2

Diseño de una Batería de Biodigestores

2.1. Batería de biodigestores

Una batería de biodigestores es un conjunto de reactores, fermentadores o digestores, dentro de los cuales se produce la digestión anaeróbia; que es un proceso biológico, consiste en la descomposición de materia orgánica vegetal o animal sin presencia de oxígeno (Ricardo del Valle Zermeño, 2013).

Segun Ordoñez Fierro (2022), los digestores son menos difundidos en zonas altas, con temperaturas por debajo de 20°C; estas condiciones reducen la producción de metano, llegando a acidificar el lecho del sustrato.

Para determinar el número de reactores a utilizar, evaluaremos algunos factores importantes de los factores físicos.

- Factores físicos (Ricardo del Valle Zermeño, 2013):
 - Tiempo de retención hidrúlica (TRH).- tiempo de permanencia dentro del reactor, el cual está sometico a la acción de microorganismos (BESEL, 2007).
 - Velocidad de carga orgánica (VCO).- cantidad de materia orgánica por volumen de reactor y unidad de tiempo.
 - Agitación.- permite homogeniar el contenido dentro del reactor y mantener bajos los niveles de inhibidores (BESEL, 2007).
 - Temperatura.- se tiene tres rangos de operación: psicrófilo < 25°C; mesófilo entre 25°C y 45°C; termófilo entre 45°C y 80°C, segun BESEL (2007), los rangos de temperatura optimos de operación son: psicrófilo (temperatura ambiente), mesófilico (35°C), termofílico (55°C).
 - Caracteristicas de los residuos sólidos.- solubilidad, granulometría, concentración de sustrato en la corriente de entrada, estructura, etc.

2.1.1. Características de los residuos sólidos

Los residuos sólidos son aquellas sustancias no deseadas, que son desechados por quienes los generan, alguno de los cuales pueden ser transformados, aprovechados y generar un valor económico (Don Antonio Jesús Castro Granado, 2018).

La cantidad de RSU (Residuos Sólidos Urbanos), depende de los factores de habitabilidad, nivel de vida, costumbres y épocas del año, encontraremos diferentes tipos de residuos urbanos (Juana Fernandez Rodrigues, 2010).

2.1.1.1. Residuos domiciliarios

Producido en viviendas, los cuales incluyen, restos de comida, papel, cartón, Pláticos, textiles, etc., durante el estudio realizado por la Municipalidad Provincial de Calca (Gerencia de Medio Ambiente, 2019), se establecieron 2 zonas de estudio, Zona B y Zona C.

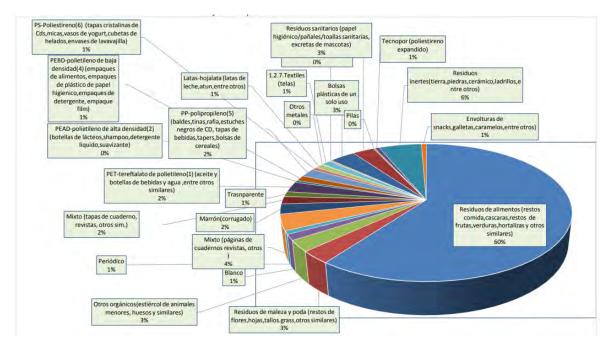


Figura 2.1: Caracterización de Residuos Sólidos Zona B Fuente: (Gerencia de Medio Ambiente, 2019)

De la zona B identificamos que un 60 % aproximadamente son residuos compostables, un 3 % de madera y follaje, y un 3 % de otros orgánicos.

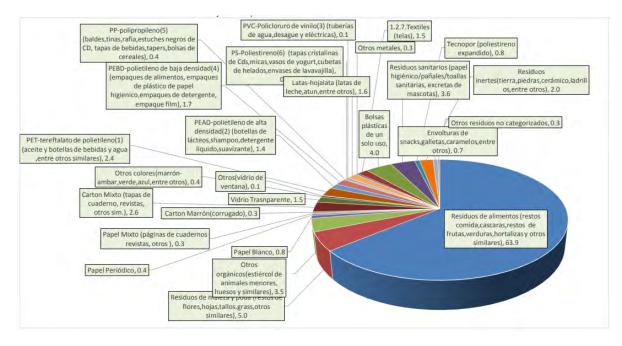


Figura 2.2: Caracterización de Residuos Sólidos Zona C Fuente: (Gerencia de Medio Ambiente, 2019)

De la zona C el 63.9 % son residuos compostables, mientras que el 5 % es madera y follaje, y 3.5 % de otros materiales orgánicos.

2.1.1.2. Residuos comerciales

Producidos por actividades empresariales como, tiendas, restaurantes, mercados, hoteles, etc.

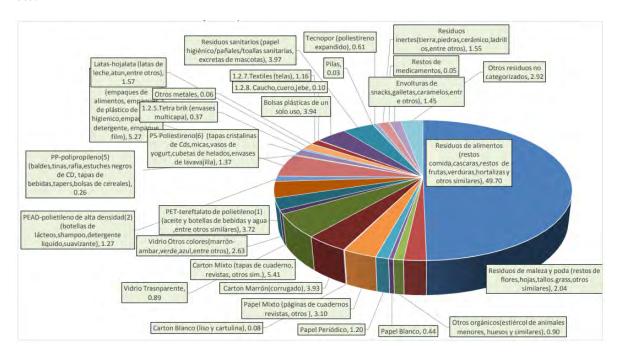


Figura 2.3: Caracterización de Residuos Sólidos de Establecimientos Comerciales Fuente: (Gerencia de Medio Ambiente, 2019)

Podemos identificar un 49.7 % de residuos compostables, un 2.04 % de madera y follaje, y un 0.9 % de otros materiales orgánicos.

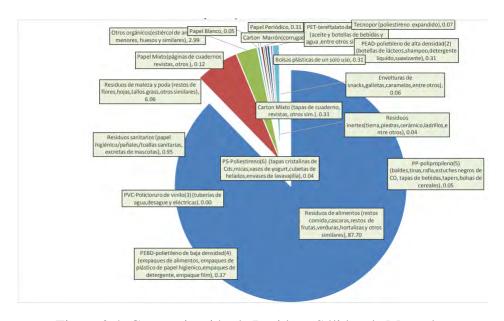


Figura 2.4: Caracterización de Residuos Sólidos de Mercados Fuente: (Gerencia de Medio Ambiente, 2019)

Dentro de los residuos sólidos en los mercados encontramos un 87.7 % de compostables, un 6.06 % de madera y follaje, y un 2.99 % de otros materiales orgánicos.

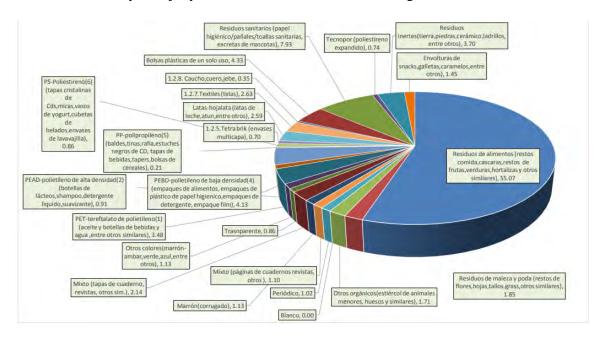


Figura 2.5: Caracterización de Residuos Sólidos de Restaurantes Fuente: (Gerencia de Medio Ambiente, 2019)

La figura nos muestra un 55.07 % de residuos compostables, un 1.85 % de maleza y poda, y un 1.71 % de otros materiales orgánicos.

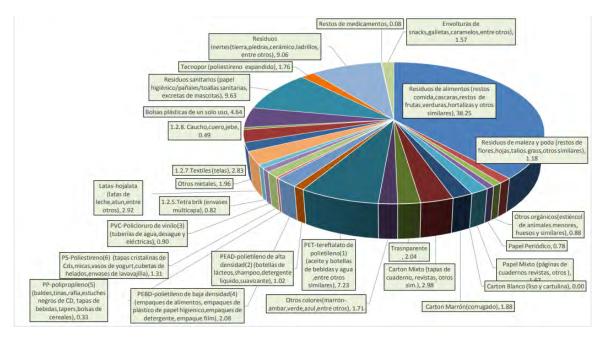


Figura 2.6: Caracterización de Residuos Sólidos de Hospedajes Fuente: (Gerencia de Medio Ambiente, 2019)

La caracterización muestra un 38.25 % de residuos compostables, un 1.18 % de maleza y poda, y un 0.88 % de otros materiales orgánicos.

2.1.1.3. Residuos institucionales

Residuos generados por instituciones publicas como, instituciones educativas, instituciones públicas, etc.

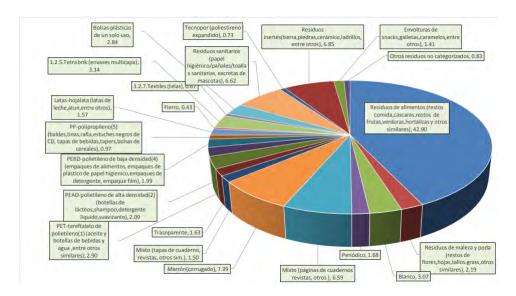


Figura 2.7: Caracterización de Residuos Sólidos de Instituciones Educativas Fuente: (Gerencia de Medio Ambiente, 2019)

Observamos que los residuos compostables son del 42.9 % y 2.19 % madera y follaje.

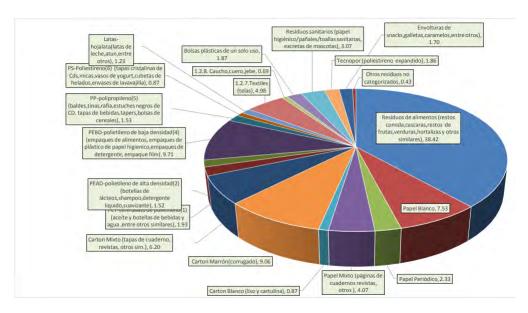


Figura 2.8: Caracterización de Residuos Sólidos de Instituciones Públicas Fuente: (Gerencia de Medio Ambiente, 2019)

En las cuales encontramos un 38.42 % de residuos compostables.

La generación total de residuos sólidos en la ciudad de Calca es de 8227.01 $\frac{Kg}{d}$ = 8.227 $\frac{Tn}{d}$; su composición, representa que el mayor porcentaje representa los residuos compostables con un 57.18 % (Gerencia de Medio Ambiente, 2019), los cuales serán utilizados como materia prima, para la obtención de biogás, entre los cuáles se tiene:

Cuadro 2.1: Caracterización de Residuos Sólidos

Tipos de Residuos Sólidos	Composición Porcentual
Residuos Orgánicos	%
Residuos alimenticios (restos de comida, cascaras, restos de frutas,	54.52
verduras, hortalizas y otros similares)	
Residuos de maleza y poda (restos de flores, hojas, tallos, grass, otros	2.66
similares)	
Otros orgánicos (estiercol de animales menores, huesos y similares)	1.58

Fuente: (Gerencia de Medio Ambiente, 2019)

2.1.1.4. Humedad

Realizando una muestra en la obtención de humedad, tenemos en cuenta que, por cada kilogramo de residuos sólidos orgánicos, encontraremos una humedad promedio, se debe tener en cuenta que la humedad es propreionada por la parte orgánica de los residuos sólidos urbanos (Juana Fernandez Rodrigues, 2010).

Cuadro 2.2: Humedad Promedio

Metodo de Análisis	Muestra	Peso de Muestra (Kg)	Humedad Promedio (%)
Norma Mexicana NMX-			
AA-A5-1984 Prevención	7 dias de muestra	1.00	75.19
del Ambiente			

Fuente: (Gerencia de Medio Ambiente, 2019)

2.1.1.5. Densidad

Residuos sólidos domiciliarios.

DENSIDAD kg/m3 - Domiciliario - Zona B								
DIA	DIA 01	DIA 02	DIA 03	DIA 04	DIA 05	DIA 06	DIA 07	DENSIDAD PROMEDIO
Peso	39.85	35.6	59.3	35.1	39	34.1	38.7	
Altura	20	20	20	35.1	30	20	28.4	
Volumen	0.176	0.176	0.176	0.138	0.151	0.176	0.155	
Densidad suelta	226.33	202.19	336.79	255.20	259.04	193.67	250.26	246.21

	DENSIDAD kg/m3 - Domiciliario - Zona C							
DIA	DIA 01	DIA 02	DIA 03	DIA 04	DIA 05	DIA 06	DIA 07	DENSIDAD PROMEDIO
Peso	49.9	36.7	54.05	41.5	34.75	38.75	32.8	
Altura	19.4	19.5	22	30	56	17	22.6	
Volumen	0.178	0.177	0.171	0.178	0.084	0.184	0.169	
Densidad suelta	280.96	206.94	316.14	233.67	412.67	210.91	193.58	264.98

Figura 2.9: Densidades de las Zona B y Zonas C Fuente: (Gerencia de Medio Ambiente, 2019)

En la figura 2.9 observamos las densidades de las zonas de estudio, zona B = 246.21 $\frac{Kg}{m^3}$ y zona C =264.98 $\frac{Kg}{m^3}$, y obtendremos una densidad promedio.

Cuadro 2.3: Densidad Promedio de los Residuos Sólidos Domiciliarios

	Densidad de Residuos	Promedio
Distrito	Sólidos Domiciliarios	Total
	$\frac{Kg}{m^3}$	$\frac{Kg}{m^3}$
Zona B	246.21	255.595
Zona C	264.95	

Fuente: (Gerencia de Medio Ambiente, 2019)

Residuos comerciales.

	DE	NSIDAD k	g/m3 - Esti	ablecimie	ntos Come	erciales		
DIA	DIA 1	DIA 2	DIA 3	DIA 4	DIA 5	DIA 6	DIA 7	DENSIDAD PROMEDIO
Peso	36.2	23.1	23.85	29.1	24.35	23.95	28.5	
Altura	21.12	17	17.5	33.1	21	15	18.6	
Volumen	0.173	0.184	0.173	0.143	0.174	0.189	0.180	
Densidad suelta	208.93	125.73	137.65	204.00	140.33	126.83	158.65	157.45

Figura 2.10: Densidad de Residuos Sólidos en los Establecimientos Comerciales Fuente: (Gerencia de Medio Ambiente, 2019)

Obteniendo para establecimientos comerciales una densidad de 157.45 $\frac{Kg}{m^3}$.

DENSIDAD kg/m3 - Mercado								
DIA	DIA 1	DIA 2	DIA 3	DIA 4	DIA 5	DIA 6	DIA 7	DENSIDAD PROMEDIO
Peso	56.87	44.75	57.9	27.7	50.7	47	53.2	
Altura	19	28	23	54	27	42.5	35	
Volumen	0.184	0.160	0.173	0.092	0.163	0.122	0.142	
Densidad suelta	309.63	279.59	334.34	301.62	311.65	385.21	375.47	328.22

Figura 2.11: Densidad de Residuos Sólidos en Mercados Fuente: (Gerencia de Medio Ambiente, 2019)

El cuadro nos muestra una densidad promedio de 328.22 $\frac{Kg}{m^3}$.

DENSIDAD kg/m3 - Restaurantes								
DIA	DIA 1	DIA 2	DIA 3	DIA 4	DIA 5	DIA 6	DIA 7	DENSIDAD PROMEDIO
Peso	50.65	45.35	59.15	49	61.45	57.7	42.3	
Altura	23	38	25	27.5	18	12	20.5	
Volumen	0.168	0.130	0.163	0.168	0.181	0.196	0.175	
Densidad suelta	300.74	348.47	362.19	290.95	339.17	293.66	242.00	311.03

Figura 2.12: Densidad de Residuos Sólidos en Restaurantes Fuente: (Gerencia de Medio Ambiente, 2019)

Cuya densidad promedio es de 311.03 $\frac{Kg}{m^3}$.

DENSIDAD kg/m3 - Hospedaje								
DIA	DIA 1	DIA 2	DIA 3	DIA 4	DIA 5	DIA 6	DIA 7	DENSIDAD PROMEDIO
Peso	29.3	26.25	21.5	31.7	32.05	33.9	30.2	
Altura	18	21.5	31	30	53.1	35.65	25.3	
Volumen	0.181	0.172	0.148	0.151	0.092	0.136	0.163	
Densidad suelta	161.72	152.40	145.27	210.56	349.86	248.78	185.79	207.77

Figura 2.13: Densidad de Residuos Sólidos en Hospedajes Fuente: (Gerencia de Medio Ambiente, 2019)

Se obtiene una densidad de 207.77 $\frac{Kg}{m^3}$.

Residuos institucionales.

DENSIDAD kg/m3 - Instituciones Educativas								
DIA	DIA 1	DIA 2	DIA 3	DIA 4	DIA 5	DIA 6	DIA 7	DENSIDAD PROMEDIO
Peso	38.95	38.52	54.8			45.6	56.2	
Altura	23.3	29.25	26.9	1		29.5	32.5	
Volumen	0.173	0.157	0.168			0.155	0.147	
Densidad suelta	224.91	245.90	326.33			294.55	382.47	294.83

Figura 2.14: Densidad de Residuos Sólidos en Instituciones Educativas Fuente: (Gerencia de Medio Ambiente, 2019)

Cuya densidad promedio es de 294.83 $\frac{Kg}{m^3}$.

DENSIDAD kg/m3 - Instituciones Publicas								
DIA	DIA 1	DIA 2	DIA 3	DIA 4	DIA 5	DIA 6	DIA 7	DENSIDAD PROMEDIO
Peso	48.7	50.6	65.5	52	43	24.3	37.1	
Altura	19.5	22.5	12.5	18.4	19.3	12.3	18.85	
Volumen	0.176	0.168	0.194	0.180	0.178	0.196	0.179	
Densidad suelta	276.59	300.45	337.74	288.64	241.77	124.16	207.70	253.86

Figura 2.15: Densidad de Residuos Sólidos en Instituciones Públicas Fuente: (Gerencia de Medio Ambiente, 2019)

Donde la densidad promedio es de 253.86 $\frac{Kg}{m^3}$.

Dando así una densidad promedio en residuos sólidos no domiciliarios de 258.86 $\frac{Kg}{m^3}$. Utilizando los cuadros 2.3 y 2.4 que representan las densidades de los residuos sólidos domiciliarios y no domiciliarios, obtendremos un promedio total, con el cual continuaremos nuestros calculos de diseño.

Como se puede observar la densidad total de residuos Sólidos en la ciudad de Calca es de 257.23 $\frac{Kg}{m^3}$.

Cuadro 2.4: Densidad Promedio de los Residuos Sólidos no Domiciliarios

Distrito	Densidad de Residuos Sólidos no Domiciliarios	Promedio Total
	$\frac{Kg}{m^3}$	$\frac{Kg}{m^3}$
Comercio	157.45	772
Mercado	328.22	
Restaurante	311.03	258.86
Hospedaje	207.77	
I.E.	294.83	
I.P.	253.86	

Fuente: Elaboración Propia

Cuadro 2.5: Densidad Promedio Total

	Densidad de Residuos	Promedio
Distrito	Sólidos no Domiciliarios	Total
	$rac{Kg}{m^3}$	$\frac{Kg}{m^3}$
RSD	255.595	257.23
RS. no domiciliarios	253.86	

Fuente: Elaboración Propia

2.1.2. Temperatura

Es un parámetro fundamental a la hora del tratamiento de biodigestión y condiciona el balance energético (Juana Fernandez Rodrigues, 2010).

2.1.2.1. Influencia de la temperatura en la digestión anaerobia

Juana Fernandez Rodrigues (2010), nos muestra las temperaturas óptimas de trabajo, según el tipo de bacterias que actúan dentro de los biodigestores (reactores).

- psicrofílicos (T $< 20^{\circ}$ C) \rightarrow óptimo 15° C.
- mesofílico $(20 < T < 45^{\circ}C) \rightarrow \text{óptimo } 35^{\circ}C.$
- termofílico (T > 45° C) \rightarrow óptimo 55° C.

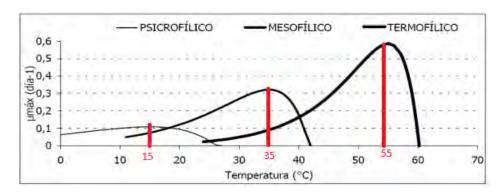


Figura 2.16: Relación de velocidad de crecimiento de bacterias metanogénicas y temperatura

Fuente: (Juana Fernandez Rodrigues, 2010)

Cuadro 2.6: Rangos de Temperaturas Óptimas y Tiempo de Fermentación

Fermentación	Mínimo	Optimo	Máximo	Tiempo de fermentación
Psycrophilica	4-10°C	15-18°C	20-25°C	Sobre 100 días
Mesophilica	15-20°C	25-35°C	$35-45^{o}C$	30-60 días
Thermophilica	$25-45^{o}C$	50-60°C	75-80°C	10-15 días

Para un óptimo funcionamiento se recomienda variaciones de temperatura de entre $0.6 - 1.2^{\circ}$ C/día.

Fuente: (Prof. María Teresa Varnero Moreno, 2011)

La figura 2.16 nos ilustra, un máximo en velocidad de crecimiento, de bacterias metanogénicas que se genera dentro de los rangos optimos de temperatura.

Segun la tesis doctoral de Juana Fernandez Rodrigues (2010) a temperatura de 15°C el tiempo de retención fluctua entre 30 y 50 días, a 25°C la metanogénesis ocure de 5 a 15 días.

2.1.2.2. Fases de temperatura

Analizamos un estudio de Juana Fernandez Rodrigues (2010), la cual nos indica:

- Este estudio nos brinda una mayor información sobre dos rangos de operación específico, los cuales son: el termofílico y el mesofílico.
- Para temperaturas de 55°C el crecimiento de las vacterias metanogénicas es tres veces superior a una temperatura de 35°C y supone menores THR.
- En cuanto a velocidades de producción de biogás, una operación termofílica (0.41-0.43 $\frac{m^3}{KgSV}$), produce el doble de una mesofílica (0.2 $\frac{m^3}{KgSV}$).
- A demas en una operación termofílica, la digestión anaerobia es 2.5 veces más rápido que en una mesofílica.

2.1.3. Volumen de carga orgánica (VCO)

Para dimencionar nuestro digestor observaremos los parámetros de los residuos sólidos urbanos generados en la ciudad de Calca.

Cuadro 2.7: Parámetros de Dimensionamiento

ITEM	Cantidad	Unidad
Generación total de RSU Calca	8.227	$\frac{Tn}{d}$
Porcentaje de residuos compostables	57.18	$ ilde{\%}$
Densidad promedio	257.23	$\frac{Kg}{m^3}$

Fuente: Elaboración Propia

Realizando los cálculos en la generación de residuos sólidos urbanos y la densidad promedio, mediante el porcentaje de residuos compostable, nos da los valores observados en el cuadro 2.8.

Cuadro 2.8: Parámetros de Dimensionamiento para el reactor

ITEM	Cantidad	Unidad
Generación total de RSO Calca	4.704	$\frac{Tn}{d}$
Densidad promedio de los RSO	147.084	$\frac{\overline{d}}{Kg} \over m^3$

Fuente: Elaboración Propia

Mediante la fórmula de densidad obtenida del libro de Francis W. Sears (2004), podremos calcular el volumen de FORSU que se produce durante el día (V).

$$\rho = \frac{m}{V} \left(\frac{Kg}{m^3}\right) \tag{2.1}$$

$$V = \frac{m}{\rho}(m^3) \tag{2.2}$$

Por tanto, el volumen de FORSU el cual se produce en un día tendra un valor de.

$$V = 31,98(m^3) (2.3)$$

De la figura 1.12 y del cuadro 1.5 proporción FORSU y agua tenemos una equivalencia de 7 unidades de FORSU y 2 unidades de agua; nuestra unidad de medida por volumen fue un valde de 10 litros.

Aplicando la proporción obtendremos el volumen de agua requerida para nuestra mezcla.

$$V_{H_2O} = V * \frac{2}{7}(m^3) \tag{2.4}$$

$$V_{H_2O} = 31,983 * (\frac{2}{7}) \tag{2.5}$$

$$V_{H_2O} = 9.59(m^3) (2.6)$$

Por tanto nuestro volumen de materia orgánica o volumen de sustrato que se introduce al biodigestor en el día será.

$$V_1 = V + V_{H_2O}(m^3) (2.7)$$

$$V_1 = 31,983 + 9,595(m^3) (2.8)$$

$$V_1 = 41,58(m^3) (2.9)$$

2.1.4. Tiempo de retención hidráulica (THR)

Ricardo del Valle Zermeño (2013), indica:

THR es el tiempo de permanencia de sustrato dentro del reactor o biodigestor, determinado por la relación entre el volumen de tanque y el caudal de entrada; el THR puede llegar a reducirse, dependiendo exclusivamente de la temperatura y del tipo de reactor a utilizar; pero si el tiempo de retención disminuye de manera excesiva, provoca un arrastre de bacterias metanogénicas, las cuales producen el ultimo proceso de la etapa de digestión.

caso contrario a lo que ocurre cuando el THR aumenta, el nivel de materia orgánica degradada aumenta y el volumen de biogás disminuye (Don Antonio Jesús Castro Granado, 2018). La mayoria de los residuos a utilizar durante nuestro proceso de digestión, requiere largos periodos de retención, durante estos periodos de retención la cantidad de solidos volátiles (SV) son convertidos a biogás. Mientras mayor la carga orgánica mayor el THR (Mirian del Rocío Medina Herrera, 2010).

Por lo general, para aquellos procesos anaerobios que trabajan a temperaturas de 30°C o superiores, posee un tiempo de retención de 20 días como mínimo, para que la obtención de biogás sea efectivo (Cintia Rocío Flores Juárez, 2008).

$$THR = \frac{V_R}{V_1}(d) \tag{2.10}$$

Donde:

- THR: es el tiempo de retención hidráulica en días.
- V_R es el volumen del reactor.
- V_1 volumen de sustrato que se introduce por día.

Muñoz et al. (2016), nos da a conocer la relación que existe entre la temperatura y el TRH, por medio de la siguiente formula:

$$THR = -51,227 * ln(T) + 206,72$$
 (2.11)

La figura 2.17, detalla como afecta el tiempo de TRH en el crecimiento microbiano.

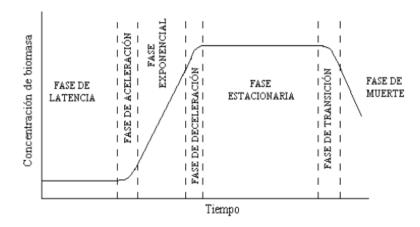


Figura 2.17: Crecimiento Microbiano al Interior del Biodigestor. Fuente: (Juana Fernandez Rodrigues, 2010)

El la figura 2.18 podemos apreciar 3 etapas en el proceso de producción de biogás, las cuales segun Jorge Cuesta López (2015) se detallan a continuación:

- Etapa I.- Etapa de arranque, puede recortarse recirculando una fracción del proceso anterior.
- Etapa II.- Es la etapa de estabilización y es la etapa donde mayor cantidad de metano se produce.
- Etapa III.- es la etapa del declive, se produce un descenso de la población vacteriana.

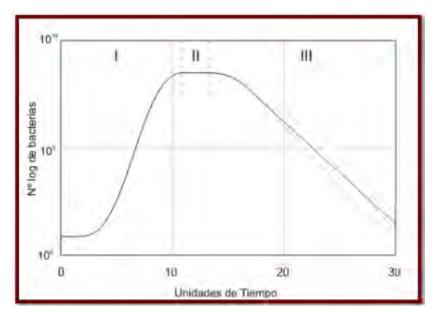


Figura 2.18: Relación Entre las Etapas y Tiempo. Fuente: (Jorge Cuesta López, 2015)

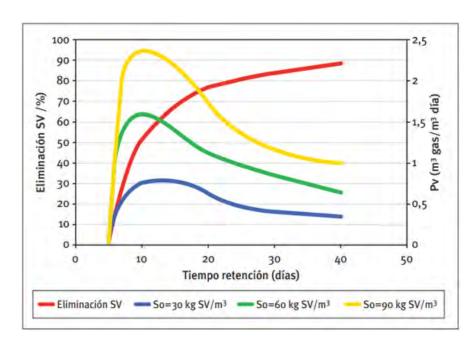


Figura 2.19: Producción Volumétrica de Biogás en Función del TRH y la Eliminación de Sólidos volátiles.

Fuente: (BESEL, 2007)

Donde:

- SV: Sólidos volátiles.
- So: Sólidos.
- Pv: Producción volumétrica del biogás

De la figura 2.18, podemos observar un tiempo de retención de 30 días, despues de los cuales la producción de biogás es escasa o inexistente, por tanto de 0 a 30 días de THR basaremos

nuestros cáculos.

$$V_R = THR * V_1(m^3) (2.12)$$

$$V_R = 30 * 41,578(m^3) (2.13)$$

$$V_R = 1247,34(m^3) (2.14)$$

2.1.5. Dimensionamiento y número de biodigestores

Utilizando las formulas que aplica Lacueva Ratera (2011), en su proyecto Estudio de alternativas y dimensionamiento de biodigestores para aplicaciones domésticas en la zona rural de Nwadjahane en Mozambique, dimensionaremos nuestra bateria de biodigestores.

2.1.5.1. Dimensionamiento Primario

Para el dimensionamiento de los biodigestores, se deberá tener en consideración que, los biodigestores contarán con una cúpula de almacenamiento de gas, para lo cual nuestro biodigestor tendra una proporción de 80 % de sustrato y un 20 % de biogás.

Cuadro 2.9: Dimensionamiento para el reactor

ITEM	Cantidad	Unidad	Proporción
FORSU	31.98	m^3	7
Agua	9.59	m^3	2
Mezcla o Sustrato	41.58	m^3	
Volumen de sustrato en 8 días (V_8)	332.61	m^3	80 %
Volumen de gas	83.15	m^3	20%
Volumen total de reactor V_{Rt}	415.76	m^3	

Fuente: Elaboración Propia

En el cuadro 2.9 podemos observar un volúmen de carga orgánica de 41.58 m^3 , esta carga se hace de manera diaria, por tanto nuestro caudal o velocidad de carga es de 41.58 $\frac{m^3}{d}$ (metros cúbicos por día).

En un periodo de 8 días obtendremos un volúmen de 332.61 m^3 de sustrato, lo cual equivale al volúmen de un reactor, un 80 % del volúmen total del reactor; el 20 % restante corresponde a un volúmen de domo de 83.15 m^3 , dentro del cual se almacena el biogás generado. Por tanto tendremos un volumen total de biodigestor es de 415.76 m^3 .

Número de biodigestores

De la ecuación 2.12 el volumen del reactor hallado mediante el método de THR y el volumen de sustrato en 8 días, calcularemos la cantidad de digestores que tendremos que utilizar en nuestra bateria de biodigestores.

$$N = \frac{V_R}{V_8} \tag{2.15}$$

$$N = \frac{1247,34}{332,61} \tag{2.16}$$

$$N = 3.75 (2.17)$$

$$N_1 \simeq 4 \tag{2.18}$$

Tomaremos el valor de N_1 para el número de biodigestores; esta cantidad conformará nuestra batería de biodigestores.

Recalculando obtendremos un volumen real para nuestra bateria de biodigestores.

$$V_{Rr} = V_{Rt} * N_1(m^3) (2.19)$$

$$V_{Rr} = 415,76 * 4(m^3) (2.20)$$

$$V_{Rr} = 1663(m^3) (2.21)$$

Radio del reactor

$$R = \sqrt[3]{\frac{V_R}{\pi * 1,121}}(m) \tag{2.22}$$

$$R = 4.9(m) (2.23)$$

Unidad

$$U = \frac{R}{4}(m) \tag{2.24}$$

$$U = 1,23(m) (2.25)$$

Radio de cúpula

$$R_c = 5 * U(m) \tag{2.26}$$

$$R_c = 6.13(m) (2.27)$$

Diámetro del cilindro

$$D = 8 * U(m) \tag{2.28}$$

$$D = 9.8(m) (2.29)$$

Cálculo de alturas

Altura de cúpula

$$h_c = 2 * U(m)$$
 (2.30)

$$h_c = 2,45(m) \tag{2.31}$$

Altura de pared

$$h_p = 3 * U(m) \tag{2.32}$$

$$h_p = 3,68(m) (2.33)$$

Altura de cono base

$$h_t = 0.15 * D(m) \tag{2.34}$$

$$h_t = 1.47(m) (2.35)$$

Altura del reactor

$$h_R = h_c + h_p(m) (2.36)$$

$$h_t = 5.15(m) (2.37)$$

Altura total

$$h = h_c + h_p + h_t(m) (2.38)$$

$$h_t = 7.6(m) (2.39)$$

Cálculo de volumenes

Volumen del cilindro

$$V1(cilindro) = R^2 * h_p * \pi(m^3)$$
(2.40)

$$V_1 = 278, 2(m^3) (2.41)$$

Volumen del segmento esférico

$$V2(seg.esf) = (\frac{\pi * h_c}{6}) * (3 * R^2 + h_c^2) (m^3)$$
 (2.42)

$$V2 = 100,45(m^3) (2.43)$$

Volumen del cono base

$$V3(base) = R^2 * \pi * \frac{h_t}{3})(m^3)$$
 (2.44)

$$V3 = 37.1(m^3) (2.45)$$

Volumen del reactor

$$V_R = V1 + V2 + V3(m^3) (2.46)$$

$$V_R = 415,7(m^3) (2.47)$$

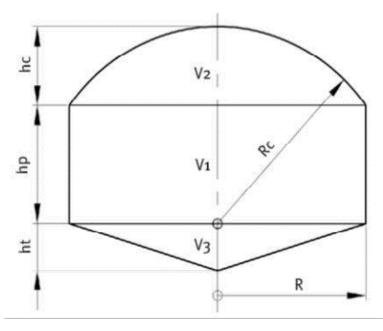


Figura 2.20: Dimensión del reactor. Fuente: (Lacueva Ratera, 2011)

La norma API-12D, nos da a conocer que es factible el diseño, fabricación e instalación de tanques cilindricos verticales, sobre superficie, soldados y fabricados de acero con capacidades de 79.5 m^3 hasta los 1590 m^3 ; como pudimos calcular tenemos 4 tanques de 415.78 m^3 .

2.1.5.2. Recalculando

TRH

Utilizando la fórmula aplicada por Muñoz et al. (2016), tenemos:

$$TRH = -51,227 * ln(T) + 206,72 \tag{2.48}$$

Para una de temperatura de 35°C y trabajando con bacterias Mesophilicas se tiene un tiempo de retención hidráulica de:

$$TRH = 24,59$$
 (2.49)

$$TRH \simeq 25$$
 (2.50)

Cuadro 2.10: Redimensionamiento del reactor

ITEM	Cantidad	Unidad	Proporción
FORSU	31.98	m^3	7
Agua	9.59	m^3	2
Mezcla o Sustrato	41.58	m^3	
Volumen de sustrato en 5 días (V_5)	207.88	m^3	80 %
Volumen de gas	51.97	m^3	20%
Volumen total de reactor V_{Rt}	259.85	m^3	

Fuente: Elaboración Propia

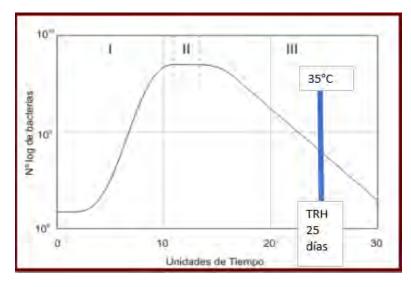


Figura 2.21: Tiempo de Retención. Fuente: (Cuesta López, 2015)

Número de biodigestores

$$V_R = THR * V_t(m^3) \tag{2.51}$$

$$V_R = 24,59 * 41,58(m^3) (2.52)$$

$$V_R = 1022,4(m^3) (2.53)$$

$$N = \frac{V_R}{V_5} \tag{2.54}$$

$$N = \frac{1022,4}{207.88} \tag{2.55}$$

$$N = 4.92 (2.56)$$

$$N_2 \simeq 5 \tag{2.57}$$

Tomaremos el valor de N_2 para el número de biodigestores; esta cantidad conformará nuestra batería de biodigestores.

Recalculando obtendremos un volumen real para nuestra bateria de biodigestores.

$$V_{Rr} = V_{Rt} * N_2(m^3) (2.58)$$

$$V_{Rr} = 259.85 * 5(m^3) (2.59)$$

$$V_{Rr} = 1299(m^3) (2.60)$$

Radio del reactor

$$R = \sqrt[3]{\frac{V_R}{\pi * 1,121}}(m) \tag{2.61}$$

$$R = 4.2(m) (2.62)$$

Unidad

$$U = \frac{R}{4}(m) \tag{2.63}$$

$$U = 1,05(m) (2.64)$$

Radio de cúpula

$$R_c = 5 * U(m) \tag{2.65}$$

$$R_c = 5,24(m) (2.66)$$

Diámetro del cilindro

$$D = 8 * U(m) \tag{2.67}$$

$$D = 8.4(m) (2.68)$$

Cálculo de alturas

Altura de cúpula

$$h_c = 2 * U(m) \tag{2.69}$$

$$h_c = 2{,}10(m) (2.70)$$

Altura de pared

$$h_p = 3 * U(m)$$
 (2.71)

$$h_p = 3.15(m) \tag{2.72}$$

Altura de cono base

$$h_t = 0.15 * D(m) (2.73)$$

$$h_t = 1,26(m) (2.74)$$

Altura del reactor

$$h_R = h_c + h_p(m) (2.75)$$

$$h_t = 4,40(m) (2.76)$$

Altura total

$$h = h_c + h_p + h_t(m) (2.77)$$

$$h_t = 6,50(m) (2.78)$$

Cálculo de volumenes

Volumen del cilindro

$$V1(cilindro) = R^2 * h_n * \pi(m^3)$$
(2.79)

$$V_1 = 237.8(m^3) (2.80)$$

Volumen del segmento esférico

$$V2(seg.esf) = \frac{\pi * h_c}{6} * (3 * R^2 + h_c^2)(m^3)$$
 (2.81)

$$V2 = 62,78(m^3) (2.82)$$

Volumen del cono base

$$V3(base) = R^2 * \pi * \frac{h_t}{3})(m^3)$$
 (2.83)

$$V3 = 23,2(m^3) (2.84)$$

Volumen del reactor

$$V_R = V1 + V2 + V3(m^3) (2.85)$$

$$V_R = 323.8(m^3) (2.86)$$

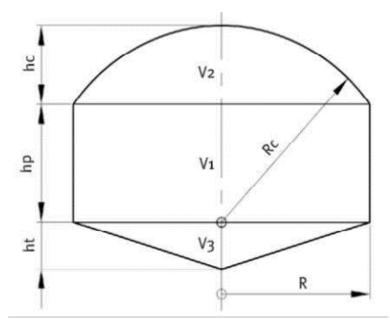


Figura 2.22: Dimensión del reactor. Fuente: (Lacueva Ratera, 2011)

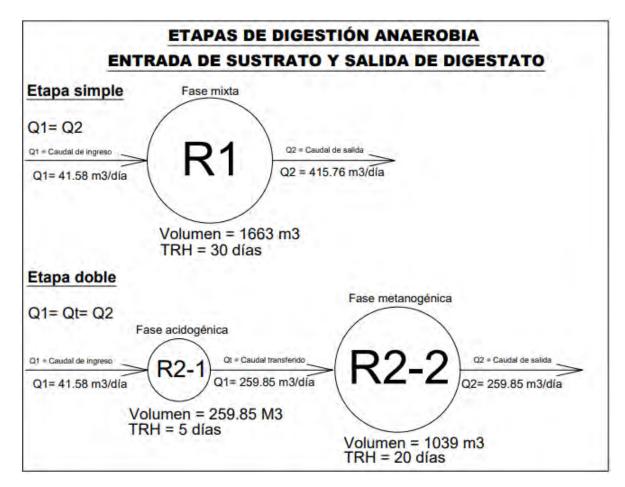


Figura 2.23: Flujo del sustrato y TRH Fuente: Elaboración Propia

2.2. Calculos de diseño

Para muestros cálculos de diseño tomaremos en consideración los siguientes valores.

Cuadro 2.11: Valores de Diseño

Densidad de FORSU	$ ho_{FORSU}$	147.1	kg/m^3	Gerencia de Medio Ambiente (2019)
Densidad del agua	$ ho_{agua}$	1,000	${ m kg}/m^3$	Ranald V. Giles (2003)
Densidad	ρ	1,147.1	kg/m^3	-
Gravedad	g	9.81	m/s^3	Francis W. Sears (2004)
Haltura	h	5.15	m	-
Área	A	75.6	m^2	-

Fuente: Elaboración Propia

2.2.1. Fuerza ejercida sobre la base del biodigestor

Investigando a Ranald V. Giles (2003), en su libro, mecánica de los fluidos e hidraulica, nos da a conocer, una ecuación, que nos apoyará en el calculo de fuerza (F) ejercida sobre la base del biodigestor, el cual es igual al producto del peso específico γ del líquido por la profundida h y por el área de la misma, la fuerza para nuestro caso es el peso generado por nuestro sustrato, sumado al peso del biogás generado por el proceso de fermentación o biodigestión, que descansa sobre la base del biodigetor.

$$F = \gamma * h * A(N) \tag{2.87}$$

$$\gamma = \rho * g\left(\frac{Kg}{m^3} * \frac{m}{s^2}\right) \tag{2.88}$$

Fuerza ejercida por el sustrato

Cuadro 2.12: Cálculo de fuerza

Peso específico	γ	11,252.9		
Fuerza	F	4'382,209.6	4.38	MN
Fuente	: El	aboración Prop	oia	

2.2.2. Presión ejercida en el biodigestor

La norma API-620 nos indica, el dieño de tanques de grandes dimenciones, operados a media presión, verticales sobre la superficie y con temperaturas no mayores a 93°C. El rango de presiones que admite este estandar es: 18 kPa < Presión interna < 103.4 kPa.

$$P = \frac{F}{A} (KPa) \tag{2.89}$$

$$P = \frac{4382209,6}{75,6} = 57962,86 \,(Pa) \tag{2.90}$$

$$P = 57,96 \, (KPa) \tag{2.91}$$

Presión del gas ideal

Si consideramos el biogas generado como un gas ideal y utilizamos la ley de Boyle Mariotte para gases ideales.

$$P_g * V_{seg.esf} = n * R * T \tag{2.92}$$

Donde:

Cuadro 2.13: Valores de diseño

Volumen segmento esferico	$V_{seg.esf}$	62.78	m^3	
		8.315	J/mol*K	
Constante ideal del gas	R	0.082	L*atm/mol*K	Francis W. Sears (2004)
		8.314	Kpa*L/mol*K	
		848	Kgf*m/Kmol*K	Martina et al. (2005)
Temperatura	T	308.15	K	

Fuente: Elaboración Propia

tenemos que:

Cuadro 2.14: Presión ejercidad por un gas ideal

Presión del gas
$$P_g$$
 40,808.48 40.81 KPa
Fuente: Elaboración Propia

Por tanto la presión total será de:

Cuadro 2.15: Presión total

Presión total
$$P_t$$
 98,771.34 98.77 KPa Fuente: Elaboración Propia

Nuestra presión hallada es de 98.77 kPa, el cual esta dentro del rango de presiones establecidas en la norma API-620.

$$18 \, kPa < \underline{98,77 \, kPa} < 103,4 \, kPa \tag{2.93}$$

El biodigestor es un tanque de almacenamiento, para nuestro caso un cilindro de pared delgada sobre la superfície que estará sometido a presiones internas; consideramos un espesor de 12.7 mm ó $\frac{1}{2}$ pulgada, un recipiente de pared delgada se identifica usando la ecuación obtenida del libro de Ranald V. Giles (2003).

$$t < 0.1 * d \tag{2.94}$$

Calculando.

$$12.7 \, mm \, < \, 0.1 * 8400 \, mm \tag{2.95}$$

$$12.7 \, mm \, < \, 840 \, mm \tag{2.96}$$

Como podemos observar los 12.7 mm de espesor de pared es mucho menor de 840 mm, por tanto concideramos que nuestro biodigetor es un recipiente de pared delgada.

Cálculo de presión para biogás.

Presión del Biogás

Valores de diseño.

Cuadro 2.16: Valores de diseño

Volumen segmento esferico	$V_{seg.esf}$	62.78			
Constante Biogás	R_b	31.172	Kgf*m/Kmol*K	Martina et al. (2005)	
Temperatura	T	308.15	K		
Fuanta: Flaboración Drania					

Fuente: Elaboración Propia

Se tiene un factor de conversión entre Kgf*m/Kmol*K y Kpa*L/mol*K de 0.0098.

Cuadro 2.17: Presión ejercida por un gas ideal

Presión del biogás P_b 1,500.1 1.5 KPa Fuente: Elaboración Propia

Por tanto la presión total será de:

Cuadro 2.18: Presión total

Presión total P_t 59,462.95 59.46 KPa Fuente: Elaboración Propia

Tabla 1.1		A.P.I. 650		
	Básico	Apéndice A	Apéndice F	
Presión Interna Máxima	Atm.	Atm.	0.17 Kg/cm2	
Temperatura Mínima	NS	(-)28.8°C	NS	
Temperatura Máxima	93.3°C	93.3°C	93.3°C	
Espesor Máximo del Cuerpo	44.4 cm.	12.7 cm.	44.4 mm.	
Espesor Mínimo del Cuerpo				
D < 15.2 m.	4.76 mm.			
15.2 m. < D > 36.5 m.	6.35 mm.			
36.5 m. < D > 60.9 m.		7.93 mm.		
D > 60.9 m.		9.52 mm.	N 4	
Espesor Mínmo del Techo		4.76 mm.		
Espesor Máximo del Techo		6.35 mm. +	CA	
Ángulo Mínimo de Coronamiento				
D < 10.6 m.	50.8 mm. x 50.8 mm. x 4.76 mm.			
10.6 m. < D > 18.2 m.	50.8 mm. x 50.8 mm. x 6.35 mm.			
D > 18.2 m.	76.2 mm.x 76.2 mm. x 9.52 mm.			

Figura 2.24: Norma API 650 Fuente: Elaboración Propia

Segun la norma API 650 se puede observar, de la figura 2.24 los siguientes parámetros de diseño. Estos parámetros estan considerados a nivel del mar 0 msnm donde la presión atmosférica es de 101.33 Kpa.

La ciudad de Cálca segun (https: //www.distrito.pe/distrito - calca.html):

■ Superficie: 33600 hectareas.

■ Altitud: 2955 msnm.

• Coordenadas: latitud, -13.3167, 13°19'0"; Longitud, -71.9539, 71°57'14"

■ Uso horario: UTC-5:00 (America-Lima)

(https://www.herramientasingenieria.com/onlinecalc/spa/altitud/altitud.html), de la página anterior Utilizamos la calculadora de presión; calculamos la presión atmosférica en la ciudad de Calca.

$$P(mbar) = 1013,25 * (1 - 0,0000225577 * H)^{5},2559$$
(2.97)

$$P(mbar) = 705,11 (mbar)$$
 (2.98)

$$P(mbar) = 70.51 (Kpa) (2.99)$$

La presión ejercida por nuestro sustrato y la presión del biogás al interior de nuestro biodigestores de 59.46 Kpa siendo menor que la presión atmosférica en la ciudad Calca el cual es de 70.51 Kpa; por ende cumple con nuestra norma de fabricación de tanques.

$$API620: 18 kPa < 59,46 kPa < 103,4 kPa.$$
 (2.100)

$$API650: 59,46 \ Kpa < 70,51 \ Kpa$$
 (2.101)

Cálculo de esfuerzos

Utilizando la formula modificada segun ASME parafo UG-27.

$$t = \frac{P_i * r}{S_{cuerpo} * E - 0.6 * P_i} \tag{2.102}$$

Cálculamos los esfuerzos.

Cuadro 2.19: Esfuerzos para un espesor de pared de 12.7 mm

D	8.4	m	
	1		G 7 (2006)
E	0.85 0.7	Eficiencia de Junta	Carreño (2006)
t	12.7	mm	
	19614293.5	19.61	Mpa
S_{cuerpo}	23075639.4	23.08	Mpa
	28020419.3	28.02	Mpa

Fuente: Elaboración Propia

Cuadro 2.20: Esfuerzos para un espesor de pared de 4.76 mm

D	8.4	m	
	1		
\mathbf{E}	0.85	Eficiencia de Junta	Carreño (2006)
	0.7		
t	4.76	mm	
	52371929	52.37	Mpa
S_{cuerpo}	61614034.14	61.61	Mpa
•	74817041.4	74.82	Mpa

Fuente: Elaboración Propia

2.3. Selección de material de construcción

Utilizaremos un acero aleado el cual segun https: //www.aceromafe.com/aceros - aleados - propiedades/, esta compuesto de boro, selenio, manganeso, silicio, plomo, cromo, molibdemo, vanadio y niquel; cuyas propiedades son de una alta resistencia al desgaste y a la corroción, propiedades necesarias e indispensables para nuestros reactores (biodigestores).

Podemos encontrar los siguientes:

Figura 2.25: Características del metal Fuente: Tubisa SAC

Figura 2.26: Características del metal Fuente: ASTM

Se puede observar de ambos materiales que el esfuerzo mínimo del acero A-131 y del A-36 es de 235 Mpa; los cuales cumplen con nuestras condiciones de diseño, de 28.02 Mpa para 12.7 mm y 74.82 Mpa para 4.76 mm.

2.4. Mantenimiento de Biodigestores

Al ser los biodigestores de estructura metálica, al no contar con un mantenimiento adecuado, existe una alta probabilidad de corrosión, existe obstrucción de tuberías.

Segun Dra. Claudia E. Balagué (2019), nos brinda información sobre la clase de mantenimientos faborables para los biodigestores.

2.4.1. Mantenimiento preventivo

Segun Conde Paccelli and Fanelli (2020), existen dos tipos de mantenimiento preventivo:

- Automantenimiento: Tareas de mantenimiento ejecutadas en los equipos por sus operarios de producción.
- Mantenimiento programado: Estrictamente programadas y ejecutadas por personal idóneo.

Se debe realizar de forma periódica, de manera diaria, mensual y anual, manteniendo los biodigestores en óptimas condiciones de operación, evitando en un futuro realizar grandes reparaciones.

■ La revisión de la altura del agua en el gasómetro se realizará una vez por semana.

- Medición y registro del vapor de pH ó FOS/TAC, se realiza al menos una vez a la semana, o como máximo cada 15 días.
- Acumulación de agua en líneas de gas debe realizarse inspecciones periódicas, de manera visual las trampas de agua, cuando la acumulación llegue al 70 % drenarlas, no olvidar cerrar la válvula de gas para evitar la deflagración.
- Se debe lavar el digestor por lo menos una vez al año, vaciando completamente y retirando el lodo asentado.
- Controlar que los conductos de entrada y salida se encuentren libres de obstrucciones.
- Revisar juntas, válvulas, conexiones y tapas, utilizando agua, esponja y detergente.
- Controlar los cambios de presión del gasómetro, al ser de geomembrana delgada puede sufrir perforaciones y causar fugas.

2.4.2. Mantenimiento correctivo

Segun Conde Paccelli and Fanelli (2020), existen dos tipos de mantenimiento correctivo:

- Por reparación: utilizado en líneas de fabricación con alta capacidad de producción (necesita talleres auxiliares).
- Por sustitución de elementos: aplicable en todo tipo de equipos, especialmente en aquellos con dificultad de obtención de repuestos.

Abocado a reparar las instalaciones en caso de emergencia y llevados a cabo de forma inmediata.

- Control de filtro de sulfhídrico.- si empezamos a detectar un olor desagradable, se debe reemplazar el material filtrante (óxido de hierro), con un tiempo aproximado de entre 5 o 6 meses.
- Perforaciones en el gasómetro.- se puede reparar agujeros en el gasómetro que mide menos de 5 cm, caso contrario se deberá cambiar la geomenbrana.

2.5. Diseño de biodigestor mediante SOLIDWORKS

2.5.1. **Diseño**

2.5.1.1. Cuerpo del biodigestor

Nuestro diseño en SOLIDWORKS comprende la octava parte $(\frac{1}{8})$ de nuestro tanque, en el cual distribuiremos simétricamente la suma de fuerza ejercida por nuestro sustrato y el biogás.

La figura 2.27 y 2.28, mostramos las propiedades de las placas de acero a utilizar, en la simulación tenemos un acero ASTM A36, el cual posee un límite de fluencia similar a nuestro material a utilizar el cual es el ASTM A131, acero de uso naval.

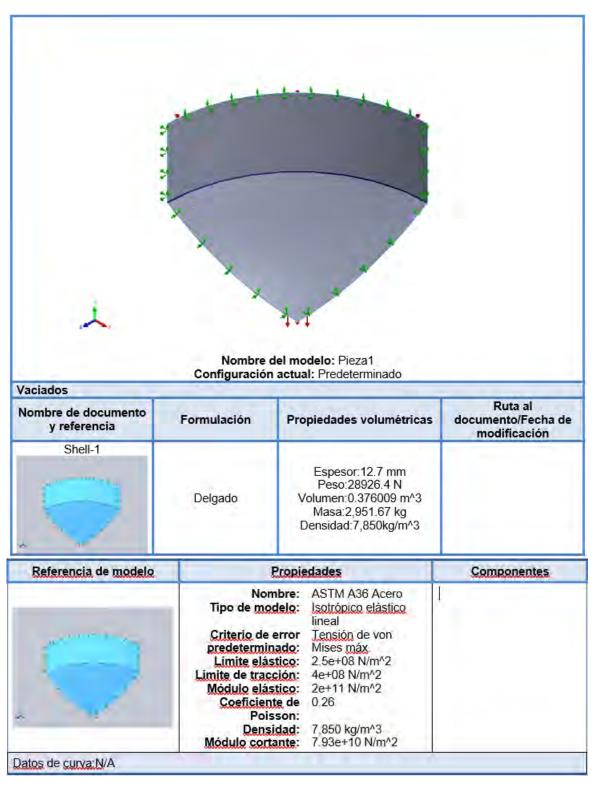


Figura 2.27: Dimensionamiento y Propiedades del Material ASRM A36, de 12.7 mm de espesor

Fuente: Elaboración Propia

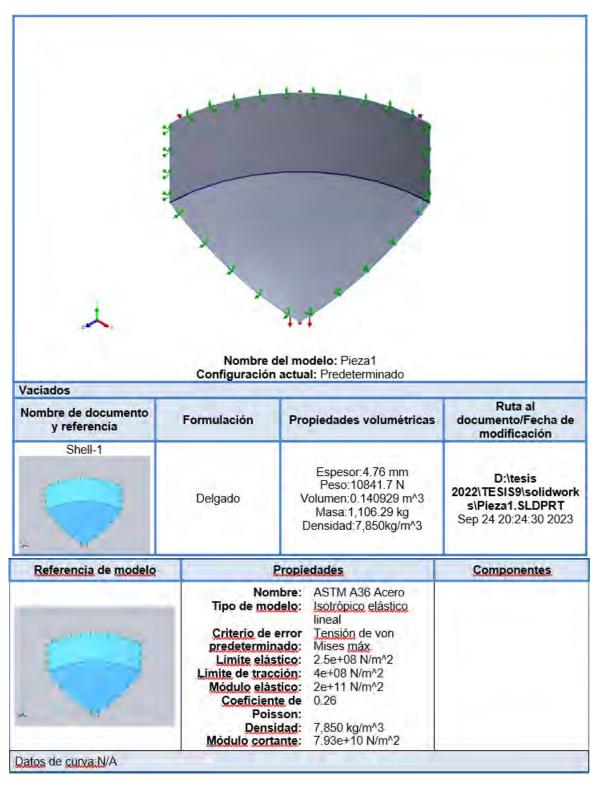


Figura 2.28: Dimensionamiento y Propiedades del Material ASRM A36, de 4.76 mm de espesor

Fuente: Elaboración Propia

En la figura 2.29 y 2.30, encontramos los detalles de sujeción, el número de aristas en las cuales se realizó el cálculo, y optamos por una distribución simétrica de fuerzas dentro del biodigestor, así tambien la carga que soporta el reactor.

Nombre de sujeción	lmager	n de <u>sujeción</u>		Detalles de s	ujeción
Simetría-1	-	9		Entidades: Tipo:	5 arista(s) Simetría
	*	~			
uerzas resultani	tes				
uerzas resultan Componen	200001	x	Y	Z	Resultante
uerzas resultan Componen Fuerza de reac	tes	X 767,320	Y 831,186	Z 767,327	Resultante 1.36691e+06

Nombre de carga	Cargar imagen	Detalles de carga	
Presión-1		Entidades: 2 cara(s) Tipo: Normal a cara seleccionada Valor: -0.06 Unidades: N/mm^2 (MPa	

Figura 2.29: Sujeción y Carga, para planchas de 12.7 mm de espesor Fuente: Elaboración Propia

Nombre de sujeción	lmage	n de <u>sujeción</u>		Detalles de sujec	ión.
Simetria-1		>	Entidades: 5 arista(s) Tipo: Simetria		
uerzas resultan	tes				
Componen	tes	X	Υ	Z	Resultante
	ción(N)	767,325	831,178	767,358	1.36692e+06
Fuerza de reac					

Nombre de carga	Cargar imagen	<u>Detalles</u> de carga
Presión-1		Entidades: 2 cara(s) Tipo: Normal a cara seleccionada Valor: -0.06 Unidades: N/mm^2 (MPa)

Figura 2.30: Sujeción y Carga, para planchas de 4.76 mm de espesor Fuente: Elaboración Propia

La mayor concentración de fuerzas se encuentra en la base del tanque, por ser un tanque vertical, existe tambien una mayor carga de sustrato, las fuerzas de reacción encontradas nos serviran de referencia en todo el tanque.

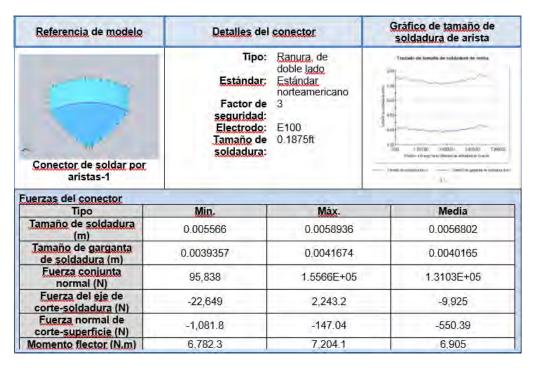


Figura 2.31: Conector de Soldadura Artística para placa de espesor de 12.7 mm Fuente: Elaboración Propia

Referencia de modelo	Detailes del conector		Gráfico de tamaño de soldadura de arista	
Conector de soldar por aristas-1	Tipo: Estándar: Factor de seguridad: Electrodo: Tamaño de soldadura: Terminando pieza: Pieza con relación de posición:	Ranura, de doble lado Estándar norteamericano 3 E100 0.1875ft Superficie- Revolución5 Superficie- Revolución5	Transaction for Sensetto de yellontero de areno. 1707) 1707 170	
uerzas del conector	BASS III	NA.	0.0-42-	
Tipo	Min.	Máx.	Media	
Tamaño de soldadura (m)	0.007708	0.0088032	0.0080865	
Tamaño de garganta de soldadura (m)	0.0054503	0.0062248	0.005718	
Fuerza conjunta normal (N)	-10,030	2.1271E+05	1.0757E+05	
Fuerza del eje de corte-soldadura (N)	-57,697	15,373	-27,399	
Fuerza normal de corte-superficie (N)	-1,434.7	617.73	-184.75	
Momento flector (N.m) 3.764.8		4.123	3.871	

Figura 2.32: Conector de Soldadura Artística para placa de espesor de 4.76 mm Fuente: Elaboración Propia

La figura 2.31 y 2.32, nos muestra el típo de electrodo a utilizar en nuestro biodigestor, así

como el factor de seguridad, el cual nos garantiza el optimo desempeño de nuestra soldadura. En la figura 2.33 nos muestra una ficha técnica del electrodo AWS E10018-D2 H4R.

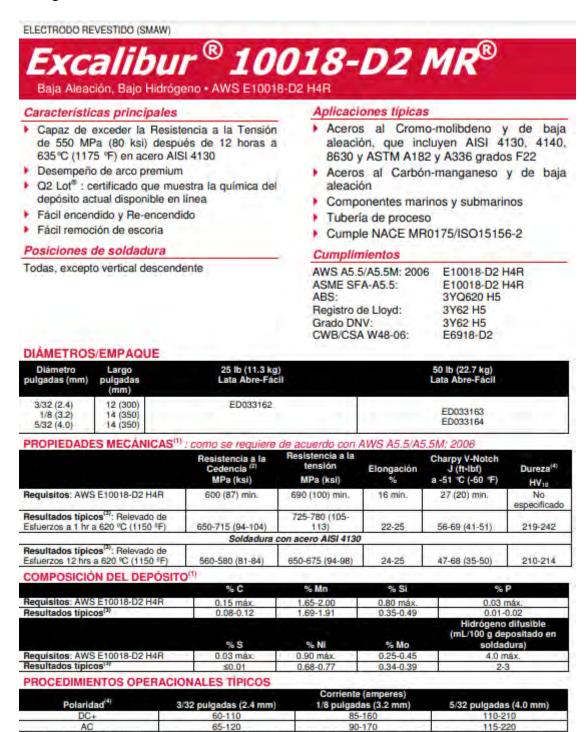


Figura 2.33: Ficha Técnica del Electrodo AWS E10018-D2 H4R Fuente: Elaboración Propia

von Mises.

La figura 2.34, nos muestra el esfuerzo de tensión de von Mises, el programa de SOLID-WORKS nos calcula las tensiones mínimas y máximas, que se desarrollan en nuestro tanque,

y en que lugar se generan los mayores esfuerzos, mediante un código de colores, tambien nos marca el límite elático del material a utilizar.

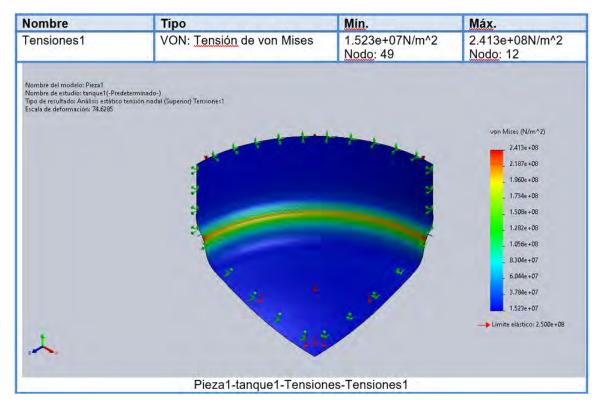


Figura 2.34: Tensión de von Mises Para un material de 12.7 mm de Espesor Fuente: Elaboración Propia

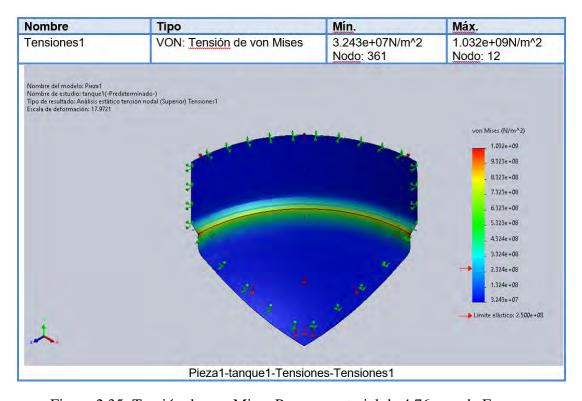


Figura 2.35: Tensión de von Mises Para un material de 4.76 mm de Espesor Fuente: Elaboración Propia

De las figuras 2.34 y 2.35, se observa un límite eslástico de 2.5*10⁸, obteniendo el factor de seguridad mediante la siguiente fórmula.

$$FS = \frac{\sigma_{lim.\,elas.}}{\sigma_{max.}} \tag{2.103}$$

Obtenemos lo siguiente:

$$FS = 1 Para un espesor de 12,7mm. (2.104)$$

$$FS = 0.24 \, Para \, un \, espesor \, de \, 4.76mm. \tag{2.105}$$

Desplazamiento estático.

La figura 2.36 y 2.37, nos brinda información de cuanto se desplaza el materia sometido a carga, para los distintos espesores de material (12.7mm y 4.76mm).

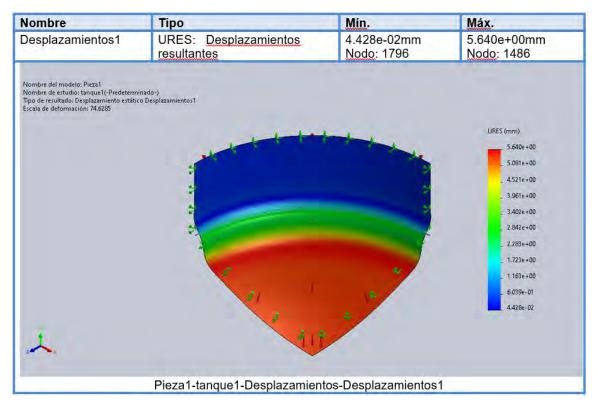


Figura 2.36: Desplazamiento del Material cuyo espesor es de 12.7mm; "5.64mm como máximo".

Fuente: Elaboración Propia

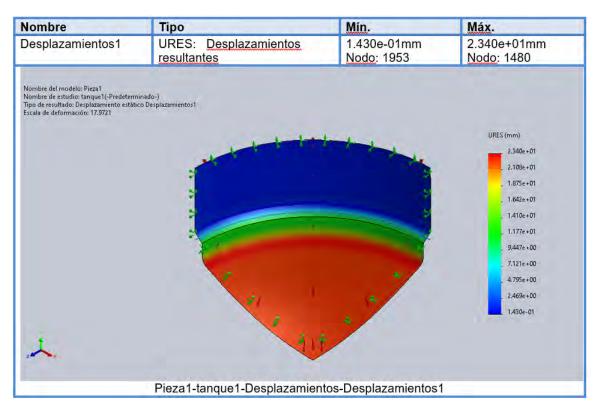


Figura 2.37: Desplazamiento del Material cuyo espesor es de 4.76mm; "23.4mm como máximo".

Fuente: Elaboración Propia

Deformación unitaria.

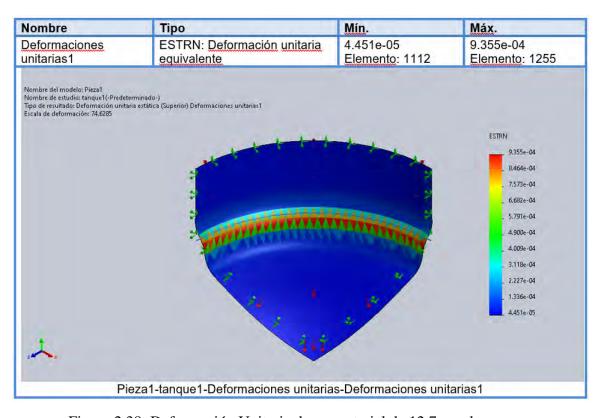


Figura 2.38: Deformación Unitaria de un material de 12.7mm de espesor Fuente: Elaboración Propia

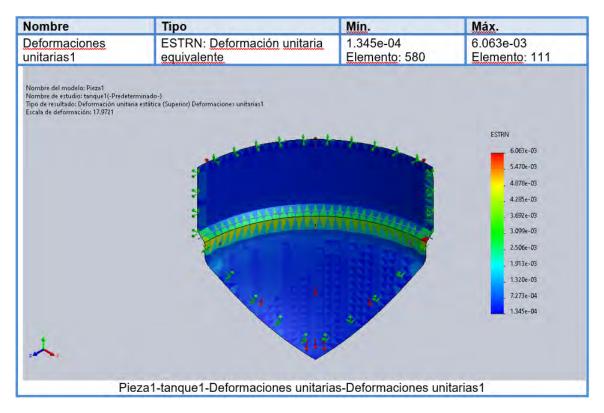


Figura 2.39: Deformación Unitaria de un material de 4.76mm de espesor Fuente: Elaboración Propia

Factor de seguridad.

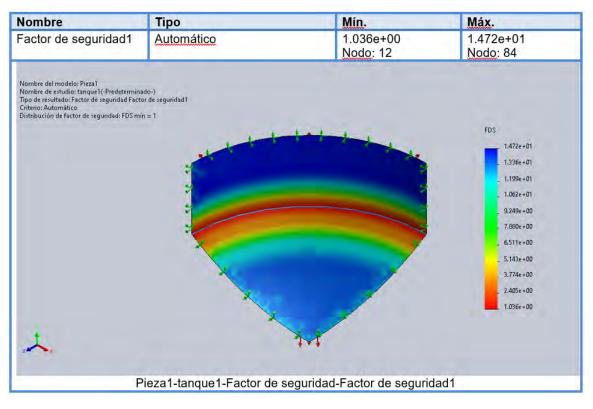


Figura 2.40: Factor de Seguridad para un material de 12.7mm de espesor Fuente: Elaboración Propia

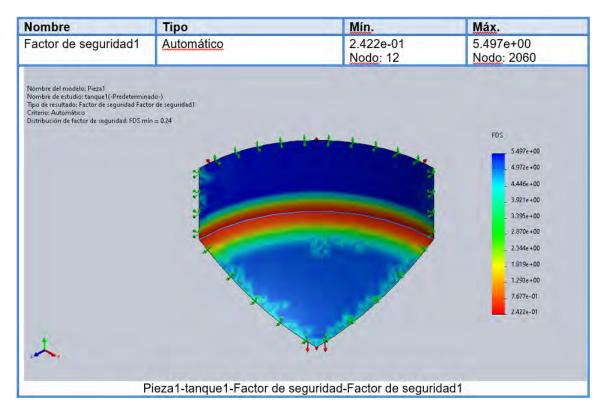


Figura 2.41: Factor de Seguridad para un material de 4.76mm de espesor Fuente: Elaboración Propia

Capítulo 3

Capacidad de producción de biogas

3.1. Gestión del Aprovisionamiento

Para que una bateria de biodigestión sea rentable, es necesario garantizar el suministro constante de materia prima, en tiempo y calidad, así como homogenizar el sustrato a la entrada del reactor, consiguiendo eficiencia y rendimientos elevados (BESEL, 2007).

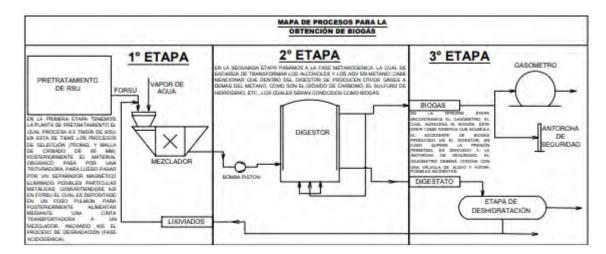


Figura 3.1: Mapa de Proceso Fuente: Elaboración Propia

3.2. Acondicionamiento del Sustrato Previo a la Producción del Biogás

Antes de introducir el sustrato dentro del reactor se realiza una serie de transformaciones, con la finalidad de introducir al reactor mezcla lo más homogenea posible, reduciendo el tamaño de las partículas, espesando, calentando, controlando el pH, eliminando metales pesados (BESEL, 2007).

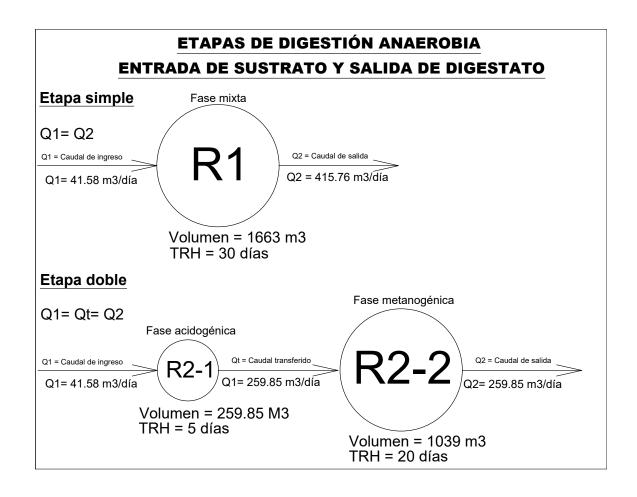


Figura 3.2: Flujo del sustrato y TRH Fuente: Elaboración Propia

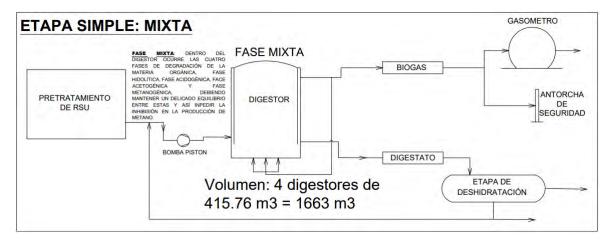


Figura 3.3: Etapa Simple Fuente: Elaboración Propia

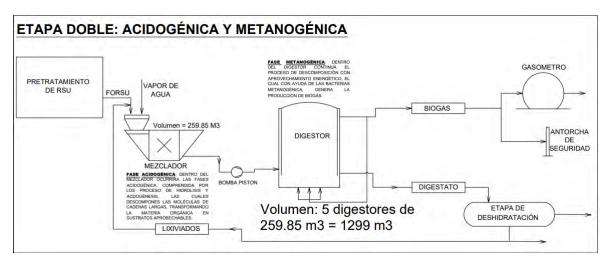


Figura 3.4: Etapa Doble Fuente: Elaboración Propia

3.3. Biogás

Es un gas regenerado debido a una reacción de biodegradación de la materia orgánica mediante acción microbiana, generalmente en un ambiente anaeróbico. Esta compuesto por metano, dióxido de carbono y otros gases en porcentajes muy pequeños, que pueden ser perjudiciales al medio ambiente, como es el caso del sulfuro de hidrógeno.

Sencia Choquenaira (2020), nos indica que el biogás, es un gas combustible producto de la degradación, cuyo conteido de metano suele ir de 55 % al 80 % dependiendo del compuesto orgánico en la biomasa.

Cuadro 3.1: Composición del Biogás

Componente	Formula Química	(%)Volumen
Metano	CH_4	55-70
Dióxido de carbono	CO_2	35-40
Hidrógeno	H_2	1-3
Nitrógeno	N_2	0.5-5
Monoxido de carbono	CO	0.1
Oxígeno	O_2	0.1
Sulfuro de hidrógeno	H_2S	0.1
Vapor de agua	H_2O	

Fuente: (Sotaquira Medina et al., 2015)

El biogás depende de la biomas que se va a utilizar, puede variar entre 10% y 90% (Sotaquira Medina et al., 2015).

Nota: Cuando el biogás alcanza valores superiores al 45 % es inflamable (Gastelum Fernández et al., 2020).

Debemos tener en cuenta, que la producción de biogás en un sistema anaeróbico esta en función de: Temperatura (mesofílica o termofílica), tipos de materias primas, nutrientes y concentración de minerales traza, pH (generalmente cercano a la neutralidad), toxicidad y condiciones redox óptimas (Prof. María Teresa Varnero Moreno, 2011).

Cuadro 3.2: Caracteristicas y propiedades del biogás

Caracteristicas	Unidades			
Composicíon	57-70 % metano			
	30-40 % Dióxido de cabono y otros gases			
Contenido energético	$6 - 6.5 \frac{kw * h}{m^3}$			
Equivalente de combustible	$6\text{-}6.5rac{kw*h}{m^3} \ 0.6\text{-}0.065rac{Lpetroleo}{m^3biogas}$			
Limite de explosión	6-12 % del biogás en el aire			
Temperatura de ignición	650-750°C (Con el contenido de metano mencionado)			
Presión critica	74-88 atm			
Temperatura critica	$-82,5^{o}\mathrm{C}$			
Densidad normal	$1.2 \frac{kg}{m^3}$			
Olor	Huevo podrido			
Masa molar	$16.043 \frac{kg}{kmol^{-1}}$			
Fuente: (Sotaquira Medina et al. 2015)				

Fuente: (Sotaquira Medina et al., 2015)

3.3.1. Fases de la fermentación

BESEL (2007), nos habla de la existencia de varias fases consecutivas en el proceso de la degradación, cada una de estas con diferentes velocidades de reacción dependiendo de la composición del sustrato; de igual manera nos indica que la producción o generación de biogás esta limitado por la velocidad de la fase más lenta; una manera de acelerar los procesos, consiste en realizar un diseño mediante el cual se separan los microorganismos acidogénicos y metanogénicos mediante un sistema de tiempos medidos en días, así como realizar un pre-tratamiento de disminución de tamaño de la materia prima para ayudar en la degradación.

Segun (Prof. María Teresa Varnero Moreno, 2011) se dibide en 4 fases:

- Hidrólisis.- Primer paso para la degradación de sustratos orgánicos complejos, se lleva a cabo por la acción de enzimas extracelulares producidas por micro organismos hidrolíticos; depende de la temperatura del proceso, tiempo de retención, composición bioquímica del sustrato (lignina, carbohidratos, proteinas y grasas), dimensión de partículas, pH, NH₄, y productos de la hidrolisis (Prof. María Teresa Varnero Moreno, 2011).
 - Cuesta López (2015), nos indica también, en esta etapa moléculas complejas (proteinas, carbohidratos, lípidos) se hidrolizan por acción de enzimas capaces de digerir estas moléculas, transformandolas en moléculas solubles (aminoácidos, azucares y ácidos grasos).
- Fase fermentativa o acidogénica.- Etapa de fermentación de moléculas orgánicas solubles en compuestos utilizados directamente por bacterias metanogénicas (acético, fórmico, H_2) y compuestos orgánicos más reducidos (propiónico, butírico, valérico, láctico y etanol). Es importante la presencia de estas bacterias dibido a que eliminan el oxígeno disuelto del sistema (Prof. María Teresa Varnero Moreno, 2011). Cuesta López (2015), indica, esta fase se lleva a cabo la degradación de moleculas solubles en ácido acético, ácido fórmico, hidrógeno y productos intermedios.
- Fase acetogénica.- El etanol, los ácidos grasos volátiles y algunos compuestos aromáticos deben ser transformados en producos mas sencillos, como acetato (CH_3COO-) e hidrógeno (h_2) , a través de bacterias acetogénicas, estos son: Syntrophomonas wolfei

- y Syntrophobacter wolini (Prof. María Teresa Varnero Moreno, 2011). Segun Cuesta López (2015), esta fase transforma el etanol y los ácidos grasos volátiles en acetato (CH3COO-) e hidrógeno.
- Fase metanogénica.- Los microorganismos metanogénicos son los responsables de la formación de metano, estos completan la etapa de digestión anaeróbica (Prof. María Teresa Varnero Moreno, 2011).
 - Las bacterias metanogénicas transforman el acetato, metanol, H_2/CO_2 y algunas metilaminas en metano (Cuesta López, 2015).



Figura 3.5: Fases de la Fermentación Fuente: (Prof. María Teresa Varnero Moreno, 2011)

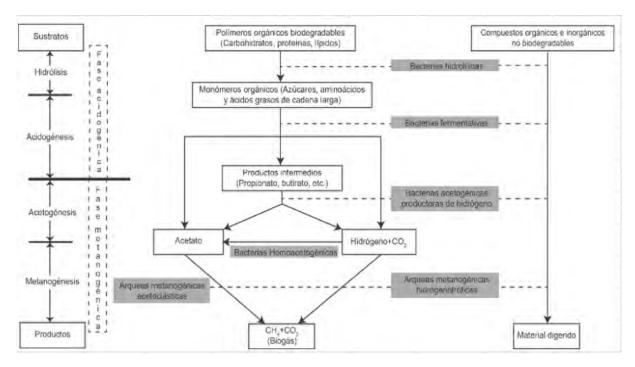


Figura 3.6: Agrupando en dos Etapas Fuente: (Cleves et al., 2016)

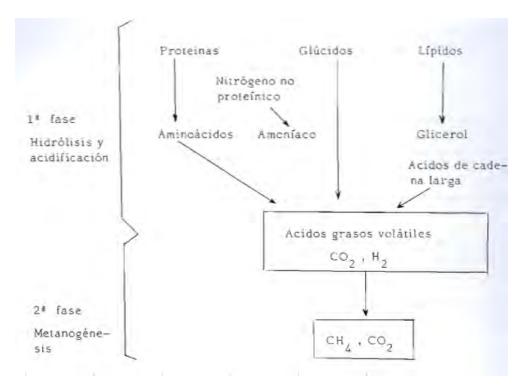


Figura 3.7: Agrupacion de fases Fuente: (González Benítez and Portet Cortés, 1980)

De la figura 3.5 González Benítez and Portet Cortés (1980), muestra que en la primera fase se produce los ácidos grasos de cadena corta, aldehidos, alcoholes, óxidos de carbono e hidrógeno, producto de la degradación de la glucosa, ácidos grasos de cadena larga, péptidos y aminoácidos; en la segunda fase los productos de la primera fase son transformados en metano por los organismos metanogénicos.

Nota. -

González Benítez and Portet Cortés (1980), nos da a conocer que, una parada en la digestión va acompañado de un aumento en la concentración de ácidos grasos volátiles; estudios realizados por Hobson y Shaw, mostraron que los ácidos acéticos y butiricos no disminuyen la producción de metano aun estando presentes en concetraciones de 10 gr/l; por el contrario el ácido propiónico ralentiza la metanogénesis en concentraciones superiores a 1 gr/l.

3.3.2. Principios de la combustión

La combustión es una reacción química de oxidación del biogás, el requerimiento mínimo de aire debe ser de 21 %, y la presión oscilar entre 7 a 20 mbar. (Prof. María Teresa Varnero Moreno, 2011), a continuación en la figura 3.8 mostraremos un cuadro de equivalencias con otras fuentes de energía.

Valores	Biogás*	Gas Natural	Gas Propano	Gas Metano	Hidrog.
Valor Calorífico (Kwh/ m³)	7.0	10	26	10	3
Densidad (t/m³)	1.08	0.7	2.01	0.72	0.09
Densidad con respecto al aire	0.81	0.54	1.51	0.55	0.07
Limite de explosión (% de gas en el aire)	6-12	5-15	2-10	5-15	4-80
Temperatura de encendido	687	650	470	650	585
Máxima velocidad de encendido en el aire (m/s)	0.31	0.39	0.42	0.47	0.43
Requerimiento teórico de aire (m³/m³)	6.6	9.5	23.9	9.5	2.4

Figura 3.8: Cuadro de energías equivalentes Fuente: (Prof. María Teresa Varnero Moreno, 2011)

Segun Organismo Supervisor de la Inversión en Energía y Minas (2017), el biogás es un gás combustible que se genera por medios naturales o en equipos específicos, el cual por medio de reacciones de biodegradación produce energía denominada biogás; el biogás tiene un poder calorífico de 18.8 a 23.4 megajulios por metro cúbico $(\frac{MJ}{m^3})$.

Figura 3.9: Contenido de Metano en un m^3 de Biogás Fuente: (Palau Estevan, 2016)

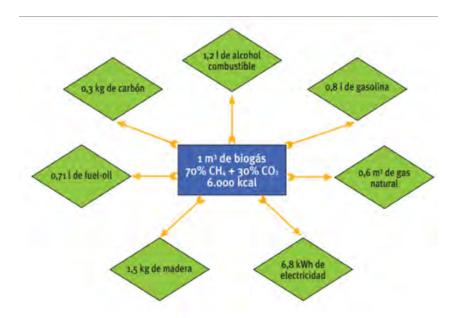


Figura 3.10: Comparación energética de biogás y otros combustibles Fuente: (BESEL, 2007)

3.3.3. Producción de metano

Remontando en la historia en 1776 Volta descubre que, al descomponerse los vegetales, el gas producido contiene un alto contenido de metano y Beauchamp a mediados del siglo XIX establece la presencia de microorganismos, productores de biogás en la etapa de digestión (Palau Estevan, 2016).

Definiendo la digestión anaerobia es un proceso biológico, donde los residuos sólidos orgánicos se degradan bajo la acción de ciertos microorganismos, descomponiendolos en dos productos, biogás y lodos (Don Antonio Jesús Castro Granado, 2018); es un proceso muy complejo debido al múmero de reacciones bioquímicas que se producen y a la cantidad de microorganismos involucrados, dividiendose así en 4 fases o procesos (GARCÍA, 2017), que detallaremos en la siguiente figura.

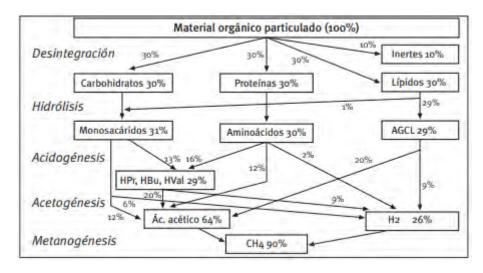


Figura 3.11: Producción de Metano Fuente: (Instituto para la Diversificación y Ahorro de la Energía, 2007)

Cuadro 3.3: Composición del Sustrato

Compuesto Orgánico	Cantidad de Metano	Porcentage de Metano
	(m^3/tSV)	(%)
Proteinas	600 - 700	70 - 75
Lípidos	1000 - 1250	68-73
Carbohidratos	700 - 800	50 - 55

Fuente: Cuesta López (2015)

El proceso inicia con el sustrato y termina con un digestivo o digerido, un material semilíquido obtenido mediante el proceso de digestión (GARCÍA, 2017)

3.4. Cálculo de la Producción de biogás

Muñoz et al. (2016), nos da a conocer un cálculo teórico de biogás mediante la siguiente fórmula:

$$V_B = SV * 0.27 * V_M \tag{3.1}$$

Donde:

- V_B : Volumen de Biogás.
- SV: Sólidos Volátiles (carga de sustrato entre FORSU).
- V_M : Carga de sustrato.

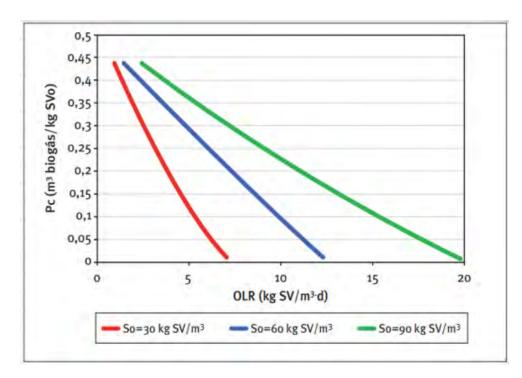


Figura 3.12: Relación Entre Producción de Biogás por Unidad de Carga y la Velocidad de Carga Orgánica

Fuente: (BESEL, 2007)

La producción de biogás aumenta conforme disminuye la carga orgánica.

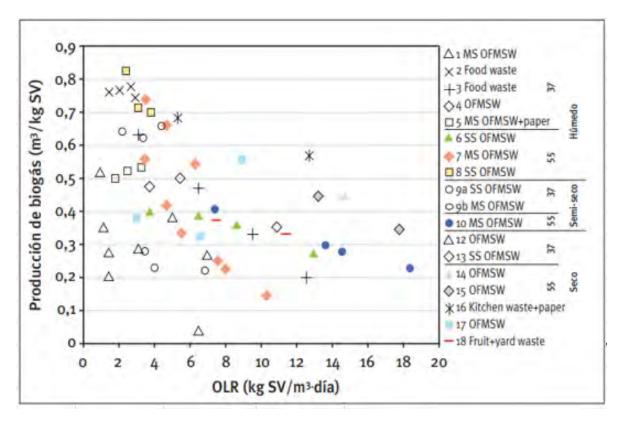


Figura 3.13: Relación Entre Producción de Biogás por Unidad de Carga y la Velocidad de Carga Orgánica

Fuente: (BESEL, 2007)

De la figura 3.13 podemos observar la obtención de $900\,m^3$ de biogás por tonelada de sólidos volátiles.

Determinamos la producción de biogás, estudiando los procesos químicos anaerobios, que se desarrollan dentro de los reactores.

- Factores químicos (Ricardo del Valle Zermeño, 2013)
 - Oxígeno disuelto: al interior de los biodigestores producto de la biodegradación del sustrato se producen bacterias metanogénicas, el oxígeno es tóxico para estas bacterias, por ello se trata de eliminar lo más posible el contenido de oxígeno dentro de los biodigestores.
 - Rango de PH: el PH requerido puede estar entre 6.8 y 7.4, para el desarrollo bacteriano, tolerando pequeñas variaciones, pero tiene problemas graves si el PH es inferior a 6 o superior a 9.
 - Segun Pelegrín Romera (2022), los pH varian a cada fase de la fermentación (etapa fermentativa: 7.2 y 7.4, etapa acetogénica: 7.0 y 7.2, etapa metanogénica: 6.5 y 7.5); el exceso de pH produce amoniaco y un bajo nivel de pH produce ácido acético no ionizado, los cuales inhiben la digestión.
 - Alcalinidad: es la facilidad de neutralizar los ácidos en una disolución, es fundamental para mantener los niveles de PH dentro del rango óptimo, BESEL (2007) recomienda valores superiores a 1.5 g/l CaCO₃. Pelegrín Romera (2022), recomienda valores comprendidos entre 2500 y 5000 mg CaCO₃/L, permitiendo al

digestor dar una buena respuesta frente al incremento del contenido de ácidos grasos volátiles.

- Redox: mecomendable menor a -350mv (González Benítez and Portet Cortés, 1980).
- Ácidos grasos volátiles (AGV): el aumento de concentración de estos, está relacionado con la disminución de producción de biogás, especialmente con el porcentaje de metano en el biogás (Valle Zermeño, 2013); segun la investigación realizada por Cintia Rocío Flores Juárez (2008), una concentración de 6.7 9.0 mol mol mol mol metanogénicas.
- Nutrientes: el proceso anaerobio requiere pocos nutrientes.
- Inhibidores: es necesario controlar la presencia de sustencias inhibidoras, que son las que más afectan a las bacterias metanogénicas, entre ellas tenemos a los metales pesados, tóxicos orgánicos, y sales (amoniaco, calcio, potacio y sodio).
- Por estos factores, la digestión anaeróbia es una buena alternativa para el tratamiento de diferentes efluentes, dentro del cual destacaremos el FORSU para nuestro estudio.

Para el cálculo de producción de biogás utilizaremos el manual del biodigestor del Dra. Claudia E. Balagué (2019), mediante el cual detallaremos un cuadro de equivalencias por kilo de FORSU y de producción de biogás.

Donde:

Cuadro 3.4: Biogás

m^3	Litros	Kg gas envasado
1	1000	$\frac{1}{2}$
Fuente: I	Dra. Clau	idia E. Balagué (2019)

Cuadro 3.5: Generación de Biogás por Material Orgánico

Tipo de residuo	FORSU	Purin de cerdo	Estiercol vacuno	Desecho de huerta	
Potencial de generación	100	60	30	50	
Fuente: Dra. Claudia E. Balagué (2019)					

Cuadro 3.6: Alimentación del biodigestor

Tipo de residuo	FORSU	Purin de cerdo	Estiercol vacuno	Desecho de huerta
Cantidad máxima (kg/día)	15	30	20	5
Equivalente baldes (10 L)	5	3	2	11
Agua (L/día)	15		15	
Equivalente baldes (10 L)	1.5		1.5	

Fuente: Dra. Claudia E. Balagué (2019)

Cuadro 3.7: Producción de biogás por día

Tipo de residuo	Kg solido fresco	Lt biogás/día	m^3/d í a	Kg gas envasado/día	
FORSU	4704	$4.70*10^5$	470.4	235.2	
Fuenta: Dro. Claudio F. Ralaguá (2010)					

Fuente: Dra. Claudia E. Balagué (2019)

Cuadro 3.8: Producción de biogás al mes

Tipo de residuo	Kg solido fresco	L biogás/día	m^3/mes	Kg gas envasado/mes
FORSU	141120	$1.41*10^7$	$1.41*10^4$	$7.06*10^3$
		C1 11 E D 1	(((0 (1 ())	

Fuente: Dra. Claudia E. Balagué (2019)

Recalculando la producción de biogás.

Para el calculo de la producción de biogás utilizaremos la formula estudiada por Muñoz et al. (2016).

Cuadro 3.9: Parámetros para la producción

Q	41.58			m³/día
V_R	1299		100%	m^3
Carga	1039.41		80%	m^3
Proporción	$\frac{2}{7}$	agua	296.97	m^3
	•	FORSU	742.43	m^3
SV	1.4			
$V_{biog\'{a}s\ total}$	392.90			m^3

Fuente: Elaboración propia

Del cálculo realizado por el manual de uso del biogás de Dra. Claudia E. Balagué (2019) nos da un valor de generación de biogás de 470.4 m^3 , mientras que mediante la revista de invetigación de Muñoz et al. (2016) nos da un valor de generación de biogás de 392.90 m^3 . Para propósitos de estudio y realización de cálculos tomaremos el mayor valor de producción de biogás, el cual es de 470.4 m^3 .

Presión ejercidad por el biogás

Cuadro 3.10: Presión ejercida por el biogás

$\overline{V_2}$	62.78	m^3
n	7.5	
P_b	11239.96	Pa
P_b	11.24	KPa

Fuente: Elaboración propia

Tipo de geomembrana	Espesor (t) [m]	Presión interna máxima $p = \frac{\sigma_1 \cdot t}{r} [kPa]$
HDPE	0.75 x 10 ⁻³	12.9
	1.0×10^{-3}	17.1
Resistencia a la fluencia:	1.25 x 10 ⁻³	21.4
$\sigma_1 = 12Mpa$	1.5 x 10 ⁻³	25.7
PVC	0.5×10^{-3}	10.9
TYC	0.75×10^{-3}	16.1
Resistencia a la fluencia:	1.0×10^{-3}	21.4
$\sigma_i = 15Mpa$	1.25 x 10 ⁻³	26.8
O1 - 12mpa	1.5 x 10 ⁻³	32.1

Figura 3.14: Selección del material para gasómetro Fuente: (Zabaleta et al., 2017)

Utilizando el simposio de la universidad de Piura, sobre diseño de un biodigestor tubular para sonas rurales de Zabaleta et al. (2017), podemos selecionar entre dos tipos de materiales de geomembrana el de HDPE de 0.75 mm de espesor o el de PVC con igual espesor de pared, para presiones de 11.24 Kpa.

Dimensión del gasómetro

$$V_g = \frac{4}{3} * \pi * r^3 \tag{3.2}$$

Cuadro 3.11: Dimensionamiento del gasometro

r	4.82	m
V_g	470.4	m^3
V_2	62.78	m^3
n	7.5	

Fuente: Elaboración propia

3.5. Sistema de Protección Contra Sobrepresión y Antorcha

La linea de distribución de biogás esta diseñada de forma que, si el consumo de biogás es menor que la producción, el exceso se acumula en el gasómetro, esto puede causar que la presión en el gasómetro genere un riesgo a las instalaciones, por ende se instala distintas válvulas de alivio encargadas de evacuar el exceso de biogás, desviando a la antorcha donde será quemado (Pelegrín Romera, 2022).

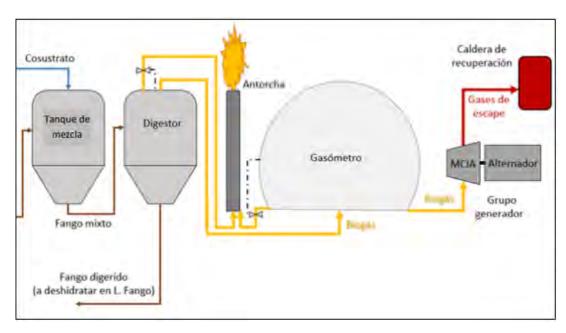


Figura 3.15: Sistema de protección Fuente: (Pelegrín Romera, 2022)

Capítulo 4

Diseño de Faja o Cinta Transportadora

4.1. Faja o Cinta Transportadora

4.1.1. Reseña Histórica

La primera cinta transportadora fue utilizada para el transpote de carbón en la industria minera en 1795, instaladas sobre terreno plano, transportaba material a cortas distancias; el cual consistía en una cinta de cuero, lona o cinta de goma, deslizada por tablas de madera plana o cóncava (Huaman Valencia Ernesto Roger, 2014).

En 1815, la compañia Hc. Frick demostro que las cintas transportadoras trabajaban de forma normal en distancias largas, esta prueba se realizo en una mina subterranea de unos 8 Km de longitud aproximadamente (Huaman Valencia Ernesto Roger, 2014).

En 1913 Henrry Ford en su fabrica Ford Motor Company, introdujo la cinta transportadora a su cadena de montaje; Durante la segunda guerra mundial, los componentes naturales escasearon, dando lugar a los componentes sintéticos, cuyo desarrollo viene generando grandes avances en el desarrollo industrial (Huaman Valencia Ernesto Roger, 2014).

4.1.2. Definición

Las cintas transportadoras son utilizados en la industria alimentaria, supermercados, paquetería, ladrillera, etc., por sus caracteristicas antiabrasivas y anticorte, ideales para trabajos con alta humedad y temperaturas variables (Proiman Equipos Transportadores, 2021), las fajas o cintas poseen los siguientes atributos:

- Baja elongación.
- Altas cargas y velocidades de transporte.
- Buena elesticidad.
- Alta resistencia al impacto.
- Excelente flexibilidad longitudinal y transversal.
- Alta resistencia a la tensión.
- Fuerte adhesión al caucho

La cinta transportadora consta de dos tambores principales: motriz y de reenvío, rodillos superiores e inferiores, que soportan y conducen, y el tambor de apriete, que tensiona la cinta transportadora (Edgar Amela Felipe, 2016).

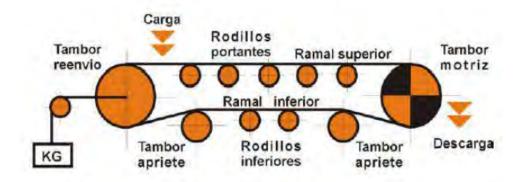


Figura 4.1: Partes de Cinta Transportadora Fuente: (Edgar Amela Felipe, 2016)

4.1.3. Elementos de una cinta transportadora

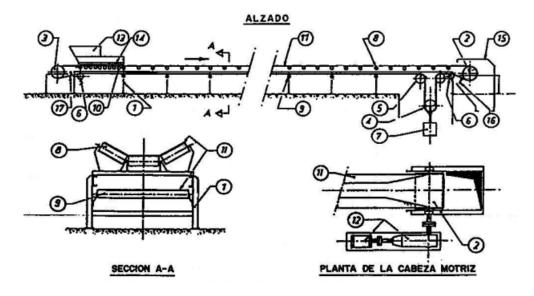


Figura 4.2: Elementos de una Cinta Transportadora Fuente: (Fundación Gomez Pardo, 1980)

La figura nos da a conocer los componentes principales para una cinta transportadora.

- Bastidor (1).
- Tambor motriz (2).
- Tambor de reenvío (3).
- Tambores de tensado (4,5).
- Tambor guía (6).

- Dispositivo de tensado de banda (7).
- Rodillo del ramal superior o de transporte (8).
- Rodillo del ramal inferior o de retorno (9).
- Rodillo de impacto (10).
- Banda de transporte (11).
- Grupo motriz (12).
- Tolva de carga (13).
- Guiaderas para el centrado de la carga (14).
- Estrelladero, elemento de descarga (15).
- Elemento de limpieza de cinta, zona cabeza (16).
- Elemento de limpieza, zona cola (17).
- Carenados, sistema de protección anti-polvo y ruido. Si cubre toda la cinta anticaída (18).

4.2. Criterios de selección

4.2.1. Generalidades

Tratándose de una instalación nueva, procederemos con la selección de la cinta transportadora, para el cual utilizaremos el manual de Pirelli (2019); esta nos dará en primera instancia una selección primordial, la cual estare corrigiendo a medida que se desarrolle en proyecto de investigación.

4.2.2. Datos requerido para la correcta selección

- Denomimación del producto.
- Descripción.
- Densidad.
- Granulometría.
- Humedad.
- Grado de abración.
- Temperatura ambiente.
- Capacidad máxima de transporte.
- Ancho de cinta.
- Distancia entre centros.

4.2.3. Parametros de selección

■ Material a Transportar: como se indica primero debemos de tener en cuenta el material a transportar, así conocer los ángulos de reposo y sobrecarga, los cuales detallare a continuación (Edgar Amela Felipe, 2016):

Angulo de Reposo se forma al verter el material desde una determinada altura. **Ángulo de Sobrecarga** se forma en el plano horizontal sobre la cinta en movimiento.

Figura 4.3: Ángulos de Sobrecarga y Reposo Fuente: (Edgar Amela Felipe, 2016)

El material de estudio, esta representado por los residuos sólidos en la ciudad de Calca, de los cuales tomaremos solo el 57.18 % que representa los residuos compostables; dentro de los cuales el 54.52 % es materia orgánica y el 2.66 % madera y follaje (Gerencia de Medio Ambiente, 2019).

La generación de residuos sólidos de Calca es de $8,227\frac{Tn}{d}$; por tanto nuestra materia prima sera de:

$$8,227\frac{Tn}{d} * 0,5718 = 4,70\frac{Tn}{d} \tag{4.1}$$

■ **Densidad:** es una relación entre masa del material y el volumen que ocupa, cuyo analisis dimensional esta determinado por $\frac{Kq}{m^3}$.

La densidad promedio de los residuos sólidos en la ciudad es de $257.23 \frac{Kg}{m^3}$, del cual solo el 57.18 % sera nuestra materia prima (Gerencia de Medio Ambiente, 2019); por tanto nuestra densidad aprovechable sera:

$$densidad\ promedio * porcentaje\ a\ utilizar = densidad\ a\ utilizar$$
 (4.2)

Reemplazando valores en la ecuación tenemos que:

$$257,23 \frac{Kg}{m^3} * 0,5718 = 147,1 \frac{Kg}{m^3}$$
 (4.3)

Por tanto nuestra densidad a utilizar sera de:

174.1
$$\frac{Kg}{m^3}$$
 (4.4)

4.2.4. Selección

4.2.4.1. Selección primogenia

■ Tomando en consideración nuestros parámetros iniciales, como se muestran en el cuadro 3.1, pasaremos a la selección de la cinta transportadora, para lo cual utilizaremos las tablas del manual de Pirelli (2019).

Cuadro 4.1: Datos de Selección

Denominación del producto	RR.SS
Descripcción	Materia orgánica, madera y follaje
Densidad	$174.1 \frac{Kg}{m^3}$
Granulometría	25-50 mm
Humedad	75.19 %
Temperatura ambiente	2.6-13.3°C
Capacidad máxima de transporte	$4.70 \frac{Tn}{d}$
Distancia entre centros	- -
Ancho de cinta	-
Velocidad de la cinta	-
Grado de abración	-

Fuente: Elaboraciión Propia

Material transportado	Ancho de					Capa	cidad	de tran	isporte	en ton	eladas/	hora						o máx. aterial
Peso específico kg/m³	la cinta						Veloc	idad d	e la cin	ta en n	n/seg						п	ım
Ng/ iii	mm	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	En trezes	Marcinda
Caolin en polvo	300	6	9	12	15	19	22	25									50	75
Carbón vegetal	400	11	17	22	28	34	39	45	50	55							70	100
Coque	500	18	27	36	45	54	63	72	81	90	98	108					90	150
Algodôn	600	26	40	53	66	80	93	109	110	131	145	160		200			110	200
Leña en tacos	700	36	55	73	91	110	128	147	165	182	200	218	237	255			130	250
Lesia en lacos	800	49	73	98	122	147	172	196	220	245	270	294	316	343			150	300
	900	63	95	127	159	190	223	254	285	317	350	380	413	445	475	510	170	350
Otros materiales que	1 000	80	120	160	200	240	280	320	360	400	440	480	520	560	600	640	200	400
lengan un peso específico	1 100	98	147	196	245	294	343	392	440	490	538	588	635	685	735	785	230	450
	1 200	118	177	238	300	355	417	475	535	594	650	715	773		882	950	260	500
500 kg/m ³	1 300	142	212	284	355	425	497	558	610	710	781	852	923	995	1065	1135	300	550
Carbón mineral	300	0	13	18	22	27	32	37									50	75
	400	17	25	34	42	51	59	66	70	102							70	100
Lignito	500	27	40	54	68	82	96	110	123	64	151	165					90	150
Polvo de altos hornos	600	40	60	80	100	120	140	160	180	200	220	240					110	200
Sal marina	700	55	83	111	139	166	194	222	250	277	305	333	360	377	415	444	130	250
Escorias de carbón mineral	800	73	110	147	184	220	257	294	330	367	405	440	476	515	550	508	150	300
	900	95	142	190	228	285	332	380	427	475	523	570	617	065	713	760	170	350
in complete.	1 000	120	180	240	300	360	420	480	540	600	660	720	780	840	900	900	200	400
Otros materiales de peso específico	1 100	147	220	294	368	441	515	588	000	735	807	882	955	1030	1100	1170	230	450
	1 200	179	268	358	448	538	627	716	805	895	983	1070	1100	1250	1340	1430	260	500
750 kg/m ³	1 300	211	317	422	527	633	738	843	950	1055	1160	1265	1370	1485	1590	1695	300	550
	300	12	19	25	31	37	43	50							-		50	75
Arcilla seca	400	22	34	45	57	88	79	01	85	113	1						70	100
Caolín en terrón	500	36	55	73	91	110	128	146	136	182	200	218					90	150
Hierro en trazos	600	53	79	106	132	159	185	212	238	265	291	318					110	200
Tierras de moldeo	700	73	110	147	184	220	257	294	330	367	404	442	477	515			130	250
Sal de mina	800	98	148	197	246	295	345	394	443	492	541	59)	0.40	690			150	300
Escorias de altos hornos	900	127	178	254		380	444	517	572	635	697	766	873	888	952	1010		350
2 - 3 - 12 - 1	1 000	160	240	320	-	480	560	640	720	800	100	960	1040	1120	1700	1280		400
Otros materiales de peso específico	1 100	196	294	392	490	588	686	784	882	980	1	1176	1274	1372	1470	154		450
	1 200	237	356	475	593	712	830	950	1070	1188	1	1425	1545	1662	17B0	1900	260	500
1 000 kg/m ³	1 300	284	427	568		850	985		1278	1420		1705	1843	1980	7130	2275		550

Figura 4.4: Tabla de Parámetros 001 Fuente: (Pirelli, 2019)

■ Ingresando a nuestra tabla de la figura 3.4, con los parámetros mostrados en el cuadro 3.1; densidad 174.1 $\frac{Kg}{m^3} < 500 \; \frac{Kg}{m^3}$, capacidad máxnima de transporte $0.6 \; \frac{Tn}{hr} < 6 \; \frac{Tn}{hr}$ obtendremos:

Material transportado	Ancho de					Capa	cidad	de tran	aporte	en ton	eladas/	hora						io máx.
Peso especifico kg/m³	la cinta						Veloc	dad d	o la cin	ta en n	n/seg						1 - 2 - 1	nam .
kg/m²	mm	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4	En treres	Musclode
Caolin en polvo	300	٥	9	12	15	19	22	25									50	75
Carbón vegetal	400	-11	17.	- 22	20	34	97										70	100
Coque	500	18	27	36	45	54	63	72	81	ØB.	98	1.08					90	150
Algodón	600	26	40	53	66	80	63	109	118	131	145	1.60		-			110	200
Leña en tacos	700	36	55	73	91	110	128	147	165	182	200	218	237	255			130	250
Certa en tacos	800	49	73	98	122	147	172	196	220	245	270	294	310	343			150	300
	900	63	95	127	150	190	223	254	285	317	350	380	413	445	475	510	170	350
Otros materiales que	1 000	80	120	160	200	240	280	320	360	400	440	480	520	560	600	640	200	400
tengan un peso especifico	1 100	98	147	196	245	294	343	392	440	490	538	588	675	685	735	785	230	450
	1 200	118	177	238	300	355	417	475	535	594	650	715	773	837	862	930	260	500
500 kg/m ³	1 300	142	212	284	355	425	497	558	610	710	781	852	923	655	1065	1135	300	550

Figura 4.5: Ampliación de la Tabla de Parámetros 001 Fuente: (Pirelli, 2019)

■ De la figura 3.5, un ancho de cinta transportadora; de 300 mm de ancho, una velocidad de $0.5 \frac{m}{seg}$, tamaño máximo de materia prima de 50 - 75 mm.

4.2.4.2. Selección Secundaria

MAT	TERIAL	Peso especifico kg/m³	Máxima Inclinación recomen- dable	Abra- sivi- dad	Angulo de reposo del material	Angulo de sobrecarg dinámica
Tipo	Condición		Grados		Grados	Grades
Canto rodado	Mojado	2 000	12-14	P. A.	10-20	5
Caucho	Pelletizado	800-900	22	N. A.	32	10-20
Caucho regenerado	Trozos	400-500	18	N. A.	32	10-20
Cenizas	Carbón, mojadas	750	25	N. A.	35-40	25
	Carbón, secas	600	23	N. A.	35-40	20
	Aerizadas	600-700	23	N. A.	30-35	30
Coque	De petróleo	650	18-20	A.	30-35	20
Corteza	De Iranco	240	27	P. A.	40	30
Callé	Grano verde < 7 mm	500	10,15	N. A.	25	10
Carbonalo de sodio	Briquetas < 12 mm	800	7	P. A.	22	5-10
	Pesado < 3 mm	1 000	19	P. A.	32	10-20
	Fino	400-600	22	P. A.	37	20
Dolomita	Terrón	1 400-1 600	22	M. A.	20-30	10
Escorias	De alto horno	1 000-1 400	20-22	A.	25-30	10
	De fundición granular	1 000	15	A.	25	10
Espatofluor	Fluorita	1 700	20	A	35-40	30
Feldespato	Terrón < 70 mm	1 400-1 800	17	M. A.	35	25
Fostato de sodio	Super, molido	840	30	P. A.	40	30
	Roca pulverizada	960	25	P. A.	35	25
	Trozos	1 300	14	A	20-30	10
Grafito	Copos	650	15	P. A.	20	10
Gramito	Trozos < 70 mm	1 500	18	M. A.	20-30	10
Grano	Centeno	700	8	N.A.	20	10
	Cebada	600	12	N. A.	20	10
	Trigo	800	12	N. A.	28	10
	Maix	700	10	N. A.	20	10
	Soja	770	14	N. A.	20	10
	Seco	600-800	10-15	NA	20-30	10
Grava	Banco	1 400-1 600	20	A	38	20
	Seca, angulosa	1 400-1 600	12	M.A.	30	10-20
Greda	Mojada	1 300	17	P.A.	20-30	10
Harina de maiz	Relinada	650	22	N.A.	35	20
Harina de trigo	Refinada	600	21	N.A.	45	30
fielo triturado	Terrones	650	5	P.A.	20	5
Hormigón	Abalimiento < 100 mm	2 100	22	Α.	30	10
norming on	Abalimiento < 150 mm	2 100	12	A.	20	10
Huesos	Trozos	600	17		35	20
Hornada de vidrio	D. Garage	1 300-1 600	20-22	A.		10
	Terrón			A.	20-30	
labón en polvo	Fino < 3 mm	350	12	N. A.	20-30	10
labón	Terron < 12 mm	320	18	N. A.	20	10
adrillos	Moldeados	1 760	27	A	35	30
Lignito	Seco, lino	800	18	P. A.	20	10
Maiz	Descascarado	700	10	N. A.	20-30	10
	Espiga	900	18	N. A.	35	25

Figura 4.6: Tabla de Parámetros 002 Fuente: (Pirelli, 2019)

■ Ingresando a nuestra tabla de la figura 3.6, con los parámetros mostrados en el cuadro 3.1; Descripción de producto: Materia orgánica, madera y follaje; densidad 174.1 $\frac{Kg}{m^3}$ < 240 $\frac{Kg}{m^3}$ obtendremos:

МАТ	TERIAL	Peso especifico kg/m³	Máxima inclinación recomen- dable	Abra- sivi- dad	Angulo de reposo del material	Angulo de sobrecarga dinâmica
Tipo	Condición		Grados		Grados	Grados
Canto rodado	Mojado	2 000	12-14	P. A.	10-20	5
Caucho	Pelletizado	800-900	22	N. A.	32	10-20
Caucho regenerado	Trozos	400-500	18	N. A.	32	10-20
Cenizas	Carbón, mojadas	750	25	N. A.	35-40	25
	Carbón, secas	600	23	N. A.	35-40	20
	Aerizadas	600-700	23	N. A.	30-35	30
Coque	De petróleo	650	18-20	A.	30-35	20
Corteza	De tronco	240	27	P. A.	40	30

Figura 4.7: Ampliación de la Tabla de Parámetros 002 Fuente: (Pirelli, 2019)

- De la figura 3.7, la máxima inclinación recomendada del transportador 27°, abrasividad P.A. (Poco Abrasivo), Ángulo de reposo del material 40°, Ángulo de sobrecarga dinámica 30°.
- Utilizando la máxima inclinación recomendada del transportador 27°, pasaremos a la tabla de la figura 3.8, y obtenemos:

Angulo de inclinación de la cinta (grados)	20	40	6=	8	100	12	14=	169	18	20
Coeficiente de corrección	1	0,99	0,98	0,97	0,95	0,93	0,91	0,89	0,85	0,81
Angulo de inclinación de la cinta (grados)	21 "	22	23▷	24°	25°	26°	27°	28	29"	30°
Coeficiente de corrección	0,78	0,76	0,73	0,71	0,68	0,66	0,64	0,61	0,59	0,5

Figura 4.8: Tabla de Parámetros 003 Fuente: (Pirelli, 2019)

- De la figura 3.8, el coeficiente de corrección 0.64.
- Utilizando un esquema en "V"(rodillos dobles) y el ángulo de sobrecarga dinámica 30°, pasaremos a la tabla de la figura 3.9, para obtener:

Angulo de concavidad	A	ngulo de sobrecarga	dinámica del materia	ol .
(Rodillos dobles)	0.0	10°	20°	30*
15°	0,49	0,70	0,93	1,16
20	0,64	0,84	1,05	1,27
25°	0,76	0,95	1,14	1,35

Figura 4.9: Tabla de Parámetros 004 Fuente: (Pirelli, 2019)

Figura 4.10: Esquema en "V"de Rodillos Dobles (Polines)

- Para nuestro diseño en la tabla de la figura 3.9, seleccionamos un ángulo de concavidad de 25° y nuestro ángulo de sobrecarga dinámica de 30°; obtenemos un coeficiente de corrección de 1.35.
- Mediante los coeficientes de corrección hallados, calculamos una capacidad ficticia, facilitando así la obtención de datos de las tablas del manual de Pirelli (2019), ya que esta se opera con capacidades ficticias.

$$Capacidad\ ficticia = \frac{Capacidad\ real}{Coef.\ concv.*Coef.\ inc.} \tag{4.5}$$

$$Capacidad ficticia = \frac{0.5875}{1.35 * 0.64} \frac{Tn}{hr}$$

$$Capacidad ficticia = 0.679 \frac{Tn}{hr}$$
(4.6)

$$Capacidad ficticia = 0.679 \frac{Tn}{hr}$$
(4.7)

- Verificamos nuevamente en la tabla de la figura 3.5, con los datos obtenidos, en esta selección secundaria.
- Confirmamos que la selección hecha en la evaluanción primogenia, es idéntica a la realizada en la seleccíon secundaria; 300 mm de ancho de cinta, 0.5 $\frac{m}{seq}$ de velocidad, con tamaños máximos de 50-75 mm, de materia prima.

4.2.4.3. Potencia absorbida por la cinta

Para determinar la potencia que absorve la cinta transportadora sumamos las potencias parciales, que hallaremos de los cuadros del manual de Pirelli (2019). Las potencial parciales son:

- N_1 Potencia necesaria para mover la cinta descargada.
- ullet N_2 Potencia necesaria para mover horizontalmente el material transportado.
- ullet N_3 Potencia necesaria para elevar el material transportado.

Utilizaremos 2 casos para determinar la potencia necesaria en las cintas transportadoras. Caso A.- Cinta horizontal: Para este caso utilizaremos la tabla de la figura 3.12 del manual de Pirelli (2019).

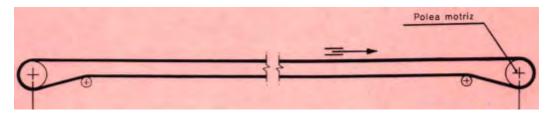


Figura 4.11: Cinta Horizontal Fuente: (Pirelli, 2019)

Ancho de la cinta						Proye	eción I	horizon	ital de l	la dista	neis er	me eje	s de la	e tumb	cres te	rminale	rs (m)					
min	10	20	30	40	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	500
300	0.50	0.59	0.68	0.77	0.86	1.00	1.20	1.53	1.75	1.98	2.20	2.43	2.65	2.88	3.10	3.33	3.55	3.7B	4	4.22	4.45	4.90
400	0.58	0.68	0.79	0.89	1	1.26	1.52	1.78	2.04	2.30	2.57	2.83	3.09	3.35	3.62	3.88	4.14	4.40	4.66	4.92	5.18	5.7
500	0.69	0.82	0.95	1.08	1.20	1.52	1.83	2.15	2.40	2.78	3.09	3.40	3.72	4.03	4.35	4.67	4 98	5.29	5.61	5.92	6.24	6.6
600	0.03	0.98	1.13	1,28	1,43	1.00	2.18	2.55	2.93	3.30	3.67	4.05	4.42	4.80	5,17	5.55	5.92	6.30	6.67	7.05	7.42	8.1
700	0.99	1.10	1.36	1.54	1.72	2.17	2.63	3.08	3.53	3.98	4.44	4.88	5.34	5.79	۵.25	6.70	7.15	7,60	8.06	0.51	0.96	9.8
800	1.15	1.35	1.56	1.77	1.98	2.50	3.05	3.53	3.95	4.67	5.00	5.61	6.13	6.65	7.17	7.49	8.22	8.73	9.25	9.76	10.20	11.3
900	1.32	1.56	1.80	2.04	2.28	2.88	3.48	4.08	4.68	5.28	5.88	0.48	7.08	7.68	8.28	88.6	Q.4B	0.10	10.70	11.30	11.90	13.1
1 000	1.52	1.80	2.07	2.35	2.62	3.32	4	4.70	5.30	6.07	6.76	7.45	8.14	6.83	9.52	10.20	0.90	11.60	12.30	13	13.80	15.1
1 100	1.73	2.05	2.36	2.67	2.98	3.77	4.55	5.33	6.12	6.91	7.69	8.47	0.26	10	10.80	11.60	1240	13.20	14	14.80	15.50	17.2
1 200	1.95	2.30	2.66	3.01	3.36	4.14	5.13	6.02	0.90	7.78	8.67	9.50	10.40	11.30	12.20	13.10	14	4.90	15.75	16.60	17.50	19.
1 300	2.17	2.56	2.96	3.35	3.75	4.72	5.72	6.70	7.68	8.66	9.05	04.01	11.60	12 40	13.40	14.00	15.60	00.00	17.50	18.50	19.50	21.

Figura 4.12: Tabla de parámetros 005 Fuente: (Pirelli, 2019)

 Para el trabajo de investigación tomaremos una distancia entre centros mínima, en este caso de 10 m de longitud.

Ancho de la cinta						Proye	eci6a	horizen	ital de l	la dista	ncia er	stre eje	e de la	e tamb	cores la	rminale	re (m)					
mm	10	20	30	40	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	500
300	0.50	0.59	84.0	0.77	0.84	1.00	1.70	1.57	1.75	1.78	2.20	2.43	2.65	2.88	3.10	3.33	3.55	3.78	4	422	4.45	4.90

Figura 4.13: Ampliación de la Tabla de parámetros 005 Fuente: (Pirelli, 2019)

- De la figura 3.13 obtenemos 0.50 CV.
- Segun tabla, si la velocidad de la cinta transportadora fuera de $1\frac{m}{seg}$, entonces N_1 tendria el valor de 0.50 CV, pero como la velocidad de la cinta es de $0.5\frac{m}{seg}$, entonces:

$$N_1 = 0.5 * 0.5 CV (4.8)$$

$$N_1 = 0.25 \, CV \tag{4.9}$$

Continuando con los cálculos de potencia

Cantidad Iransportada		P	rayeco	ión ho	rizontal	de la	distanc	a entre	o ojos	de los l	ambore	s term	inales ((m)	
tn/h	10	20	30	40	50	75	100	125	150	175	200	225	250	275	300
10	0.07	0.09	0.11	0.12	0.15	0.19	0.24	0.29	0.33	0.38	0.42	0.47	0.51	0.56	0.6
25	0.18	0.23	0.28	0.32	0.37	0.48	0.60	0.71	0.83	0.95	1,06	1.18	1.29	1.41	1.5
50	0.36	0.46	0.56	0.64	0.74	0.97	1.20	1.43	1.66	1.90	2.13	2.36	2.59	2.82	3.0
75	0.55	0.69	0.83	0.97	1.11	1.46	1.80	2.12	2.50	2.85	3.19	3_54	3.89	4.23	4.5
100	0.74	0.92	1.12	1.29	1.48	1.94	2.41	2.87	3.33	3.79	4.26	4.72	5.18	5.65	6.1
125	0.92	1.16	1.38	1.62	1.85	2.43	3.00	3.58	4.17	4.74	5.32	5.90	6.47	7.05	7.6
150	101	1.39	1.66	1.94	2.22	2.90	3.60	4.30	5	5.68	6.37	7.88	7.77	8.45	9.1
175	1.29	1.62	1.94	2.27	2.59	3.40	4.21	5.02	5.83	6.63	7.45	8.25	9.07	9.86	10.6
200	1.48	1.85	2.24	2.59	2.96	3.88	4.82	5.74	0.00	7.58	0.51	9.44	10.36	11.30	12.2
225	1.67	2.08	2.55	2.91	3.33	4.37	5.42	0.45	7_50	8.55	9.57	10.60	11.65	12.70	13.7
250	1.85	2.31	2.78	3.24	3.70	4.86	6.02	7.17	8.32	9.57	10.64	11.80	12.95	14.10	15.2
300	2.22	2.78	3.33	3.89	4.44	5.82	7.22	8.61	10	11.40	12.80	14.16	14.51	16.95	18.3
350	2.59	3.24	3.89	4.54	5.18	6.81	8.43	10.05	11.65	13.30	14.80	16.52	18.15	19.75	21.4
400	2.96	3.70	4.50	5.18	5.92	7.76	9.64	11.48	13.32	15.16	17.02	18.88	20.72	22.60	24.4
450	3.33	4.16	4,99	5.82	6.66	8.75	10.82	12.90	14.98	17.05	19.15	21	23.30	26.40	27.2
500	3.60	4.62	5.56	6.48	7.40	9.72	12.04	14.34	16.64	19	21.30	23.60	25.90	28.20	30.5
600	4.44	5.55	6.66	7.78	88.8	11.65	14.42	17.20	20	22.70	25.50	28.30	31.10	33.90	36.6
700	5.18	6.48	7.78	9.07	10.38	13.62	16.86	20.10	23.30	26.60	29.80	33.10	36.30	39.50	42.7
800	5.92	7.40	8.96	10.36	11.84	15.52	19.28	22.90	26.60	30.30	34	37.70	41,40	45.20	48.8
900	6.66	8.32	10	11.64	13.32	17.50	21.64	24.80	30	34.10	38.30	42.50	46.60	50.80	55
1 000	7.40	9.25	11.10	12.95	14.80	19.42	24.10	28.70	33.30	37.90	42.60	47.20	51.80	56.50	61

Figura 4.14: Tabla de parámetros 006 Fuente: (Pirelli, 2019)

• Para un distancia entre centros de 10 m, tenemos.

Cantidad transportada		F	royecc	ión hor	izonta)	de la	distanci	a entre	ejes d	le los t	ambore	s termi	nales (m)	
In/h	10	20	30	40	50	75	100	125	150	175	200	225	250	275	300
10	0.07	0.09	0.11	0.12	0.15	0.19	0.24	0.29	0_33	0.38	0.42	0.47	0.51	0.56	0.61

Figura 4.15: Ampliación de la Tabla de parámetros 006 Fuente: (Pirelli, 2019)

■ De la figura 3.15 obtenemos el parámetro:

$$N_2 = 0.07CV (4.10)$$

■ Para el caso A, se tendra una potencia total de:

$$N = N_1 + N_2 (4.11)$$

$$N = 0.25 + 0.07 \, CV \tag{4.12}$$

$$N = 0.32CV \tag{4.13}$$

Caso B.- Cinta transportadora inclinada, continuaremos con el uso de las tablas del manual de Pirelli (2019).

■ Para este tipo de cinta transportadora debemos de sumar:

$$N = N_1 + N_2 + N_3 (4.14)$$

lacksquare Para la obtención de N_3 utilizaremos la tabla de la figura 3.16.

Cardidad						Prog	ecsion	vertical	de la	datasci	estre	ejas da	pa be	fem ter	minales	(m)					
th/h	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	35	40	45	50	55	60
5	0.04	0.08	0.11	0.15	0.19	0.22	0.26	0.3	0.33	0.37	0.41	0.44	0.48	0.52	0.55	0.00	0.74	0.83	0.93	1 02	1.1
10	0.07	0.15	0.22	0.3	0.37	0.44	0.52	0.50	040	0.74	0.81	0.80	0.96	1.04	1.11	1.70	1.48	1.07	1.85	2.04	2.2
15	0.11	0.22	0.33	0.44	0.55	0.67	0.77	0.60	0.00	1.11	1.22	1.33	1.44	1.50	1.07	1.95	2.22	2.5	2.7B	3.05	3.3
20	0.15	C.O	0.44	0.50	0.74	OBO	1.04	1.18	1.33	1.40	1.63	1.78	1.97	2.07	2.22	2.58	2.90	3.33	3.7	4.07	4.4
25	0.19	0.37	0.55	0.74	0.03	111	13	1.48	1.07	1.85	2.04	2.72	2.41	2.09	2.78	3.24	3.7	4.17	4.67	5.08	5.5
50	0.37	0.74	111	1.48	1.05	2.27	2.57	2.90	3.33	3.7	4,07	141	4.82	5.18	5.55	0.48	7.4	8.34	0.24	10.16	11.1
100	0.74	1.48	2.22	2.00	2.7	4.44	5.18	5.92	0.00	74	8.)4	8.88	9.62	10.36	11.1	12.93	14.8	10.05	10.5	20.38	22.2
200	1.48	300	4.44	5.92	74	0.00	10.35	11.B4	13.32	148	16.28	1776	10.24	20.B	22.2	26.0	20.0	33.3	37	41.7	44.4
300	2.22	4.44	0.00	0.00	11.1	13.32	15.54	17.78	19 98	22.2	24.5	26.7	28.9	31.1	33.3	38.0	44.4	50	55.5	61.2	00.0
400	200	5.02	0.00	11.84	14.8	17.76	20.8	22.7	26.7	295	32.6	35.0	38.5	415	41.4	510	50.2	00.0	74	81.4	68.8
500	1.7	7.4	11.1	14.8	18.5	22.2	25.0	29.6	23.3	37	40.7	44.4	48.1	51.6	53.5	05.7	74	63.3	023	101.8	111
600	444	8.88	12.32	17.8	22.2	26.7	311	35.5	40	44.4	48.0	53.3	57.7	02.2	00.0	77.7	8.00	100	111	122	133
700	5.18	10.4	15.55	20.8	25.0	31.1	36.3	41.5	45.7	51.8	57	02.7	67.3	72.5	77 B	907	104	117	130	143	150
800	5.92	11.85	17.78	23.7	27 A	35.5	41.5	47 A	53.3	59.2	65.2	71.1	77	85.9	B3.8	104	119	133	149	1.63	178
900	6.65	13.3	20	26.5	33.3	40	40.0	53.3	TOB	00.5	73.2	79 B	80.5	93.1	997	117	133	150	167	183	200
1 000	7.4	14.8	22.2	29.6	37	44.4	51.8	59.2	000	74	81.4	88.8	98.7	103.6	111	130	148	167	185	204	222
1 100	9.15	16.28	24.5	32.6	40.7	40.7	57.2	65.2	73.4	81.5	89.7	97.B	106	114	132	143	163	183	204	224	244
1 200	8.87	1775	257	35.5	44.4	53.2	02.2	71	79.B	88.7	97.0	107	116	124	133	155	178	200	222	245	267
1 300	69.0	103	78 ♥	29.2	48.2	57.8	67.4	77	85.6	90.4	106	110	125	135	144	100	103	217	241	265	289
1 400	10.35	20.8	31.1	115	51.8	62.2	72.5	83	93.2	104	114	124	135	145	150	182	208	233	259	285	311
1 500	11.1	22.2	33.3	44.4	55.5	66.6	77.7	88.8	100	111	122	123	145	150	167	105	220	250	278	305	330
1 600	11.05	23,7	33.5	47 A	59.2	71.1	613	P4.B	107	110	130	142	154	100	178	208	237	267	298	326	354
1 700	12.0	75.2	37.8	50.4	62 B	75.5	68.1	100	114	120	130	151	104	170	169	220	257	283	315	340	370
1 800	13.3	26.7	40	53.4	0,00	80	933	107	120	103	147	160	173	187	200	233	267	300	333	367	400
1 900	14.08	28.2	42.2	56.3	70.1	85.3	PB.4	113	127	141	155	149	183	197	211	246	781	317	351	397	422
2 000	148	200	444	50.2	74	88.8	104	118	133	148	163	178	192	208	222	258	296	333	370	408	444

Figura 4.16: Tabla de parámetros 007 Fuente: (Pirelli, 2019)

- Para la obtención de N_3 nos basaremos en dos parámetros, distancia entre centros y la capacidad de la cinta.
- Nuestra capacidad ficticia de la cinta transportadora es de $0.679 \frac{Tn}{hr} < 5 \frac{Tn}{hr}$, por tanto.

Figura 4.17: Ampliación de la Tabla de parámetros 007 Fuente: (Pirelli, 2019)

■ De la figura 3.17 obtenemos el valor de N_3

$$N_3 = 0.19CV (4.15)$$

■ Por tanto, utilizando la ecuación 3.14, nuestra potencia total para una cinta transportadora inclinada sera de:

$$N = 0.51CV \tag{4.16}$$

4.2.4.4. Tipo y número de telas en la cinta

Debemos tener en cuenta lo siguiente para esta elección: Los tipos de tela son:

- L-ligero 28 onzas.
- M-medio 32 onzas y CN6.
- P-pesado 35 onzas y CN7.
- N_y 12.5.
- $N_y = N_y = N_y$

Son tres tipos de tela de algodón, dos de algodón-nylon (CN6 y CN7), y dos de nylon-nylon (12.5 y 20).

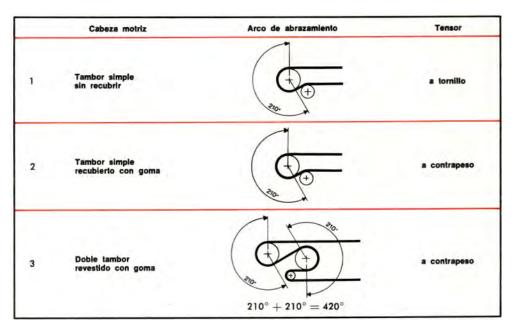


Figura 4.18: Arco de Abrazamiento Fuente: (Pirelli, 2019)

Seguiremos usando la tabla del manual de Pirelli (2019) para continuar con nuestros cálculos de selección.

Tela de algodon

Ancho de la cinta	Velocidad de la cinta	т		matriz s No rev	estido			1	ambor i Re- ten	motriz si restido sor a ci	de go	ma am)*		Re	imbor m rvestido isor a c	de gom	10	
mm	m/seg	3	4	5	6	7	8	3	4	5	6	7	8	3	4	5	6	7	
	0,5	1,5	2					2,2	2.9					2.8	3.7				
	0,75	2,3	3.1					3,3	4,4					4,2	5.6				
300	1	3.1	4,1					4,4	5,B					5,6	7,4				
	1,25	3.9	5,2					5,4	7,3					7	9,3				
	1,5	4,6	6.2					6,5	8.7					8_3	11,1				
	0,5	2,1	2,8	3,4				2,9	3,9	4,8				3.7	4,9	6.2			
	0,75	3,1	4,1	5.2				4,4	5,8	7,3				5,6	7.4	9.3			
	1	4,1	5,5	6,9				5.8	7.7	9.7				7,4	9.9	12.4			
400	1,25	5,2	6.9	8,6				7,3	9,7	12,1				9,3	12,4	15,4			
	1,5	6.2	8.3	10,3				8,7	11,6	14.5				11.1	14,8	18,5			
	1,75	7,2	9.6	12				10.2	13,5	16,9				13	17,3	21,6			
	2	8.2	11	13.7				11,6	15,5	19,3				14.8	19,8	24,7			
	0,5		3,4	4,3	5,2				4,8	6	7.3				6.2	7.7	9,3		
	0,75		5.2	6,4	7,7				7.3	9,1	10,9				9,3	11,6	13,9		
	1		6.9	8.6	10,3				9,7	12,1	14,5				12,4	15,4	18_5		
500	1,25		8,6	10,7	12,9				12,1	15,1	18,1				15,4	19,3	23.2		
	1,5		10,3	12,9	15,5				14,5	18.1	21,7				18,5	23,2	27,8		
	1,75		12	15	18				16,9	21,1	25,4				21,6	27,1	32.4		
	2		13,7	17.2	20,6				19.3	24,2	29				24,7	30,9	37		

Figura 4.19: Tabla de parámetros 007 Fuente: (Pirelli, 2019)

■ Considerando nuestros parámetros; ancho de cinta 300 mm, velocidad de cinta $0.5 \frac{m}{seg}$, y nuestra última selección de potencia (caso A: 0.32 CV, caso B: 0.51 CV), procederamos con la selección del tipo y número de tela para nuestra cinta transportadora.

Ancho de la cinta	Velocidad de la cinta	7		No rev	imple: estido ternillo			Т	Re	vestido	de gon ontrape					estido	de gom antrape:	18	
mm	m/seg	3	4	5	6	7	8	3	4	5	6	7	8	3	4	5	6	7	8
	0,5	1.5	2					2.2	2.9					2.8	3.7				
	0,75	2.3	3,1					3,3	4,4					4,2	5.6	•			
300	1	3.1	4,1					4,4	5,8					5,6	7.4				
	1,25	3,9	5.2					5,4	7,3					7	9,3				
	1,5	4,6	6,2					6,5	8.7					8_3	11,1				

Figura 4.20: Ampliación de la Tabla de parámetros 007 Fuente: (Pirelli, 2019)

- La figura 3.20 es de una cinta transportadora de tejido en L, algodón de 28 onzas; ingresando con los parámetros antes mencionados seleccionamos un número de 3 telas, tambor motriz simple: $\alpha = 210^{\circ}$, no revestido, tensor a tornillo.
- Escogemos el no revestido debido a que la potencia es la más cercana a nuestros parámetros anteriormente calculados (caso A = 0.32 CV < 1.5 CV y para el caso B = 0.51 CV < 1.5 CV).</p>
- Para los otros casos; tambor motriz simple, revestido de goma, tensor a contra peso; y, doble tambor motriz, revestido de goma, tensor a contra peso, se tienen potencias de 2.2 CV y 2.8 CV respectivamente.

Telas de nylon

Ancho de la cinta	Velo- cidad de la cinta			motriz si No revi enant a	estida	= 210°		11	Re	motriz si rvestdo rsor a co	de gomi	0			Re	imbor m ivestido isor a ci	de gom		
mm	m/seg	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7
	0,5	2,5	3,3	5,1				3,6	5,4	7.2				4,6	6,9	9,2			
	0,75	3,8	5,1	7.7				5,4	8.1	10,8				6.9	10,4	13,8			
	1	5.1	7.7	10,3				7.2	10.0	14.4				9.2	13,8	18.5			
	1,25	6.4	9.5	12.8				9	13.5	18.1				11,5	17,3	23,1			
300	1,5	7,7	11,5	15,4				10,8	16,3	21,7				13,8	20,8	27,7			
	1,75	9	13,5	18				12.6	19	25,3				16.2	24,3	32,4			
	2	10,3	15.4	20,6				14,5	21,7	26,9				18,5	27,7	37			
	2,25	11,6	17.3	23.2				16,3	24,4	32,6				20,8	31,2	41,6			
	2,5	12.8	19,3	25,7				18,1	27,1	36,2				23,1	347	46.3			
	0,5	3,4	5,1	6,8				4,8	7,2	9.6				6,1	9.2	12,3			
	0,75	5.1	7.7	10.3				7.2	10,8	14,4				9,2	13.8	18,5			
	1	8.6	10,3	13,7				9.6	14,4	19,3				12.3	18.5	24.6			
	1,25	0.5	12.8	17,1				12	18,1	24.1				15.4	23.1	30.8			
400	1,5	10,3	15.4	20.6				14.4	21.7	21.9				18,5	27.7	37			
	1,75	12	18	24				16.9	25.3	33.8				21,6	32.4	43.2			
	2	13,7	20.6	27,5				19.3	28,9	38.6				24,7	37	49,3			
	2,25	15,4	23.2	30.9				21,7	32,6	43,4				27,7	41.6	55,5			
	2,5	17.1	257	34.3				24.1	36.2	48.3				30.8	46,3	61.7			
	0,5	4,3	6,4	8.5	10,7			6	9	12	15,1			7,7	11,5	15,4	19,2		
	0,75	6.4	9,6	12.8	16,1			9	13,5	18,1	22,6			11,5	17,3	23,1	28.9		
	1	8,5	12,8	17.1	21,4			12	18,1	24,1	30,1			15.4	23,1	30,8	38,5		
500	1,25	10,7	16,1	21,4	26,8			15,1	22,6	30.1	37.7			19,2	28.9	38,5	48.2		
	1,5	12.8	19,3	25,7	32,2			18,1	27,1	36,2	45,2			23.1	34,7	46,2	57,8		
	1,75	15	27,5	30	37,5			21,1	31,7	42.2	52.8			27	40.5	54	67.5		
	2	17.1	25,7	34.3	42.9			24,1	36.2	43.3	60.3			30,8	46.3	61.7	77.1		
	2,25	19.3	29	38.6	48,3			27.1	40,7	54,3	67.9			34,7	52	69.4	86,8		
	2,5	24.4	32,2	42.9	53.7			30,2	45.3	60,3	75.4			38_5	57,8	77,1	96.4		

Figura 4.21: Tabla de parámetros $008 N_y 12.5$ Fuente: (Pirelli, 2019)

Ancho de la cinta	Velo- citad de la cinta			No res	vestido tornillo	= 210°				motriz s restido rsor a c	da gom	10			R	evestido	de gon contrape	na ca	
mm	mileg	2	3	4	5	6.	7	2	3	4	5	6	7	2	3	4	5	6	7
	0.5	4,1	6.1					5,7	8.7					7.4	11.1				
	075	6,1	92					8.6	13					11,1	16.6				
	1	8,2	123					11,5	17,3					14,8	22,2				
	1 25	10.3	15.4					14,4	21,7					18,5	27,7				
300	1.5	12.3	18.5					17.3	26					22,2	33.3				
	175	14.4	21.6					20,2	30.4					25,9	38.8				
	2	16.5	247					23.1	34.7					29,6	44,4				
	225	18.5	27.8					26	39,1					33.3	55.5				
	2.5	20.6	30.9					28.9	43,4					37	33,3				
	0.5	5.5	8.2					7.7	11.6					9.8	14.8				
	0.75	8.2	12.3					11.6	17.3					14.8	22.2				
	1	11	164					15,4	23,1					19.7	29,6				
	1.25	13,7	20.6					19,3	28.9					24.6	37				
400	1.5	16.5	24.7					23,1	34.7					29,6	44,4				
	175	19_2	28.8					27	40,5					34,5	51.8				
	2	22	32.9					30,9	46.3					39.5	59.2				
	2.25	24,7	371					34.7	52,1					44,4	66.6				
	2.5	27,5	41.2					38,6	57,9					49,3	74				
	0.5	6.8	10.3	13,7				9.6	14,5	19,3				12,3	18,5	24,6			
	0.75	10.3	15.4	20.6				14.4	21.7	28.9				18.5	27.7	37			
	1	13.7	20.6	27,4				19,3	28.9	38,6				24.6	37	47.3			
	1.25	17.1	25.7	34.3				24,1	36.2	48.3				30,8	46.3	61.7			
	1,5	20.6	30.9	41,2				28,9	43.4	57.9				37	55.5	74			
500	1.75	24	36	48.1				33.8	50,7	67.6				43,2	64.8	86,4			
	2	27.5	41.2	54,9				38,6	57.9	77,3				49,3	74	98.7			
	2.25	30,9	46.4	61,8				43.4	65.7	86.9				55,5	63.3	111			
	2.5	34.3	51.5	68.7				48,3	72.4	96.6				61,7		123			
	2.75	37.8	56.7	75.6				53,1						67,9	101	135			
	3	41.2	61.8	82.4				57,9	86,9	116				74	111	148			

Figura 4.22: Tabla de parámetros 009 N_y 20 Fuente: (Pirelli, 2019)

■ Considerando nuestros parámetros; ancho de cinta 300 mm, velocidad de cinta $0.5 \frac{m}{seg}$, y nuestra última selección de potencia (caso A: 0.32 CV, caso B: 0.51 CV), procederamos con la selección del tipo y numero de tela para nuestra cinta transportadora.

Ancho de la cinta	Velo- cided de la cinta			No revi	oblis				Re	motriz si rven\$do (usor a co	de gom	0			Re	mbor m rves≅do isor a co	de gom	10	
eem	m/seg	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	. 5	6	7
	0,5	2,5	3,3	5,1				3.6	5,4	7.2				4,6	6,9	9,2			
	0,75	0,0	~3	7.2				5,4	8.1	10,8				6.9	10,4	13,8			
	1	5,1	7.7	10,3				7.2	10.8	14.4				9,2	13,8	18.5			
	1,25	6.4	9,5	12.8				9	13.5	16.1				11.5	17.3	23.1			
300	1,5	7.7	11,5	15,4				10.8	16,3	21,7				13,8	20,8	27,7			
	1,75	9	13,5	18				12,6	19	25,3				16.2	24,3	32,4			
	2	10,3	15,4	20.6				14,5	21,7	28,9				18,5	27.7	37			
	2,25	11,6	17.3	23.2				16.3	24.4	32.6				20.8	31.2	41.6			
	2,5	12.8	19,3	25,7				18,1	27,1	36.2				23,1	34.7	46.3			

Figura 4.23: Ampliación de la Tabla de parámetros $008\ N_y 12.5$ Fuente: (Pirelli, 2019)

Ancho de la cinta	Velo- cidad de la			No rev						vestido	imple: a da gom ontrapes	a				vestido	de gom ontrape	1.0	
mm	miseg	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7
	0.5	4.1	61					5,7	8.7					7,4	11,1				
	.,,,	0.0	100					8.6	13					11,1	16.6				
	125	8.2	123					11,5	17,3					14,8	22.2				
200		10.3						17.3	26					22.2	33.3				
300	15	12.3	18.5					20,2	30,4					25.9	38.8				
	175	14.4	21.6																
	2	16.5	247					23,1	34.7					29.6	44,4				
	2.25	18.5	27.8					26	39,1					33.3	50				
	2.5	20.6	309					28.9	43,4					37	55,5				

Figura 4.24: Ampliación de la Tabla de parámetros 009 N_y 20 Fuente: (Pirelli, 2019)

■ De las figuras 3.23 y 3.24 ingresamos con los parámetros antes mencionados selec-

cionamos un número de 2 telas, tambor motriz simple: α = 210°, no revestido, tensor a tornillo.

■ Escogemos el no revestido debido a que la potencia es la más cercana a nuestros parámetros anteriormente calculados: $N_y12.5$ (caso A = 0.32 CV < 2.5 CV y para el caso B = 0.51 CV < 2.5 CV), y N_y20 (caso A = 0.32 CV < 4.1 CV y para el caso B = 0.51 CV < 4.1 CV).

4.2.4.5. Adaptación del diametro de los tambores al número de telas de la cinta

Es necesario que el número de telas y el diámetro de los tambores sean compatibles, de modo que al flexionarse durante su uso, no se fatigue mas alla de su límite (Pirelli, 2019).

■ Continuando con el manual de Pirelli (2019), seleccionaremos las diámetros con respecto a los números de telas, tanto, en cintas de algodon como en las de naylon.

Cinta transportadora de algodón

		Tejido	tipo L	-		Tejido	lipo M			Tejido	upo P	
Número de telas	Doble motriz	Motriz y carro descar- gador	Reenvio y tensor	Desvia- dora	Doble motriz	Motriz y carro descar- gador	Raemio y tensor	Desvia- dora	Doble motriz	Matriz y carro descar- gador	Reenvio y tensor	Desvia dora
2	230	200	150	150	290	250	200	155	360	310	250	200
3	350	310	250	200	410	360	310	200	520	460	360	310
4	500	410	310	250	560	460	360	310	740	610	460	360
5	600	510	410	360	720	610	460	360	820	690	610	460
6	730	610	460	410	830	690	510	460	1 100	920	690	610
7	820	690	610	460	900	760	690	510	1 270	1 070	760	690
8	900	760	690	510	1 090	920	760	610	1 440	1 220	920	690
9	1 080	920	690	610	1 260	1 070	920	610	1 610	1 370	1 070	760
10	1 250	1 070	760	690	1 430	1 220	920	690	1 780	1 520	1 220	920
ii	1 380	1 150	840	730	1 560	1 300	1 000	810	2 010	1 680	1 300	1 000
12	1 500	1 220	920	760	1 690	1 370	1 070	920	2 250	1 830	1 370	1 070

Figura 4.25: Tabla de parámetros 010 Cinta de Algodón Fuente: (Pirelli, 2019)

■ La selección realizada en cinta transportadora nos indicaba que es un tejido de algodón de 28 onza en L, u posee 3 telas, igresando los datos en la figura 3.25, obtendremos.

		Tejido	tipo L			Tejido	lipo M			Tejido	lipo P	
Número de telas	Doble motriz	Motels y carro descar- gador	Reenvio y tensor	Decris- dors	Doble motriz	Motriz y carro descar- gador	Reenvio y tensor	Desvia- dora	Doble moteta	Motriz y carro descar- gador	Reemyla y temsor	Desvie dora
2	230	200	150	150	290	250	200	155	360	310	250	200
3	350	310	250	200	410	360	310	200	520	460	360	310

Figura 4.26: Ampliación de la Tabla de parámetros 010 Cinta de Algodón Fuente: (Pirelli, 2019)

■ De la tabla en la figura 3.26, tenemos que; para un tejido tipo L, el diámetro del tambor motriz **350** mm, Tanbor de reenvío y tensor **250** mm, y el desviador **200** mm.

Cinta transportadora de naylon

		Diametros	mínimos recomendado	s en mm	
Número de telas		Polea motora		Polea de	1500
00 10110	Tensión 80 a 100 %	Tensión 60 a 80 %	Tensión menor a 60 %	reenvio y tensora	Polea desviadora
2	410	360	310	260	260
3	480	410	360	340	310
4	610	510	460	450	360
5	800	700	610	600	450
6	1 000	870	760	750	550
7	1 200	1 050	920	900	650

Figura 4.27: Tabla de parámetros 011 N_y 12.5 Fuente: (Pirelli, 2019)

		Diàmetros	mínimos recomendado	s en mm	
Número de telas		Polea motora		Polea de	× 277
de ieias	Tensión 80 a 100 %	Tension 60 a 80 %	Tensión menor a 60 %	reenvio y tensora	Polea desviadora
2	460	400	350	300	300
3	510	450	390	360	360
4	700	610	540	500	500
5	900	790	690	700	600
6	1 100	960	840	900	700

Figura 4.28: Tabla de parámetros 012 N_y 20 Fuente: (Pirelli, 2019)

- De las figuras 3.27 y 3.28, selecionamos los valores de diámetro de los tambores, para 2 telas.
 - N_y **12.5**: Tambor motriz **410** mm, Tambor de reenvío y tensor **260** mm, y desviador **260** mm.
 - N_y **20**: Tambor motriz **460** mm, Tambor de reenvío y tensor **300** mm, y desviador **300** mm.

Capítulo 5

Análisis de costos

5.1. Presupuesto de elaboración del proyecto

Cuadro 5.1: Presupuesto de elaboración del proyecto

Útiles de escritorio	Cantidad	Precio	Total
Papel Bond A4-75 gr	4	s/. 16.00	s/. 64.00
Archivadores	5	s/. 21.00	s/. 105.00
Tinta para impresora	5	s/. 79.00	s/. 395.00
		Total	s/. 564.00

Servicios de imprenta	Cantidad	Precio	Total
Ploteo de planos	30	s/. 5.00	s/. 150.00
Impresion	5	s/. 30.00	s/. 150.00
Anillados	5	s/. 3.00	s/. 15.00
		Total	s/. 315.00

Servicios otros	Cantidad	Precio	Total
Servicio de internet	1	s/. 80.00	s/. 80.00
Anillados	1	s/. 100.00	s/. 100.00
		Total	s/. 180.00

Útiles de escritorio	s/. 564.00
Servicios de imprenta	s/. 315.00
Servicios otros	s/. 180.00
Monto total	s/. 1059.00

Fuente: Elaboración Propia

5.2. Costo de adquisición de materiales y equipos

Cuadro 5.2: Costo de adquisición de materiales y equipos

	Dolar	Soles	
Tipo de cambio	1	s/. 3.70	
Materiales y equipos	Cantidad	Precio	Total
Placa de acero ASTM A-131	100	s/. 3,700.00	s/. 370,000.00
Tubería de acero galvanizado 6"	10	s/. 540.00	s/. 5,400.00
Tubería de acero galvanizado 2"	25	s/. 180.00	s/. 4,500.00
Bomba de lodos AP35B/50B	5	s/. 5,040.00	s/. 25,200.00
Válvula reguladora de presión	8	s/. 2,500.00	s/. 20,000.00
Geomembrana	16	s/. 2,500.00	s/. 40,000.00
Compresor de gas	1	s/. 14,800.00	s/. 14,800.00
		Total	s/. 479,900.00

Fuente: Elaboración Propia

5.3. Ingreso de dinero anual por venta de biogás

Para un precio tentativo de s/. 25.00 (veinticinco con 00/100 soles) el balon de biogas tenemos un ingreso anual de:

Cuadro 5.3: Ingreso de dinero anual por venta de biogás

	Cantida/año	Precio	Total
Biogás	8460	s/. 25.00	s/. 211,500.00
	Eventer Elek	omonión Dm	onio

Fuente: Elaboración Propia

5.4. Calculando el VAN y el TIR

Cuadro 5.4: Calculando el VAN y TIR

	año	Fujo de fondos
	0	s/479,900.00
	1	s/. 211,500.00
	2	s/. 211,500.00
	3	s/. 211,500.00
Topo Interno de Deterno	TID	15 0/
Tasa Interna de Retorno	TIR	15 %
Valor Actual Neto	VAN	s/. 46,069.20

Fuente: Elaboración Propia

Capítulo 6

Conclusiones

- Los biodigestores forman parte de una gama de tecnologías, cuya función principal es generar biocombustible (biogás), producto de la degradación de la materia orgánica, este combustible puede ser aprovechando de los residuos sólidos municipales.
- En el diseño de la batería de biodigestores se toman encuenta varios factores impresindibles, como son: la temperatura, el tiempo de retención hidráulica, tipo de materia orgánica a utilizar, etc., estos parámetros nos brinda una visión general para realizar nuestro diseño de biodigestores, gracias al estudio realizado por la municipalidad provincial de Calca y su gerencia de medio ambiente, se pudo realizar los cálculos respectivos para su dimencionamiento, capacidad de almacenaje y número de biodigestores; contando así con 4 biodigestores y un fermentador de capacidad de 323.8 m³ cada uno, esto conlleva a evitar que el material orgánico se acumule fuera de los biodigestores, produciendo malestar general en la población.
- Producto de la degradación del material orgánico se genera una seria de gases, en su mayoría metano en un 70 % y dióxido de carbono con un 30 % aproximadamente, de los cuales el metáno sería considerado nuestro gas aprovechable; el manual de uso del biodigestor nos indica que por cada kilogramo de sólido fresco de una Fracción Orgánica de Residuos Sólidos Urbanos (FORSU) produce un aproximado de 100 litros de biogás, por ende al utilizar el FORSU generado en la ciudad de Calca producimos un promédio de 470.4 m³ de biogás, equivalente a una 23.52 balones de gas envasado.
- Para el diseño de nuestros biodigestores utilizamos una norma Americana, la ASME (Sociedad Americana de Ingenieros Mecánicos) y la API 650 para el diseño de tanques de almacenamiento, estas normas nos dan a conocer los parámetros mínimos a tomar en consideración para el diseño de tanques como son la presión interna máxima de una atmosfera; siendo la presión atmosférica en la ciudad de Calca de 70.51 Kpa y nuestra presión de trabajo de 59.46 Kpa este indice de presiones nos brinda márgenes de maniobra respecto a la seguridad de funcionamiento, evitando así posibles expolsiones por exceso de presión; el espesor de pared máxima de 12.7 cm y mínima de 4.76 mm, para lo cual en base a una fórmula modificada de recipientes de pared delgada, calculamos los esfuerzos generados al interior del digestor, para así poder seleccionar el material adecuado de construcción, obteniendo un acero de uso naval ASTM A-131, por ser altamente resistente a la corrosión.
- Se realizó una evaluación económica respecto a una inversión general de s/. 479,900.00

(cuatrocientos setenta y nueve mil novecientos con 00/100 soles), calculando el VAN y el TIR se obtuvo que; nuestra tasa de retorno (TIR) a un periodo de 3 años es de un 15 %, mientras que nuestro valor neto (VAN) en los tres años es de s/. 46,036.20 (cuarenta y seis mil trenta y seis con 20/100 soles); esto nos da a conocer que en un aproximado de 3 años recuperamos la inversión y obtenemos una ganancia de s/. 46,036.20 soles.

Bibliografía

- Acosta Clavijo, J. M. and Muñoz Santana, L. A. (2020). Implementación de un biodigestor para la obtención de biogas a partir de los excrementos de los animales de granja ubicada en el cantón salcedo. B.S. thesis, Ecuador: Latacunga: Universidad Técnica de Cotopaxi; Facultad de Ciencias de
- Barazorda Ramos, B. (2020). Diseño de un sistema de suministro de energía eléctrica y térmica de 25 kw de potencia a partir del uso de un gasificador de biomasa. *Tesis de Grado, Universidad Nacional de San Antonio Abad del Cusco*.
- BESEL, S. (2007). Biomasa: digestores anaerobios. *Editorial IDEA (Instituto para la Diversificación y Ahorro de la Energía), Madrid, España*.
- Carreño, L. G. (2006). Diseño mecánico de recipientes de a presión bajo el código ASME sección VIII división I. *Informe de Pasantía Presentado ante la Ilustre Universidad Simón Bolívar como Requisito Parcial para Optar el Título de Ingeniero Mecánico, Caracas, Venezuela*.
- Cintia Rocío Flores Juárez, C. (2008). Tratamiento de residuos sólidos provenientes de rastros mediante digestión anaerobia. *Tesis para Optener el Grado Académico de Maestro en Ciencia y Tecnología en la Especialidad de Ingeniería Ambiental, Centro de Investigación y Desarrollo Tecnológico en Electroquímica CIDETEQ, Querétaro, Mexico.*
- Cleves, L. M. C., Orobio, B. A. P., Lozada, P. T., and Vásquez-Franco, C. H. (2016). Perspectivas del ensayo de potencial bioquímico de metano-pbm para el control del proceso de digestión anaerobia de residuos. *Universidad del Valle (Colombia), Revista ION*.
- Collasos Correa, D. and Vargas Pérez, L. E. (2019). Diseño de un sistema de biodigestores para el aprovechamiento energético de los residuos orgánicos del camal municipal de jaén–perú. *Tesis Para Optar el Título Profesional de Ingeniero Mecánico Electricista, Universidad Nacional de Jaén, Perú*.
- Conde Paccelli, M. and Fanelli, N. M. (2020). *Proyecto de inversión para la producción de biodigestores de uso urbano-rural*. PhD thesis, Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina.
- Congreso de la Republica, P. (2018). Ley que declara de necesidad publica y de preferente interes nacional, la promocion y desarrollo de plantas de tratamiento de bioenergeticos en los gobiernos locales, para diversificar el portafolio de opciones productivas.
- Cuesta López, J. (2015). Obtención de biogás a partir de residuos sólidos urbanos para su inyección a red. B.S. thesis, universidad carlos III de madrid.

- DIGESA (2004). Marco institucional de los residuos sólidos en el perú. Ministerio de Salud.
- Don Antonio Jesús Castro Granado, D. (2018). Estudio bibliográfico del estado del arte de la digestión anaerobia de residuos sólidos orgánicos y mejora del proceso mediante pretratamiento. *Trabajo Fin de Grado, Universidad de Cádiz, España*.
- Dra. Claudia E. Balagué, D. O. A. D. P. (2019). Manual de uso del biodigestor. *Gobierno de Santa Fe, Argentina*.
- Eastern Research Group, I. (2017). Caracterización y gestión de los residuos orgánicos en américa del norte. *Informe sintético, Comisión para la Coperación Ambiental, Montreal, Canada, Estados Unidos y México*.
- Edgar Amela Felipe, E. (2016). Diseño de una cinta transportadora en una instalación de carga automática de coque. *Proyecto Final de Grado, Universitat Jaume, España*.
- Francis W. Sears, Mark W. Zemanshy, H. D. Y. R. A. F. (2004). Fisica universitaria undécima edición. *Libro*.
- Fundación Gomez Pardo, F. (1980). Carga y transporte en la minería a cielo abierto.
- GARCÍA, L. (2017). Diseño de un digestor para una planta de biogás agroindustrial. *Tesis de grado, Universidad de Cantabria, Santander*.
- Gastelum Fernández, G. O., GASTELUM FERNANDEZ, G. O., et al. (2020). Diseño e implementación de un biodigestor experimental con un sistema de monitoreo y control de temperatura. B.S. thesis, Benemérita Universidad Autónoma de Puebla, México.
- Gerencia de Medio Ambiente, G. (2019). Caracterización de los residuos sólidos municipales del distrito, provincia de calca. *Gerencia de Medio Ambiente de la Municipalidad Provincial de Calca*.
- González Benítez, M. M. and Portet Cortés, E. (1980). Aprovechamiento de la biomasa. In *VII Convención Nacional de la Industria Química*, pages 2–17.
- Hernández Sampieri, R., Fernández Collado, C., Baptista Lucio, P., et al. (2018). *Metodología de la investigación*, volume 4. McGraw-Hill Interamericana México.
- Huaman Valencia Ernesto Roger, H. (2014). Tecnología de bandas transportadoras. *Tesis de Grado, Universidad Nacional de San Agustin, Arequipa*.
- Instituto para la Diversificación y Ahorro de la Energía, I. (2007). *Biomasa: digestores anaerobios*. IDAE, Gobierno de España.
- Jorge Cuesta López, J. (2015). Obtención de biogás a partir de residuos sólidos urbanos para su inyección a red. *Trabajo fin de Grado, Universidad Carlos III de Madrid*.
- Juana Fernandez Rodrigues, J. (2010). Optimización de la digestión anaerobia seca de la fracción orgánica de los residuos sólidos urbanos (forsu) en reactores en fase de temperatura. *Tesis Doctoral, Universidad de Cádiz*.
- Lacueva Ratera, L. (2011). Estudio de alternativas y dimensionamiento de biodigestores para aplicaciones domésticas en la zona rural de nwadjahane en mozambique.

- Linares Carrion, R. A. (2022). Estudio de factibilidad para la implementación de un biodigestor y la producción de biogas en la base aeronaval del callao. *Trabajo de Suficiencia Profecional para Optar el Título de Ingeniero Industrial Con mención en Gestión Lógistica; Universidad de Piura*.
- Mamani Condori, R. and Pacco Huarachi, C. O. (2021). Propuesta de diseño de una planta de biodigestión para el aprovechamiento energético de residuos orgánicos del relleno sanitario de chilla-juliaca.
- Martina, P., Yank, L., Corace, J. J., Bucki Wasserman, B., Aeberhard, R., and Ventin, A. (2005). Estudio de la producción de biogas en función de la cantidad de residuos de madera en un biodigestor del tipo de carga única o batch. *Revista, Avances en energías renovables y medio ambiente*, Volumen 9.
- Mirian del Rocío Medina Herrera, M. (2010). Optimización del tratamiento de residuos provenientes de rastro mediante digestión anaerobia para maximizar la producción de biogás. *Tesis de Maestria, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Querétaro, Mexico.*
- Montalbán Romero, A. J. (2020). Obtención de biogás por digestión anaerobia a partir de la fermentación de tres mezclas de sustratos orgánicos en la comunidad de la huaquilla, universidad católica sedes sapientiae, morropón, perú.
- Muñoz, A. L., Páez, A., Vélez, D. B., and Garzón, D. Q. (2016). Estabilización de temperatura en un digestor anaerobio tipo uasb alimentado con residuos bovinos y lodos. *Revista de investigación*, 9(2):69–83.
- Oporto Jimenez, I. R. (2023). Análisis y mejora del proyecto de instalaciones mecánicas de la planta de tratamiento de aguas residuales de quillabamba—la convención—cusco. *Tesis de Grado, Universidad Nacional de San Antonio Abad del Cusco*.
- Ordoñez Fierro, O. L. (2022). Digestión anaerobia a bajas temperaturas. *Programa de maestria en Ciencias Ambientales, Universidad Tecnológica de Pereira, Colombia.*
- Organismo Supervisor de la Inversión en Energía y Minas, O. (2017). La industria de la energía renovable en el perú 10 años de contribuciones a la mitigación del cambio climático.
- Palau Estevan, C. V. (2016). Digestión anaerobia de residuos de biomasa para la producción de biogás. *Fundamentos, Universitat Politècnica de València, España*.
- Pelegrín Romera, C. (2022). Diseño de un digestor anaerobio para co-digestión de fangos de depuración y residuos líquidos de la industria alimentaria con capacidad para tratar hasta 120 m3/d. *Trabajo fin de Master en Ingeniería Industrial, Universitat Politècnica de València, Escuela, España*.
- Pirelli (2019). Manual de cálculo de cintas transportadoras.
- Prof. María Teresa Varnero Moreno, M. (2011). Manual de biogás. *Programa de las Naciones Unidas para el Desarrollo, Gobierno de Chile Ministerio de energías, Organización de la Naciones Unidas para la Alimentación y la Agricultura, Global Environment Facility*.

- Proiman Equipos Transportadores, P. (2021). Bandas transportadoras.
- Ranald V. Giles, Jack B. Evett, C. L. (2003). Mecánica de los fluidos e hidraulica tercera edición. *Libro*.
- Ricardo del Valle Zermeño, R. (2013). Utilización de las escorias de incineració de RSU para el incremento del poder calorífico del biogás generado por digestión anaerobia de la FORSU. *Master Interuniversitaria UB-UPC*, *España*.
- Sencia Choquenaira, R. (2020). Diseño de un biodigestor para el aprovechamiento de la materia orgánica generada por hogares de bajos recursos económicos que crían animales menores ubicados en la zona agrícola de la ciudad de arequipa en el año 2020. Para Optar el Grado Académico de Bachiller en Ingeniería Industrial, Universidad Continental, Arequipa.
- Sotaquira Medina, M. F. et al. (2015). Diseño de un biodigestor para el aprovechamiento de la materia orgánica generada en la plaza de mercado del municipio de sogamoso-boyacá. Proyecto de Grado para Optar al Título de Ingeniería Industrial, Universidad Nacional Abierta y a Distancia UNAD, Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente ECAPMA, Colombia.
- Toala Moreira, E. E. (2014). Diseño de un biodigestor de polietileno para la obtención de biogás a partir del estiércol de ganado en el rancho verónica. B.S. thesis, Escuela Superior Politécnica de Chimborazo.
- Valle Zermeño, R. (2013). Utilización de las escorias de incineración de RSU para el incremento del poder calorífico del biogás generado por digestión anaerobia de la FORSU. Master's thesis, Universidad Politècnica de Catalunya.
- VASQUEZ ARANA, E. S. (2021). Diseño de un agitador mecánico para mejorar la producción de biogás de un biodigestor semi continúo en la iepc bereshi-chimbote. *Tesis Para Optar el Título Profesional de Ingeniero Mecánico Electricista, Universidad San Pedro, Chimbote, Perú*.
- Yaniris Lorenzo Acosta, y. M. C. O. A. (2005). Digestión anaerobia. aspectos teóricos. parte I. Instituto Cubano de Investigación de los Deribados de la Caña de Azúcar, Revista Científica de América Latina, el Caribe, España y Portugal.
- Zabaleta, R., Viera, M. V. A., and Aldana, M. D. M. (2017). Diseño de un biodigestor tubular para zonas rurales de la región piura. In *Proceedings of the XXIV Simposio Peruano de Energía Solar y del Ambiente, Huaraz, Peru*, pages 13–17.
- Zea Beltrán, J. A., Bernal Nieves, J. E., and Carvajal Sanabria, D. F. (2016). *Biodigestores de escala a 50 litros, una solución para la producción de gas, abono y aprovechamiento de los residuos sólidos orgánicos*. PhD thesis, Corporación Universitaria Minuto de Dios.

ANEXOS

MATRIZ DE CONSISTENCIA				
PROBLEMA	OBJETIVO	HIPOTESIS		
PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL		
¿Cómo aprovechar los residuos sólidos municipales	Diseñar una batería de biodigestores alimentado por	El diseño de una batería de biodigestores alimentado		
producidos en la ciudad de Calca?	una faja transportadora, para generar biogás a partir	por una faja transportadora genera biogás a partir de		
	de 8.227 Tn/día de residuos sólidos en la ciudad de	8.227 Tn/día de residuos sólidos en la ciudad de Calca.		
	Calca.			
PROBLEMA ESPECÍFICO	OBJETIVO ESPECÍFICO	HIPÓTESIS ESPECÍFICA		
1 ¿Para qué diseñar una batería de biodigestores	1 Diseñar la batería de biodigestores alimentado por	1 El diseño de una batería de biodigestores		
alimentado por una faja transportadora?	una faja transportadora, para mantener una	alimentado por una faja transportadora nos ayuda a		
2 ¿Por qué diseñar una batería de biodigestores	alimentación constante de material orgánico y evitar la	definir la correcta dimensión de la batería de		
alimentado por una faja transportadora?	acumulación externa.	biodigestores, mantiene una alimentación constante		
3 ¿Para qué es necesario diseñar una batería de	2 Diseñar la batería de biodigestores alimentado por	de material orgánica y evita acumulaciones externas.		
biodigestores alimentado por una faja transportadora?	una faja transportadora, para calcular la producción de	2 El diseño de una batería de biodigestores		
	biogás, a partir de la degradación del material orgánico	alimentado por una faja transportadora nos ayuda a		
	acumulado dentro de la batería de biodigestores.	calcular La producción de biogás, a partir de la		
	3 Diseñar la batería de biodigestores alimentado por	degradación del material orgánico acumulado dentro		
	una faja transportadora, es necesario para calcular los	de la batería de biodigestores.		
	esfuerzos generados por el material orgánico y biogás	3 El diseño de una batería de biodigestores		
	producido dentro de la batería de biodigestores y	alimentado por una faja transportadora nos permite		
	obtener el material de construcción a utilizar.	realizar el cálculo de esfuerzos generados por el		
		material orgánico y biogás, con los cuales obtenemos		
		los materiales de construcción a utilizar.		

LIMITACIONES:

- 1.- La ausencia de normas nacionales limita el diseño de tanques para biodigestores o tanques de almacenamiento.
- 2.- La capacidad del biodigestor está en función de la temperatura de trabajo que implican variación en los tiempos de retención.
- 3.- Poca información bibliográfica sobre el uso acero estructural en la construcción de biodigestores a nivel nacional.
- 4.- La selección del material de construcción (acero estructural) en la batería de biodigestores, se limitará al cálculo teórico.
- 5.- No existe normas sobre el aprovechamiento energético de los residuos sólidos municipales a nivel nacional.

NORMAS APLICABLES PARA EL DISEÑO DE TANQUES

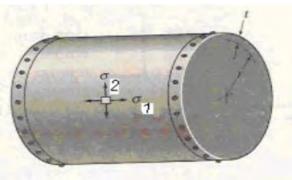
NORMAS INTERNACIONALES DE DISEÑO DE RECIPIENTES A PRESIÓN: COMPARACIÓN DE PROCEDIMIENTO PARA DETERMINACIÓN DE ESPESOR MÍNIMO REQUERIDO

País	Código	Institución	Luis Alberto Laurens
USA	ASME Boiler & Pressure Vessel Code	ASME	Arredondo, (2018,2019)

	FORMUL	AS APLICABLES	PARA EL DIME	NSIONAMIETO	DE BIODIGEST	ORES
Densidad	$ ho = rac{m}{V_1}$	Francis W.	Sears, 2004			
	TRH = -51.2	$227 \ln(T ^{\circ}C) +$	206.72	Andrea Lache	Muñoz 2016	
TRH	$TRH = \frac{V_t}{V}$	Jorge Cuesta	Lopez, 2015			
aigestor	$V_t = TRH * V$	Romario Sencia 20	•			
Área del reactor	$A_R = \frac{\pi * D^2}{4}$	Andrea Lache	Muñoz, 2016			
Carga hidrulica	$C_H = \frac{Q}{A_R}$	Andrea Lache	Muñoz, 2016		,	
Flujo masico	$F = V_R *$	Carga	Andrea Lache	Muñoz, 2016		
Velocidad de flujo	$V_C = 4 * C_H$	Andrea Lache	Muñoz, 2016		-	
Calculo de biogás	$V_{Biog\acute{a}s\ Total} = SV * 0.27 * V_{M}$		Andrea Lache	Muñoz, 2016		
Fuerza	$F = \gamma * H * A$	Ranald V. (Giles, 2003			
Peso específico	$\gamma = \rho * g$	Ranald V. (Giles, 2003			
Presión	$P = \frac{F}{A}$	Francis W.	Sears, 2004			
Presión	$P = \rho_{rel} * g * \mathbf{H}$	Ranald V. (Giles, 2003		_	
Presión	P * V = n * R	* T	Francis W.	Sears, 2004	Ecuación de g	ases ideales
Radio	$R = \sqrt[3]{\frac{V_R}{\pi * 1.121}}$	Lacueva Ratera 20:	a, Laura, (2011 - 12)		lumen del biod	imental que relaciona el ligestor (Lacueva Ratera
Unidad	$U = \frac{R}{4}$	Lacueva Ratera 20:				

		l		
Radio de cúpula	R = 5 * U	Lacueva Ratera, Laura, (2011 -		
Thurs are cupana	11 0 0	2012)		
Diametro de	D = 8 * U	Lacueva Ratera, Laura, (2011 -		
cilindro	D = 0 * 0	2012)		
Altura de	$h_c = 2 * U$	Lacueva Ratera, Laura, (2011 -		
cúpula	$n_c = 2 * 0$	2012)		
Altaura da rasuad	, , , , ,	Lacueva Ratera, Laura, (2011 -		
Altura de pared	$h_P = 3 * U$	2012)		
Altura de cono	$h_t = 0.15 * D$	Lacueva Ratera, Laura, (2011 -		
base	$n_t = 0.15 * D$	2012)		
Volumen de	T74 ('11' 1)	p ² ,		Laguaga Patara Laura (2011 2012)
cilindro	V1(cilindro)	$=R^2*n_P*\pi$		Lacueva Ratera, Laura, (2011 - 2012)
Volumen de	110 (6/	$rico) = \frac{\pi * h_c}{6} * (3 * R^2 + h_c^2)$	`	Lacueva Ratora Laura (2011, 2012)
seg. Esférico	V2(seg.esfer	$rico) = \frac{1}{6} * (3 * R^2 + n_c)$)	Lacueva Ratera, Laura, (2011 - 2012)
Volumen de	1/2//	h_t		Lacueva Ratora Laura (2011, 2012)
cono base	V3(base) = R	$\kappa^{-} * \pi * \frac{\pi}{3}$		Lacueva Ratera, Laura, (2011 - 2012)
Volumen de	$V_{-} - V1 + V2$	$+V3 = R^3 * \pi * 1.121$		Lacuova Patera Laura (2011, 2012)
digestor	$V_R - V_1 + V_2$	1 VJ - K		Lacueva Ratera, Laura, (2011 - 2012)

Espesor de Pared de Recipientes a Presión				
Simbología unificada de formulas de diseño				
Significado	Abreviatura			
Diámetro Interior del Recipiente a Presión	d			
Diámetro Exterior del Recipiente a Presión	D			
Presión Interna	Р			
Esfuerzo Admisible / Diseño @temp.	S			
Esfuerzo de Fluencia	Sy			
Espesor de Pared Mínimo Requerido	tmin			
Radio Interior del Recipiente a Presión	r			
Eficiencia de la Junta	E			
Tolerancia 2	С			
Factor de Seguridad	F.S			


Luis Alberto Laurens Arredondo, (2018,2019)

Nota (Fuente: Luís Javier Guzmán Carreño 2006)				
E 1 Para Radiografía Total				
Eficiencia de la Junta	E	0.85	Para Radiografía Aleatoria	
	Е	0.7	Para Equipo sin Radiografía	

Esfuerzo circunferencial

$$\sigma_2 = \frac{\textit{Pi} * r}{t}$$
 Esfuerzo longitudinal

$$\sigma_1 = \frac{Pi * r}{2 * t}$$

Fuente: Hibbeler, 1996

Espesor minimo requerido

$$t = \frac{Pi * r}{s}$$

 $\sigma_2 = S$

Presión Interna: Factor de seguridad:

Fórmula modificada según ASME parrafo UG-27
$$t = \frac{Pi * r}{S_{Cuerpo} * E - 0.6 * Pi}$$

(0.385*S*E) Luis Javier Guzman Carreño, (0.6*Pi) 2006

Volumen de agua por día

Tipo de residuo	F.O.R.S.U.			
Cantidad Máxima Kg/Día	15			
Equivalente en baldes 10 lt.	5			
Agregado de agua It/día	15			Manual de
Equivalente en baldes 10 lt.	1.5			uso del
Proporción de	balde de agua	1.5	2/7	biodigestor
agua/FORSU, por unidad de volumen	balde de FORSU	5	2/7	
$V_{H_2O} = \frac{2}{7} * V_1$	V_{H_2O}	9.59	m^3	

Volumen de sustrato por día

$V = V_1 + V_{H_2O}$	V	41.58	m^3
1 1120			_

Temperatura y tiempo de retención hidraúlica (TRH)

Fermentación	Mínimo	Optimo	Máximo	TRH
Psycrophilica	4° - 10°C	15° - 18°C	20° - 25°C	100
Mesophilica	15° - 20°C	25° - 35°C	35° - 45°C	30 - 60
Thermophilica	25° - 45°C	50° - 60°C	75° - 80°C	10 - 15

Prof. María Teresa Varnero Moreno,

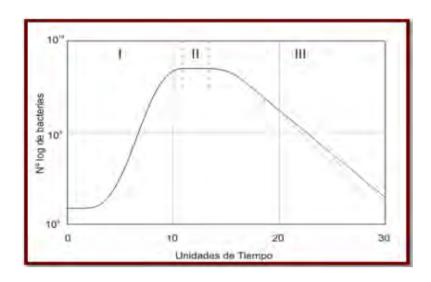
TRH en días

Temperaturas optimas

Rango	Optimo	unidad	Juana
Psycrophilica (T < 20°C)	15	°C	Fernandez
Mesophilica (20 < T < 45°C)	35	°C	Rodrigues,
Thermophilica (T > 45°C)	55	°C	2010

Rango de temperaturas en Calca

	media	min.	max.
Enero	12.7 °C	6.6 °C	18.8 °C
Febrero	12.7 °C	6.6 °C	18.8 °C
Marzo	12.7 °C	6.3 °C	19.1 °C
Abril	12.4 °C	5.1 °C	19.7 °C
Mayo	11.2 °C	2.7 °C	19.7 °C
Junio	10.0 °C	0.5 °C	19.4 °C
Julio	9.7 °C	0.2 °C	19.2 °C
Agosto	10.8 °C	1.7 °C	19.9 °C
Septiembre	12.1 °C	4.0 °C	20.1 °C
Octubre	13.2 °C	5.5 °C	20.9 °C
Noviembre	13.3 °C	6.0 °C	20.6 °C
Diciembre	13.7 °C	6.5 °C	20.8 °C


https://met eobox.es/pe ru/calca/est adistica/#sh are

Como se puede observar el rango medio de temperaturas en la ciudad de Calca oscila entre los 9.7°C y los 13.7°C (https://meteobox.es/peru/calca/estadistica/#share); es por ello que para tener un tiempo de retención hidráulica de entre 30 y 60 días, se debe instalar un sistema de calefacción que oscile entre 25° - 45°C (Cyntia Rocío Flores Juarez, 2008), siendo una temperatura recomendable de 35°C (I.Q. Laura Angélica Briseño Arciniega, 2017), para un TRH de 30 días; el TRH, es sumamente importante para tener un buen dimensionamiento de nuestro digestor.

Volumen total del biodigestor para un tiempo de retención de 30 días

Romario Sencia	и три и	TRH	30	días
Choquenaira, 2020	$V_t = TRH * V$	V_{+}	1247.3	m^3

Algunos autores recomiendan que el volumen de mezcla entre FORSU y agua ocupe el 75 - 90% del biodigestor y el restante sea la parte gaseosa (Romario Sencia Choquenaira, 2020).

Jorge Cuesta Lopez, 2015

La mayor parte de la digestón de la FORSU se produce en los primeros 20 días (Jorge Cuesta Lopez, 2015).

Etapa I: etapa de arranque; se puede acortar recirculando parte del digestato extraido.

Etapa II: etapa estabilizadora, se produce mayor cantidad de metano.

Etapa III: etapa de declive, se produce un descenso en la población bacteriana.

DIMENSIONANDO

ITEM	Cantidad	Unidad	Proporción
FORSU	31.98	m^3	7
Agua	9.59	m^3	2
Mezcla o sustato	41.58	m^3	
Volumen en 8 días	332.61	m^3	80%
Volumen de biogás	83.15	m^3	20%
Volumen de reactor	415.76	m^3	

Los parámetros tomados son aproximaciones teóricas no experimentales, tomadas de forma aleatoria, cumpliendo algunos parámetros estudiados de bibliografias anteriores.

Número de Reactores

V_t	Volumen en 8 días	V_8
$N = \frac{1}{V_8}$	Volumen de reactor total	V_t

N	3.75
N ≈	4

Recalculando la nueva capacidad de biodigestores para un volumen de 415.76 m^3 y 4 reactores.

V = N + V	Volumen de reactor	V_R	415.76	m^3
$V_{Rt} = N * V_R$	Volumen recalculado	V_{Rt}	1663	m^3
				á 1.1.

m

m

1.23

Radio de reactor

3 V _D	π	3.1416
$R = \sqrt[3]{\frac{v_R}{\pi * 1.121}}$	R^3	118.1
$\sqrt{n+1.121}$	R	4.9

Área del circulo

Unidad

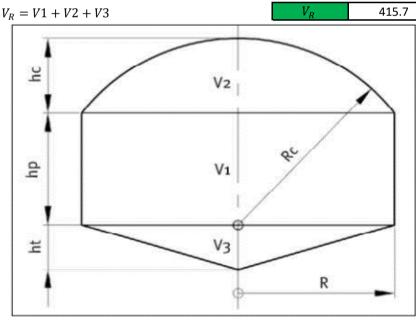
$$U = \frac{R}{4}$$

Radio de cúpula 6.13 lm R = 5 * UR Diámetro de cilindro D = 8 * U9.8 m Cálculo de alturas Altura de cúpula $h_c = 2 * U$ 2.45 m Altura de pared $h_P = 3 * U$ 3.68 m Altura de cono base $h_t = 0.15 * D$ m 1.47 Altura del reactor $h_R = h_c + h_P$ h_R 5.15 m Altura total $h = h_c + h_P + h_t$ 7.60 m Cálculo de volúmenes

Volumen del cilindro

 $V1(cilindro) = R^2 * h_P * \pi$

Volumen segmento esférico


$$V2(seg.esf\'{e}rico) = \frac{\pi * h_c}{6} * (3 * R^2 + h_c^2)$$

Volumen cono base

$$V3(base) = R^2 * \pi * \frac{h_t}{3}$$

Recalculando el volumen del reactor

$$V_R = V1 + V2 + V3$$

Lacueva Ratera, Laura, (2011 -2012)

278.2

100.45

37.1

*V*2

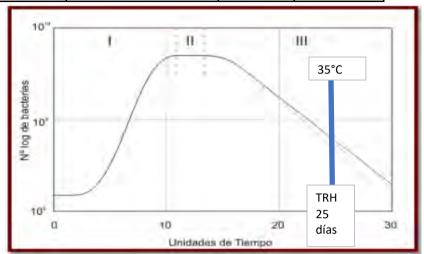
*V*3

m^3

m^3

m^3

m^3


RECALCULANDO EL TRH RESPECTO A LA TEMPERATURA

Cálculo del TRH:

$$TRH = -51.227 \ln(T \, ^{\circ}C) + 206.72$$

Psycrophilica	TRH	67.99	días
Mesophilica	TRH	24.59	días
Thermophilica	TRH	1.44	días

ITEM	Cantidad	Unidad	Proporción
FORSU	31.98	m^3	7
Agua	9.59	m^3	2
Mezcla o sustato	41.58	m^3	
Volumen en 5 días	207.88	m^3	80%
Volumen de biogás	51.97	m^3	20%
Volumen de reactor	259.85	m^3	

Para una temperatura de 35°C se tiene un TRH de 25 días.

Según indica Jorge Cuesta Lopez, 2015; para los reactores de mezcla continua la mayor parte de la digestión se produce en los primeros 20 días.

RECALCULANDO EL NÚMERO DE BIODIGESTORES RESPECTO AL NUEVO TRH

$V_* = TRH * V$	TRH	24.59	días
$V_t = TRH * V$	V_t	1022.4	m^3

8.4

Número de Reactores

$N = \frac{V_t}{V_5}$	
-----------------------	--

Volumen en 7 días	V_5
Volumen de reactor total	V_t

N	4.92
N ≈	5

55.3

Área del circulo Área

Recalculando la nueva capacidad de biodigestores para un volumen de 259.85 m^3 y 3 reactores.

V = M + V	Volumen de reactor	V_R	259.85	m^3
$V_{Rt} = N * V_R$	Volumen recalculado	V_{Rt}	1299	m^3

Radio de reactor

D _	3	V_R
<i>K</i> =	1	$\pi * 1.121$

π	3.1416	
R^3	73.8	m
R	4.2	

Unidad

$$U = \frac{R}{4}$$

U	1.05	m

Radio de cúpula

$$R = 5 * U$$
 Diámetro de cilindro

etro	de	CII	ınd
D	=	8 *	· II

R	5.24	m
		_'

Cálculo de alturas

Altura de cúpula

$h_c = 2 * U$	h_c	2.10	m
Altura de pared			_
$h_P = 3 * U$	h_P	3.15	m
Altura de cono base			-
$h_t = 0.15 * D$	h_t	1.26	m

Altura del reactor

$h_R = h_c + h_P$	h_R	4.40	m
Altura total			
$h = h_c + h_P + h_t$	h	6.50	m

Cálculo de volúmenes

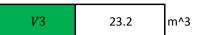
Volumen del cilindro

 $V1(cilindro) = R^2 * h_P * \pi$

Volumen segmento esférico

$$V2(seg. esférico) = \frac{\pi * h_c}{6} * (3 * R^2 + h_c^2)$$

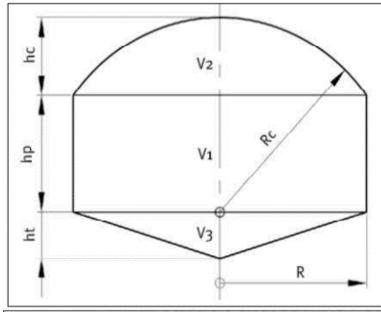
*V*1 237.8 m^3


62.78

m^3

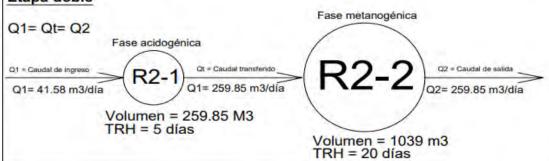
V2

Volumen cono base


$$V3(base) = R^2 * \pi * \frac{h_t}{3}$$

Recalculando el volumen del reactor

$$V_R = V1 + V2 + V3$$



Lacueva Ratera, Laura, (2011 -2012)

ETAPAS DE DIGESTIÓN ANAEROBIA ENTRADA DE SUSTRATO Y SALIDA DE DIGESTATO

Etapa doble

PRODUCCIÓN DE BIOGÁS

Manual de uso del Biodigestor

Biogás					
m^3	Litros	Kg gas envasado			
1	1000	1/2			

1000

	_		-, -				
Generación de Biogás por material orgánico							
Tipo de residuo	F.O.R.S.U.	Purin de	Estiercol	Desechos de			
ripo de residuo	F.U.K.3.U.	cerdo	Vacuno	huerta			
Potencial de generación (lt.	100	60	30	50			
Biogás/Kg. Sólido fresco)	100	ÜÜ	30	3			
F.O.R.S.U. = Fracción Orgánica o	le Residuos Só	idos Urbanos					
Para una temp	eratura ambie	ental ideal de e	ntre 25 y 30°C				
Tipo do vacidos	Kg. Sólido	lt. Biogás	m^3	Kg. Gas			
Tipo de residuo	fresco	it. biogas	m/3	envasado			
EODCII	20	2000	2	1			

Alimentación de nuestro biodigestor

Tipo de residuo	F.O.F	R.S.U.	Purin	de cerdo	Estierco	l Vacuno	Derechos	de huerta
Cantidad Máxima Kg/Día	15	9	30	18	20	12	5	21
Equivalente en baldes 10 lt.	5	3	3	2	2	1	11	7
Agregado de agua It/día	15	9	-	-	15	10	-	-
Equivalente en baldes 10 lt.	1.5	1	-	-	1.5	1	-	-
		Verano y temperaturas cálidas				Invierno y ten	nperaturas fría	S

Proporción de F.O.R.S.U/agua,	balde de agua	1.5	2/7
en baldes	balde de	-	2//
	FORSU	5	

20

PRODUCCIÓN DE BIOGÁS (CALCA) POR DÍA					
Tipo de residuo	Kg. Sólido fresco	lt. Biogás/día	m^3/día	Kg. Gas envasado/día	balones envasados
F.O.R.S.U.	4704	4.70E+05	470.4	235.20	23.52
PRODUCCIÓN DE BIOGÁS (CALCA) AL MES					
	Va Cálida	I+		Va Cos	halones

Tipo de residuo

Kg. Sólido
fresco
Biogás/mes

M^3/mes
Kg. Gas
envasado/mes
envasados

F.O.R.S.U.

141120
1.41E+07
1.41E+04
7.06E+03
705.6

COMPROVANDO PRODUCCIÓN DE BIOGÁS POR DÍA Q 41.58 m3/día VR 1299 m3

VR	1299	m3	100%		
carga	1039.41	m3	80%		
proporción	2/7	agua	296.97	m3	
ргорогског	2//	FORSU	742.43	m3	
Dt	8.4	m	A_R	55.3	m2
Hr	6.5	m	C_H	7.52E-01	m/día
Di	8.388	m	V_R	1299	
			F	1350456.18	KgDQO/día
			V_C	3.01E+00	m/día
			SV	1.40	
			T.7	202.00	

A	$A_R = \frac{\pi * D^2}{4}$
	$C_H = \frac{Q}{A_R}$
	$F = V_R * Carga$
1	$V_C = 4 * C_H$
V _{Biogás Total}	$= SV * 0.27 * V_M$

El cálculo inicial se realizo utilizando el manual de uso del biogás, el cual nos brinda un valor de producción de biogás de 470.4 m3 mientra que en segunda instancia utilizando una revista de investigación de Andrea Lache Muñoz, 2016 nos da un valor de 392.82 m3. Para propositos de cálculo tomaremos el mayor valor de producción de biogás.

Presión ejercida del biogás.

Desechos de huerta

$$P_b * V_2 = n * R * T$$

V_2	62.78	m3
n	7.5	
P_b	11239.96	Pa

11.24 Kpa

por tanto

Volumen del gasómetro

		4				2
V_g	=	2	*	π	*	r^3

r	4.82	m
V_g	470.40	m3
V_2	62.78	m3
n	7.5	
P_b	11239.96	Pa

ı	4.60	111
V_g	463.25	m3
V_2	62.78	m3
n	7.4	
P.	11069 06	Pa

4 OO

11.07

11239.96	Pa	11.24	Кра		P_b	11069.0
Tipo de	geomembran:	a Espesor	r (t)	$p = \frac{\sigma_1 \cdot r}{r}$		
HDPE		0.75 x	- 1-0	12.		Rafael
		1.0 x 1		17.	1	Saavedra
Resisten	cia a la Auenci	1.25 x	10-3	21.	4	Garcia
$\sigma_i = 12$	Mpa	1.5 x 1	0-3	25.	7	Zabaleta,
PVC		0.5 x 1	0-3	10.	9	,
		0.75 x	10-3	16.	1	2017
Resisten	cia a la fluenci	1.0 x 1	0^{-3}	21.	4	
$\sigma_i = 15$		1.25 x	10-3	26.	8	
01-13	mpu	1.5 x 1	0-3	32.	1	

Para el diseño del gasómetro utilizaremos el simposio de la universidad de Piura, sobre diseo de un biodigestor tubular para zonal rurales de la región Piura, el cual mediante la figura expuesta anteriormente podemos elegir entre una geomenbrana de HDPE de 0.75 mm el cual soporta presiones de hasta 12.9 kPa, o una geomenbrana de PVC con espesor de 0.75 mm que soporta presiones de hasta 16.1 Kpa

CÁLCULO DE PRESIÓN

Fuerza

 $F = \gamma * H * A$ $\gamma = \rho * g$ $\rho = \rho_S + \rho_{agua}$

Densidad FORSU	$ ho_{\scriptscriptstyle S}$	147.1	Kg/m^3	
Densidad agua	$ ho_{agua}$	1000	Kg/m^3	
Densidad	ρ	1147.1	Kg/m^3	
Gravedad	g	9.81	m/s^2	
Peso específico	γ	11252.9		
Haltura	Н	5.15	m	
Área	Α	75.6	m^2	
Fuerza	F	4382209.6	N	
Volumen	V2	62.78	m^3	Volumen seg. Esférico
		8.315	J/mol*K	
Constanto do gasos ideal	R	0.082	L*atm/mol*K	Francis W. Sears, 2004
Constante de gases ideal		8.314	Kpa*L/mol*K	
		848.000	kgf*m/Kmol*°K	Martina P. 2005
Constante de biogás	R_b	31.172	kgf*m/kg*°K	IVIAI LIIIA P. 2005
Temperatura	T	308.15	K	

Para V2

a nivel del mar

Presión en el reactor

Presión ejercida por el sustrato

 $P_s = \rho_{rel} * g * H$

P_{s}	57962.86	Pa
P_{s}	57962.86	Pa

Presión ejercida por un gás ideal

 $P_g*V_2=n*{\bf R}*{\bf T}$ Sumatoria de presiones

 $P_t = P_s + P_g$

D	98771.34	Pa
r_t	98.77	Кра
P _a	101.33	Kna

40808.48

Presión atmosférica
Presión ejercida por el biogás

Equivalencia

 $P_b * V_2 = n * R * T$

R	8.314	0.0098	Kpa*L/mol*K
r,	848.00		

Pa

P_b 1500.10 Pa https://www.distrito.pe/distrito-calca.html

Provincia de Calca

Datos:

Superficie 33600 hectareas

336 km2

Altitud 2955 msnm

 coordenadas
 latitud
 -13.3167
 13°19'0" Sur

 longitud
 -71.9539
 71°57'14" Oeste

Uso horario UTC-5:00 (America/Lima)

Presión atm. Calca https://www.herramientasingenieria.com/onlinecalc/spa/altitud/altitud.html

Utilizando una calculador de altitud presión, fuente: herramientas ingenieria. Com

 $P(mbar) = 1013.25 * (1 - 0.0000225577 * H)^{5.2559}$

 P
 705.11
 mbar

 P
 70.51
 Kpa

Sumatoria de presiones

 $P_t = P_s + P_b$

Presión atm. Calca

D.	59462.95	Pa
1 t	59.46	Кра
P_a	70.51	Кра

CÁLCULO DE ESFUERZOS

Diseño y calculo de tanques de almacenamiento

Tabla 1.1		A.P.I. 650	
	Básico	Apéndice A	Apéndice F
Presión Interna Máxima	Atm.	Atm.	0.17 Kg/cm2
Temperatura Mínima	NS	(-)28.8°C	NS
Temperatura Máxima	93.3°C	93.3°C	93.3°C
Espesor Máximo del Cuerpo	44.4 cm.	12.7 cm.	44.4 mm.
Espesor Mínimo del Cuerpo			
D < 15.2 m.	4.76 mm.		
15.2 m. < D > 36.5 m.	6.35 mm.		
36.5 m. < D > 60.9 m.	7.93 mm.		
D > 60.9 m.	9.52 mm.		
Espesor Mínmo del Techo	4.76 mm.		
Espesor Máximo del Techo	6.35 mm. + CA		CA
Ángulo Mínimo de Coronamiento	1		
D < 10.6 m.	50.8 mm. x 50.8 mm. x 4.76 mm.		
10.6 m. < D > 18.2 m.	50.8 mm. x 50.8 mm. x 6.35 mm.		
D > 18.2 m.	76.2 mm.x 76.2 mm. x 9.52 mm.		

Estandar A.S.T.M (American Society for testing and materials)

Material seleccionado

El acero selecionado corresponde a: A-131 acero estructural de grado A (acero aleado), el cual aplicando la norma estandar A.S.T.M. nos da aconocer un espesor de pared máximo de 12.7 mm (1/2 pulg).

Según "https://www.aceromafe.com/aceros-aleados-propiedades/" (Aceromafe) los aceros aleados estan compuestos de boro, selenio, manganeso, silicio, plomo, cromo, molibdemo, vanadio y niquel; entre sus propiedades se encuentra una alta resistencia al desgaste y la corroción, propiedades necesarias e indispensables para el diseño de nuestros reactores.

Para un espesor máximo de cuerpo

$$Pi = \frac{t * S_{Cuerpo} * E}{r + 0.6 * t}$$

$$S_{Cuerpo} = \frac{Pi * (r + 0.6 * t)}{t * E}$$

D	8.4	m		
	1	eficiencia de		
E	0.85			
	0.7	junta		
t	12.7	mm		
	19614293.5	Pa	19.61	Мра
S_{Cuerpo}	23075639.4	Pa	23.08	Мра
	28020419.3	Pa	28.02	Мра

Para un espesor minimo de cuerpo

$$Pi = \frac{t * S_{Cuerpo} * E}{r + 0.6 * t}$$

$$S_{Cuerpo} = \frac{Pi * (r + 0.6 * t)}{t * E}$$

U	8.4	m				
	1	eficiencia de				
E	0.85					
	0.7	juiita				
t	4.76	mm				
	52371929	Pa	52.37	Мра		
Cuerpo	61614034.1	Pa	61.61	Мра		
	74817041.4	Pa	74.82	Мра		
	t	1 0.85 0.7 t 4.76 52371929 61614034.1	1 eficiencia de junta 0.85 junta 0.7 t 4.76 mm 52371929 Pa 61614034.1 Pa	1 eficiencia de junta 0.85 junta 0.7 t 4.76 mm 52371929 Pa 52.37 Cuerpo 61614034.1 Pa 61.61		

TABLE 6 Tensile Requirements Ordinary Strength and Higher-Strength Hull Structural Steel

Grade	Tensile Strength, ksi [MPa]	Yield Point, min, ksi [MPa]	Elongation, min, %, AB in 8 in. [200 mm]	Elongation, min, %, B.C. in 2 in. [50 mm]
Ordinary strength:				
A, B, D, E, CS	58 to 75 [400 to 520] ^D	34 [235]	21	24
Rivet steel and steel for cold	55 to 65 [380 to 450]	30 [205]	23	26
flanging				
Higher strength:		10.5		
AH32, DH32, EH32, FH32	64 to 85 [440 to 590]	46 [315]	19	22
AH36, DH36, EH36, FH36	71 to 90 [490 to 620]	51 [355]	19	22
AH40, DH40, EH40, FH40	74 to 94 [510 to 650]	57 [390]	19	22

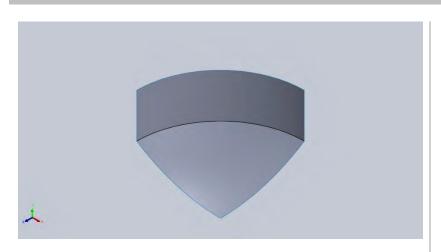
Planchas de Acero ASTM A36

PLANCHAS DE ACERO A36

Planchas de acero, también conocido como laminado en caliente (LAC) de acero en calidad A36. La plancha es una placa de acero estructural utilizado para la construcción en general y aplicaciones industriales.

Especificaciones: ASTM A36, AISI A36

Fácil de soldar, cortar, dar forma y maquinar.


Se mide en espesor x ancho x largo

des	Límite de Fluencia (kg/mm2)	24 min.
piedac	Resistencia a la Tracción (kg/mm2)	41 min
Pro	Alargamiento (%) en 50 mm	18 min.

24	kg/mm2	equivalente	235.36	Mpa

$$Pi = \frac{t * S_{Cuerpo} * E}{r + 0.6 * t}$$

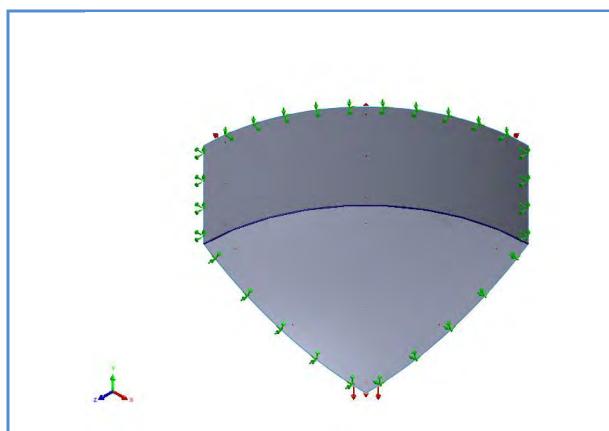
Para t=12.7 y E=0.7			
Pi 499767.37 pa			
Pi	499.77	Кра	
Par	Para t=4.76 y E=0.7		
Pi	187101.48	ра	
Pi	187.10	Кра	

Descripción

biodigestor, en su forma más simple es un contenedor cerrado, hermético e impermeable (Llamado reactor). Dentro del cual se deposita materia orgánica como desechos vegetales o frutales; mediante la fermentación anaerobia de los microorganismos, es degradada obteniendo como producto gas metano (Biogás) con trazas de otros gases.

Simulación de Pieza1

Fecha: domingo, 24 de setiembre de 2023 Diseñador: Bach. Ing. Jorge Humberto


Jordan Diaz

Nombre de estudio: tanque1 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción 1
Información de modelo
Propiedades de estudio
Unidades
Propiedades de material 3
Cargas y sujeciones 4
Definiciones de conector 5
Información de malla 6
Fuerzas resultantes
Resultados del estudio
Conclusión 11

Información de modelo

Nombre del modelo: Pieza1 Configuración actual: Predeterminado

Vaciados			
Nombre de documento y referencia	Formulación	Propiedades volumétricas	Ruta al documento/Fecha de modificación
Shell-1			
	Delgado	Espesor:12.7 mm Peso:28926.4 N Volumen:0.376009 m^3 Masa:2,951.67 kg Densidad:7,850kg/m^3	

Propiedades de estudio

Nombre de estudio	tanque1
Tipo de análisis	Análisis estático
Temperatura a tensión cero	298 Kelvin

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Presión/Tensión	Мра

Propiedades de material

Referencia de modelo	Propiedades		Componentes
	Nombre:	ASTM A36 Acero	
	Tipo de modelo:	Isotrópico elástico	
		lineal	
1111111	Criterio de error	Tensión de von	
	predeterminado:	Mises máx.	
3	Límite elástico:	2.5e+08 N/m^2	
***	Límite de tracción:	4e+08 N/m^2	
· · · · · · · · · · · · · · · · · · ·	Módulo elástico:	2e+11 N/m^2	
	Coeficiente de	0.26	
1.1	Poisson:		
	Densidad:	7,850 kg/m^3	
	Módulo cortante:	7.93e+10 N/m^2	
Datos de curva:N/A	•		

Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Simetría-1		Entidades: 5 arista(s) Tipo: Simetría

Fι	ierza	as r	esul	tant	tes

ш	- doi Edo Tooditalitoo	40:140 :004:tk::100						
	Componentes	X	Υ	Z	Resultante			
	Fuerza de reacción(N)	767,320	831,186	767,327	1.36691e+06			
	Momento de reacción(N.m)	-935.445	84.9851	526.415	1,076.75			
Ш								

Nombre de carga	Cargar imagen	Detalles de carga
Presión-1		Entidades: 2 cara(s) Tipo: Normal a cara seleccionada Valor: -0.06 Unidades: N/mm^2 (MPa)

Definiciones de conector

Conector de soldar por aristas

Referencia de modelo	Detalles del conector		Gráfico de tamaño de soldadura de arista
L \ 1.1 \ L	Tipo: Estándar:	Ranura, de doble lado	Trazado de tamaño de soldadura de arista
	Factor de seguridad:	norteamericano	0.550 mpg 5.00 pg 4.50
	Electrodo:	E100	4.00
± n	Tamaño de soldadura:	0.1875ft	3.50 0.00 1.810.00 3.620.00 5.430.00 7.240.00 Posición a lo largo de la distancia de soldadura de costura
Conector de soldar por aristas-1			Tamaño de soldadura (mm.) Tamaño de garganta de soldadura (mm.) 0, 0

Fuerzas del conector	Fuerzas del conector					
Tipo	Tipo Mín. Máx. Media					
Tamaño de soldadura (m)	0.005566	0.0058936	0.0056802			
Tamaño de garganta de soldadura (m)	0.0039357	0.0041674	0.0040165			
Fuerza conjunta normal (N)	95,838	1.5566E+05	1.3103E+05			
Fuerza del eje de corte-soldadura (N)	-22,649	2,243.2	-9,925			
Fuerza normal de corte-superficie (N)	-1,081.8	-147.04	-550.39			
Momento flector (N.m)	6,782.3	7,204.1	6,905			

Información de malla

Tipo de malla	Malla con elementos SHELL de superficies	
Mallador utilizado:	Malla estándar	
Tamaño de elementos	217.649 mm	
Tolerancia	10.8825 mm	
Calidad de malla	Elementos cuadráticos de alto orden	

Información de malla - Detalles

Número total de nodos	2622	
Número total de elementos	1263	
Tiempo para completar la malla (hh;mm;ss):	00:00:01	
Nombre de computadora:		

Nombre de modelo: Pieza1
Nombre de estudio; tangue1(-Predeterminado-)
Tipo de malla: Malla con elementos SHELL de superficies

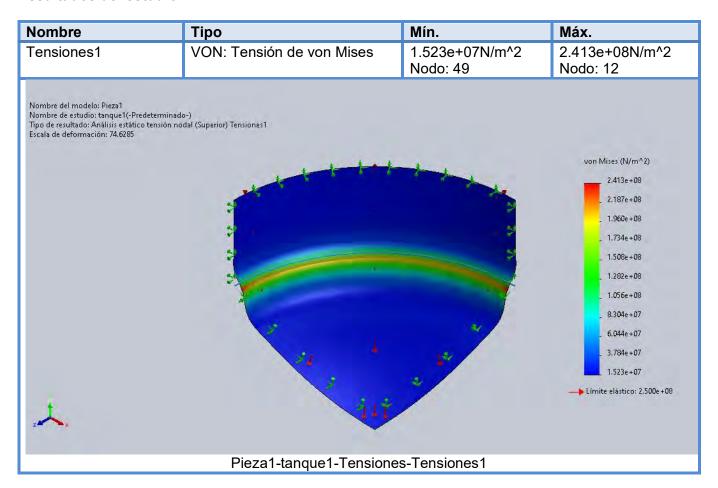
Fuerzas resultantes

Fuerzas de reacción

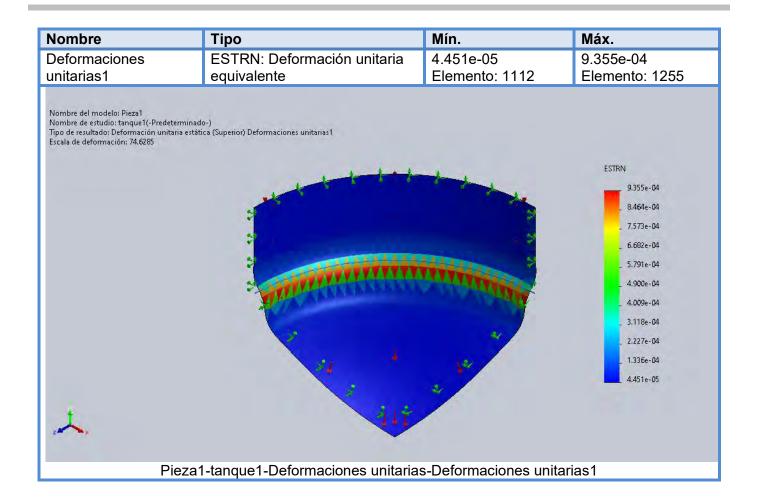
Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	767,320	831,186	767,327	1.36691e+06

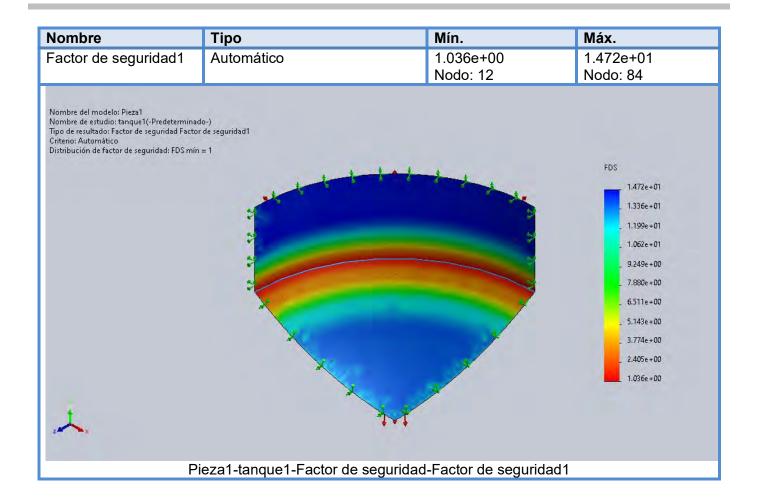
Momentos de reacción

- 11	Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
	Todo el modelo	N.m	-935.445	84.9851	526.415	1,076.75

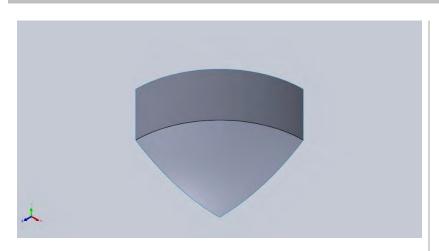

Fuerzas de cuerpo libre

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	0	-0.0468352	0.0107422	0.0480513


Momentos de cuerpo libre


	Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
	Todo el modelo	N.m	-937.222	84.2535	526.816	1,078.43

Resultados del estudio



Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos resultantes	4.428e-02mm Nodo: 1796	5.640e+00mm Nodo: 1486
Nombre del modelo: Pieza1 Nombre de estudio: tanque1(-Predeterminac Tipo de resultado: Desplazamiento estático D Escala de deformación: 74.6285	io-) esplazamientos 1		URES (mm) 5.640e+00 5.081e+00 4.521e+00 3.961e+00 2.842e+00 2.842e+00 1.723e+00 1.163e+00 6.039e-01 4.428e-02

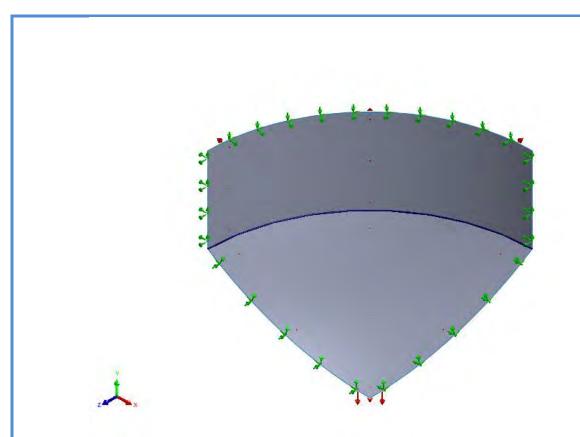
Conclusión

Descripción

Biodigestor, en su forma más simple es un contenedor cerrado, hermético e impermeable (Llamado reactor). Dentro del cual se deposita materia orgánica como desechos vegetales o frutales, mediante la fermentación anaerobia la materia orgánica, es degradada obteniendo como producto gas metano (Biogás) con trazas de otros gases.

Simulación de Pieza1

Fecha: domingo, 24 de setiembre de 2023 Diseñador: Bach. Ing. Jorge Humberto


Jordan Diaz

Nombre de estudio: tanque1 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción1
Información de modelo
Propiedades de estudio 3
Unidades
Propiedades de material 3
Cargas y sujeciones 4
Definiciones de conector 5
Información de malla 6
Fuerzas resultantes
Resultados del estudio 8
Conclusión 11

Información de modelo

Nombre del modelo: Pieza1 Configuración actual: Predeterminado

Vaciados					
Nombre de documento y referencia	Formulación	Propiedades volumétricas	Ruta al documento/Fecha de modificación		
Shell-1					
A MARKET	Delgado	Espesor:4.76 mm Peso:10841.7 N Volumen:0.140929 m^3 Masa:1,106.29 kg Densidad:7,850kg/m^3	D:\tesis 2022\TESIS9\solidwork s\Pieza1.SLDPRT Sep 24 20:24:30 2023		

Propiedades de estudio

Nombre de estudio	Tanque2	
Temperatura a tensión cero	298 Kelvin	

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Presión/Tensión	Мра

Propiedades de material

Referencia de modelo	Propiedades		Componentes
		ASTM A36 Acero	
	ripo de modeio:	Isotrópico elástico lineal	
MITTER STATE OF THE STATE OF TH	Criterio de error	Tensión de von	
	predeterminado:		
	Límite elástico:		
7	Límite de tracción:		
	Módulo elástico:	· ·	
	Coeficiente de	0.26	
A. 1.1	Poisson:	7.0501 / 40	
		7,850 kg/m^3	
	Módulo cortante:	7.93e+10 N/m^2	
Datos de curva:N/A			

Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción	
Simetría-1		Entidades: 5 arista(s) Tipo: Simetría	

Fuerzas resultantes

uoi 240 i ooditai itoo				
Componentes	X	Υ	Z	Resultante
Fuerza de reacción(N)	767,325	831,178	767,358	1.36692e+06
Momento de reacción(N.m)	-823.866	-74.3204	911.702	1,231.05

Nombre de carga	Cargar imagen	Detalles de carga
Presión-1		Entidades: 2 cara(s) Tipo: Normal a cara seleccionada Valor: -0.06 Unidades: N/mm^2 (MPa)

Definiciones de conector

Conector de soldar por aristas

Referencia de modelo	Detalles del	conector	Gráfico de tamaño de soldadura de arista	
	Tipo:	Ranura, de doble lado	Trazado de tamaño de soldadura de arista	
******	Estándar:	Estándar norteamericano	9.00	
	Factor de seguridad:		w. 8.00 P. Dengard 7.00	
	Electrodo: Tamaño de	E100 0.1875ft	T email of e	
± m	soldadura: Terminando pieza:	Superficie-	5.00 1.810.00 3.620.00 5.430.00 7.240.00 Posición a lo largo de la distancia de soldadura de costura	
Conector de soldar por aristas-1	Pieza con relación de posición:	Revolución5 Superficie-	Tamaño de soldadura (mm.) Tamaño de garganta de soldadura (mm.) 0, 0	

Fuerzas del conector				
Tipo	Mín.	Máx.	Media	
Tamaño de soldadura (m)	0.007708	0.0088032	0.0080865	
Tamaño de garganta de soldadura (m)	0.0054503	0.0062248	0.005718	
Fuerza conjunta normal (N)	-10,030	2.1271E+05	1.0757E+05	
Fuerza del eje de corte-soldadura (N)	-57,697	15,373	-27,399	
Fuerza normal de corte-superficie (N)	-1,434.7	617.73	-184.75	
Momento flector (N.m)	3,764.8	4,123	3,871	

Información de malla

Tipo de malla	Malla con elementos SHELL de superficies		
Mallador utilizado:	Malla estándar		
Tamaño de elementos	217.649 mm		
Tolerancia	10.8825 mm		
Calidad de malla	Elementos cuadráticos de alto orden		

Información de malla - Detalles

Número total de nodos	2622
Número total de elementos	1263
Tiempo para completar la malla (hh;mm;ss):	00:00:01
Nombre de computadora:	

Nombre del modelo: Pieza1
Nombre de estudio: tanque1(-Predeterminado-)
Tipo de malla: Malla con elementos SHELL de superficies

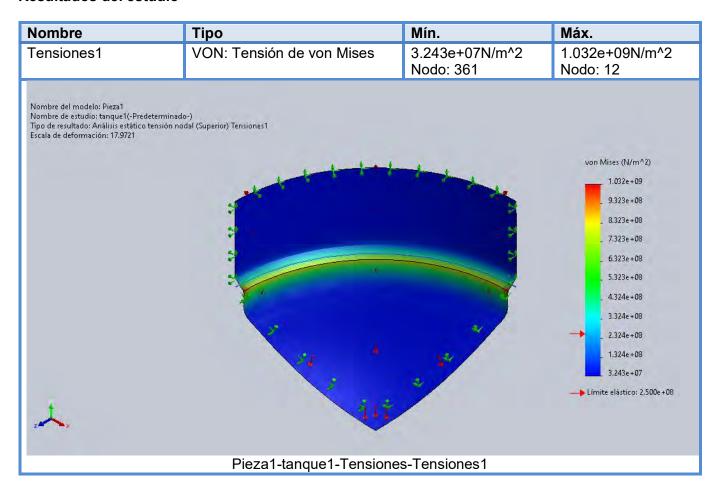
Fuerzas resultantes

Fuerzas de reacción

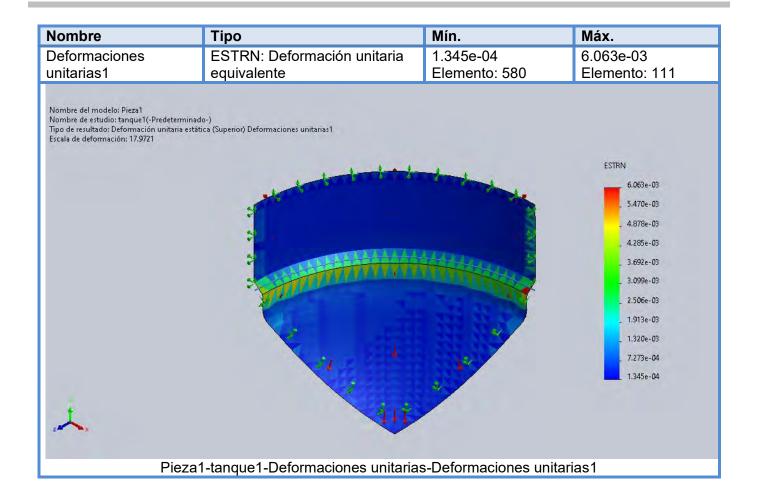
Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	767,325	831,178	767,358	1.36692e+06

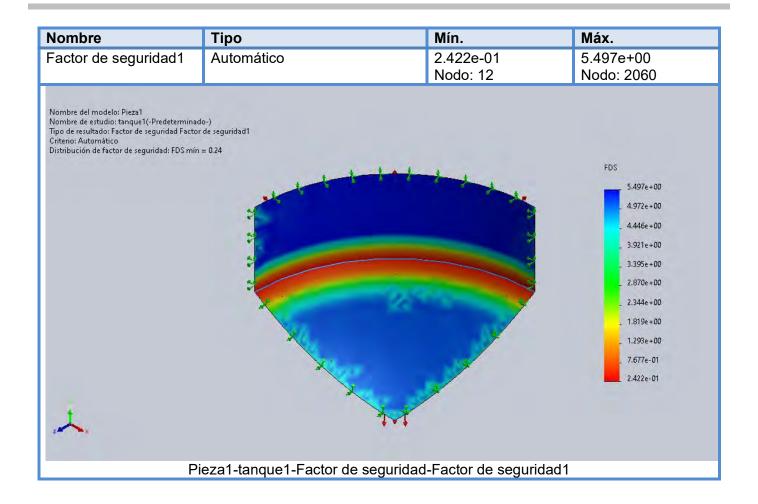
Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	-823.866	-74.3204	911.702	1,231.05

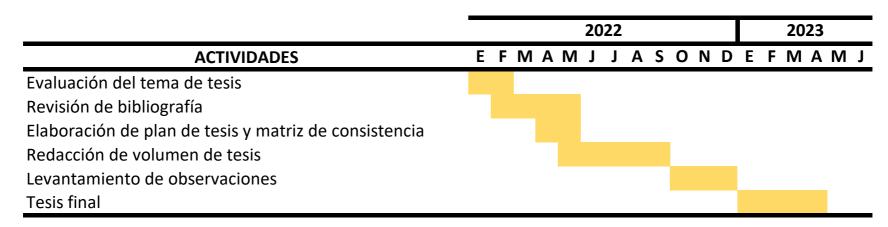

Fuerzas de cuerpo libre

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	0.105469	-0.212791	0.739532	0.776731


Momentos de cuerpo libre


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	-823.986	-75.266	910.875	1,230.57

Resultados del estudio


Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos resultantes	1.430e-01mm Nodo: 1953	2.340e+01mm Nodo: 1480
Nombre del modelo: Pieza1 Nombre de estudio: tanque1(-Predeterminad Tipo de resultado: Desplazamiento estático D Escala de deformación: 17.9721			URES (mm) 2.340e+01 2.108e+01 1.875e+01 1.642e+01 1.410e+01 1.177e+01 9.447e+00 7.121e+00 4.795e+00 2.469e+00 1.430e-01
	Pieza1-tanque1-Desplazamiento	os-Desplazamientos1	

Conclusión

CRONOGRAMA DEL PROYECTO

PRESUPUESTO DEL PROYECTO

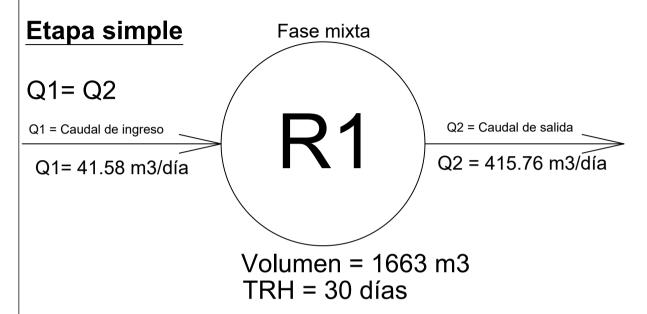
1 UTILES DE ESCRITORIO	CANTIDAD	PRECIO	TOTAL
Papel Bond A4-75 gr.	4	S/ 16.00	S/ 64.00
Archivadores	5	S/ 21.00	S/ 105.00
Tinta para Impresora	5	S/ 79.00	S/ 395.00
		TOTAL	S/ 564.00

2 SERVICIOS DE IMPRENTA	CANTIDAD	PRECIO	TOTAL
Ploteo de planos	30	S/ 5.00	S/ 150.00
Impresión	5	S/ 30.00	S/ 150.00
Anillados	5	S/ 3.00	S/ 15.00
		TOTAL	S/ 315.00

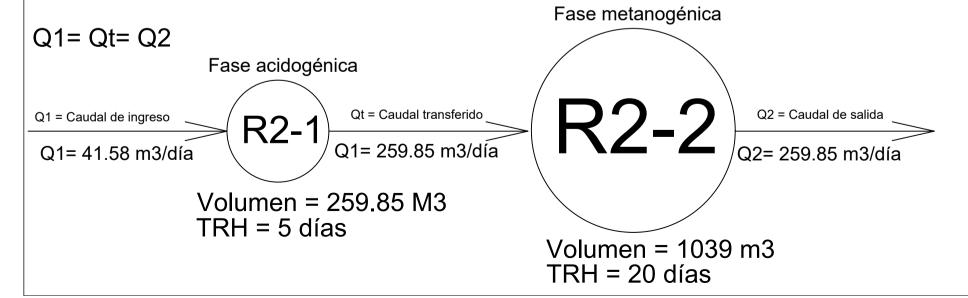
3 SERVICIOS OTROS	CANTIDAD	PRECIO	TOTAL
Servicio de internet	1	S/ 80.00	S/ 80.00
Pasajes	1	S/ 100.00	S/ 100.00
		TOTAL	S/ 180.00

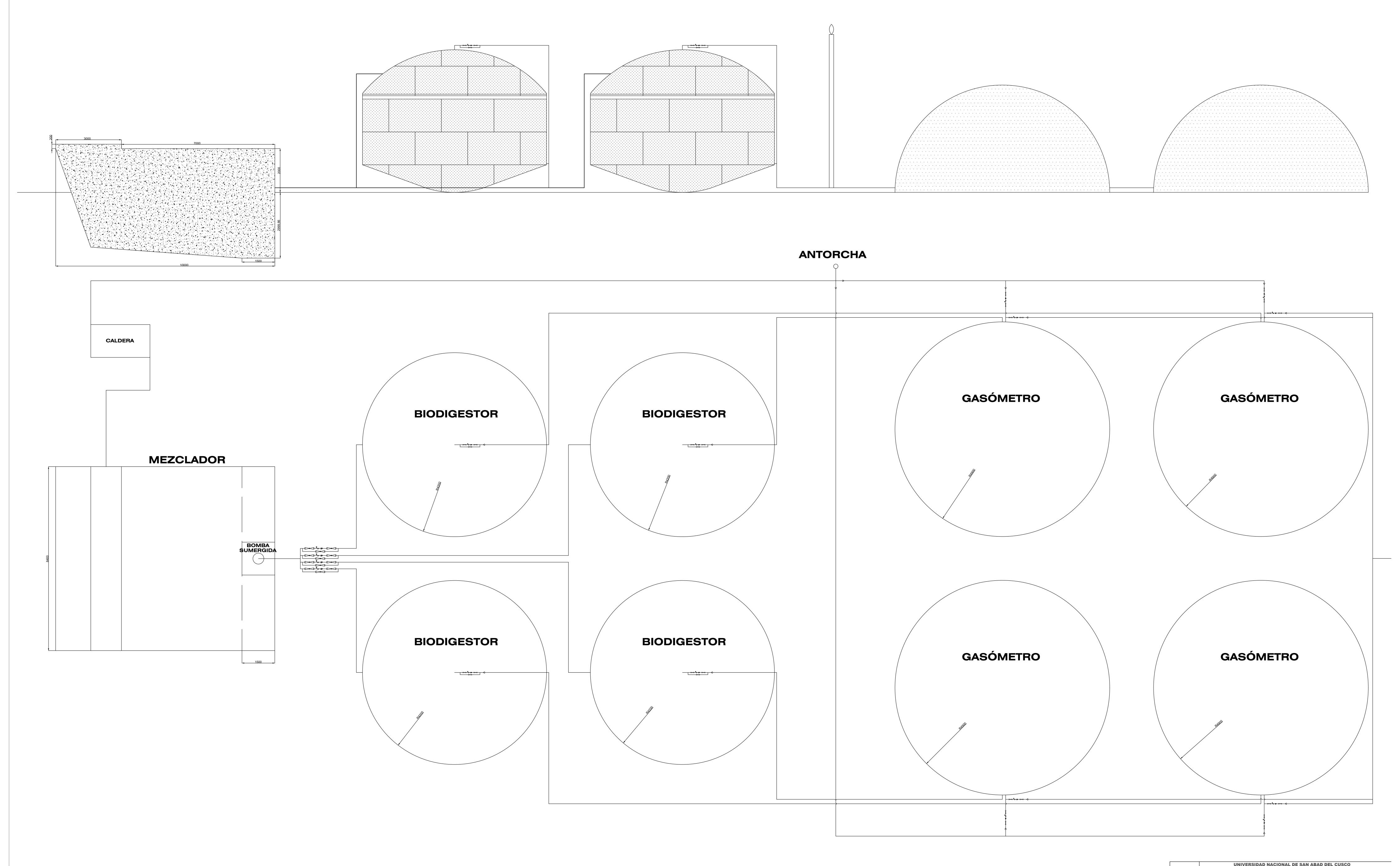
1 UTILES DE ESCRITORIO	S/ 564.00
2 SERVICIOS DE IMPRENTA	S/ 315.00
3 SERVICIOS OTROS	S/ 180.00
MONTO TOTAL	S/ 1,059.00

ANALISIS DE COSTOS

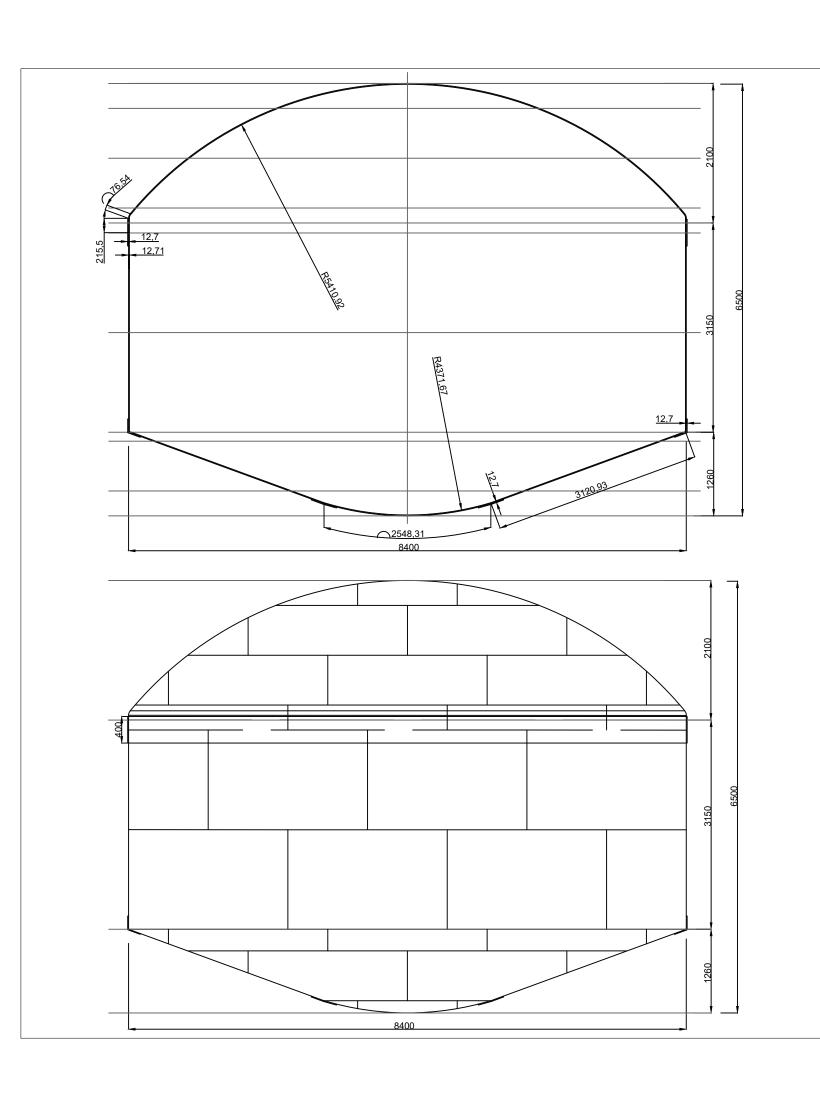

	DÓLAR	SOLES
TIPO DE CAMBIO DÓLAR	1	S/ 3.70

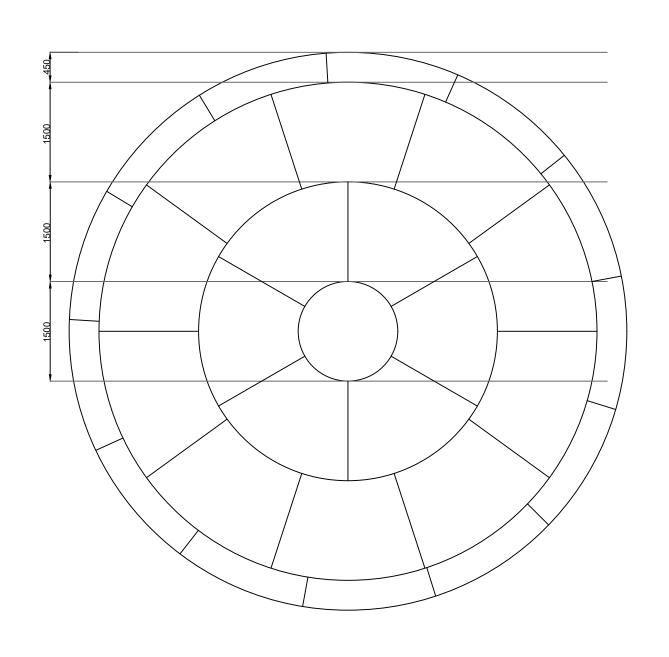
	CANTIDAD	PRECIO	TOTAL
PLACA DE ACERO ASTM A-131	100	S/ 3,700.00	S/ 370,000.00
TUBERÍA DE ACERO GALVANIZADO 6" ASTM A500, ISO 65	10	S/ 540.00	S/ 5,400.00
TUBERÍA DE ACERO GALVANIZADO 2" ASTM A500, ISO 65	25	S/ 180.00	S/ 4,500.00
BOMBAS DE LODOS AP35B/50B	5	S/ 5,040.00	S/ 25,200.00
VÁLVULA REGULADORA DE PRESIÓN	8	S/ 2,500.00	S/ 20,000.00
GEOMENBRANA	16	S/ 2,500.00	S/ 40,000.00
COMPRESOR DE GAS	1	S/ 14,800.00	S/ 14,800.00
		TOTAL	S/ 479,900.00

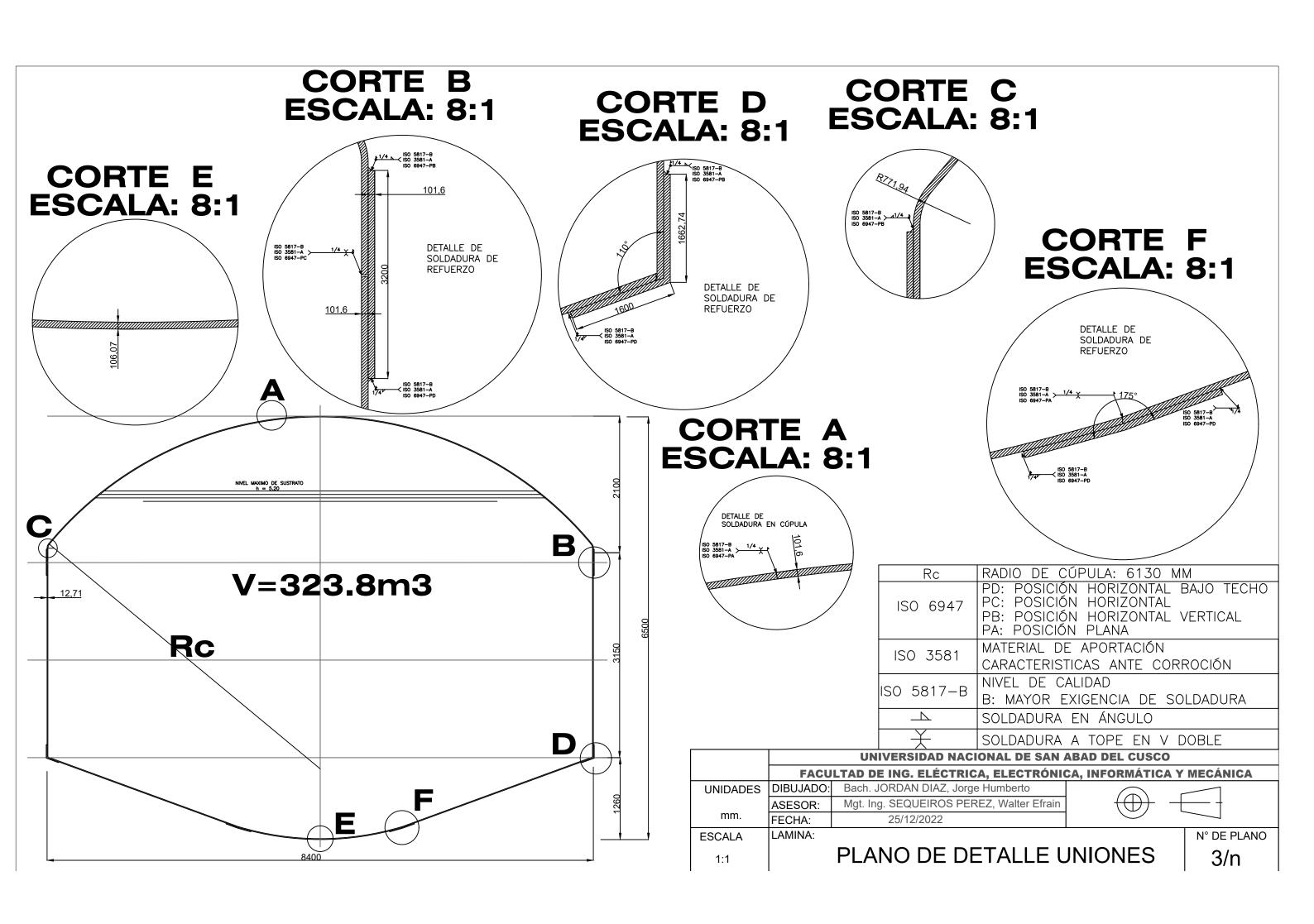

	Cantidad/año	Precio	total
Biogás	8460	S/ 25.00	S/ 211,500.00

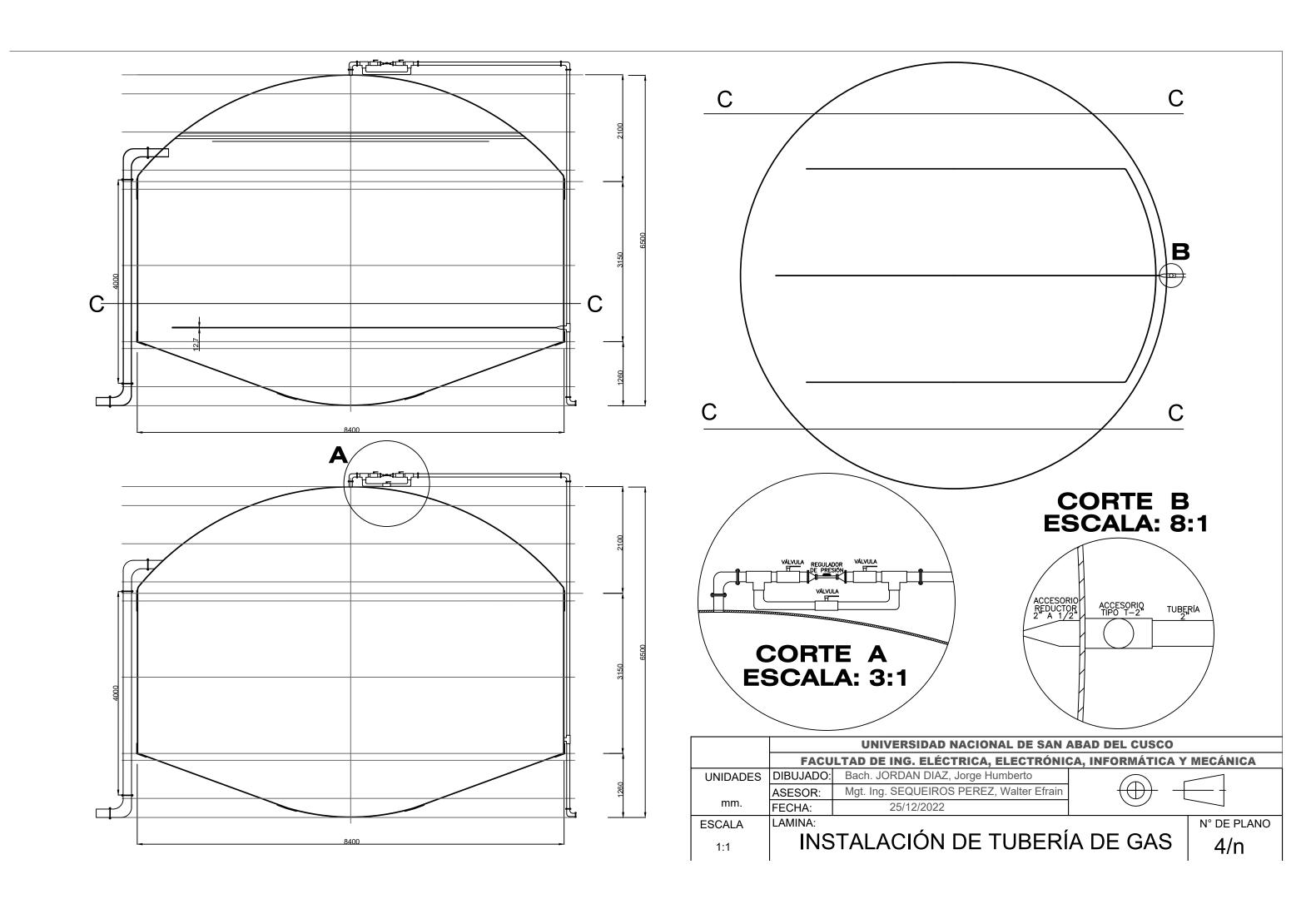

	AÑO	FLUJO DE FONDOS	
	0	-S/ 479,900.00	
	1	S/ 211,500.00	
	2	S/ 211,500.00	
	3	S/ 211,500.00	
TIR (Tasa Interna de Retorno de una inversión) VAN (Valor Actual Neto)	TIR VAN	15% S/ 46,069.20	

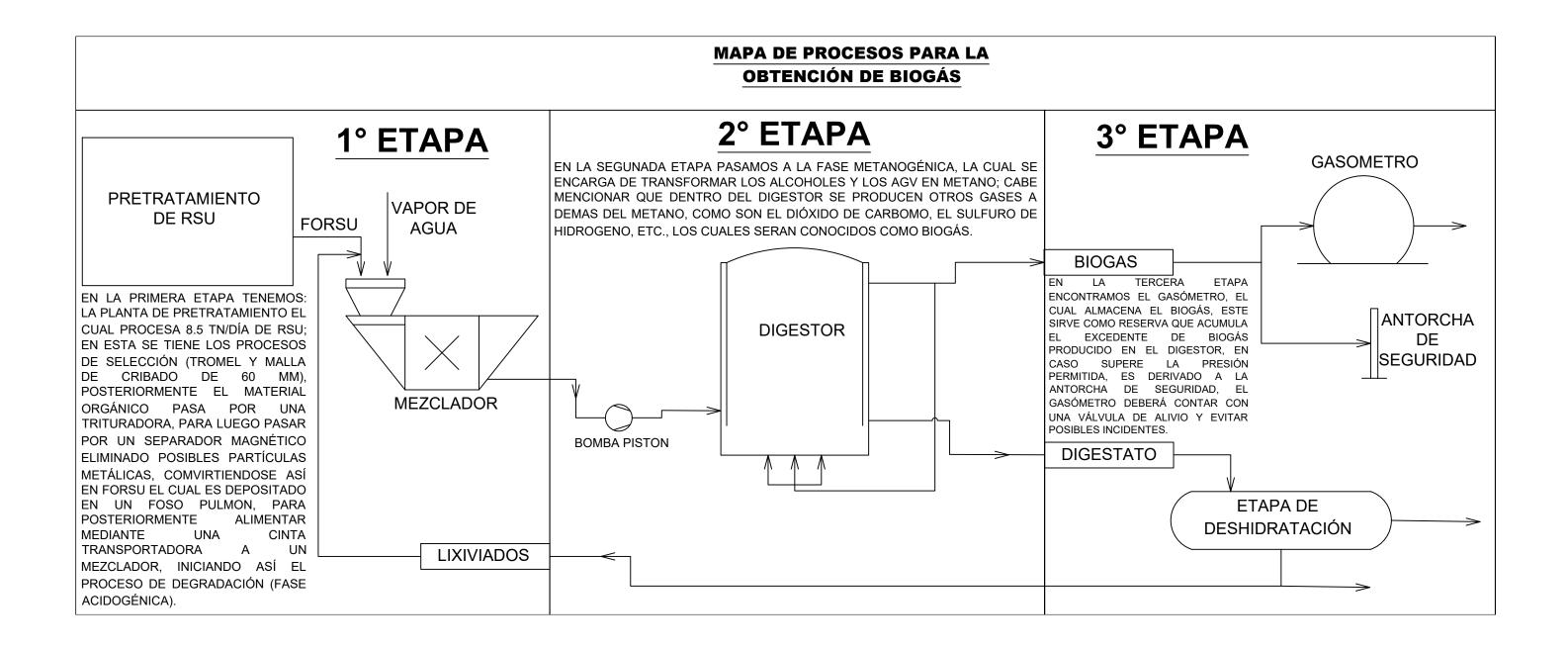
ETAPAS DE DIGESTIÓN ANAEROBIA ENTRADA DE SUSTRATO Y SALIDA DE DIGESTATO

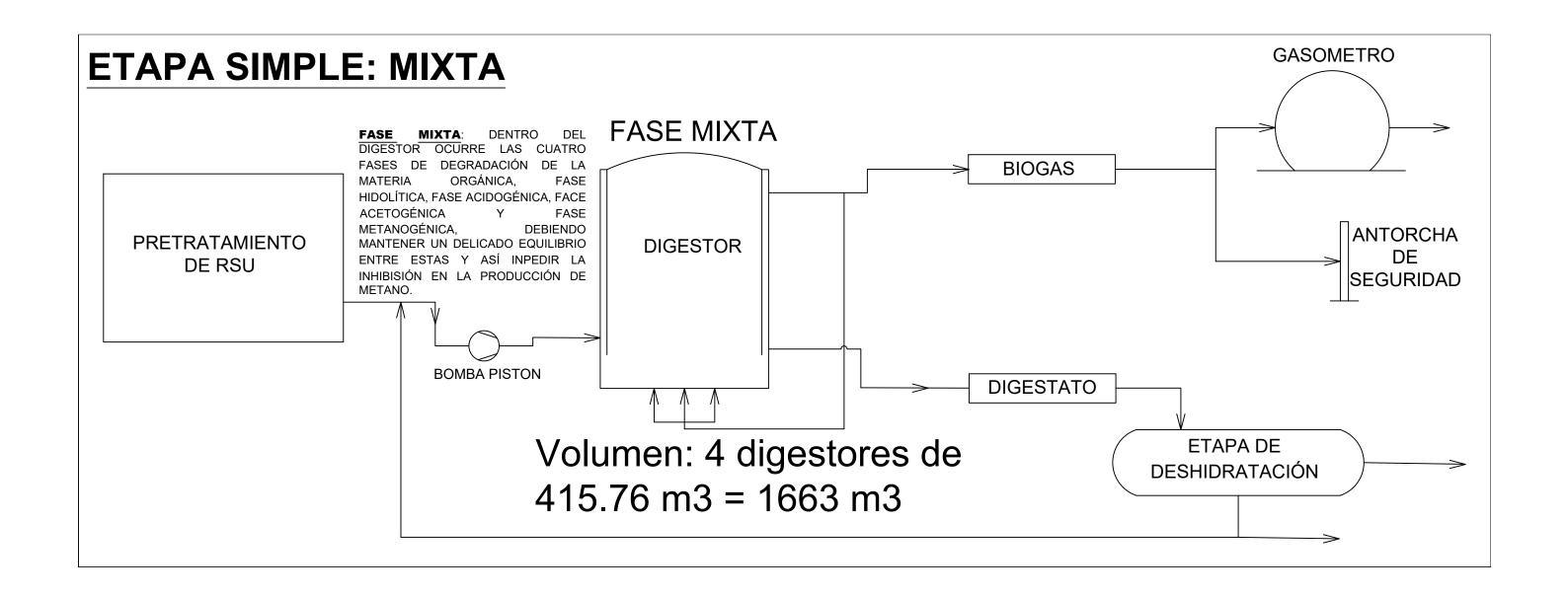



Etapa doble




		UNIVERSIDAD NACIONAL DE SAN ABAD DEL COSCO			
	FACU	LTAD DE ING. ELÉCTRICA, ELECTRÓNIC	CA, INFORMÁTICA Y	MECÁNICA	
UNIDADES	DIBUJADO:	Bach. JORDAN DIAZ, Jorge Humberto			
	ASESOR:	Mgt. Ing. SEQUEIROS PEREZ, Walter Efrain	(\oplus)		
mm.	FECHA:	25/12/2022			
ESCALA	LAMINA:	,		N° DE PLAN	
1:1	INS	TALACIÓN DE TUBERÍ	A DE GAS	1/n	





	UNIVERSIDAD NACIONAL DE SAN ABAD DEL CUSCO			
	FACULTAD DE ING. ELÉCTRICA, ELECTRÓNICA, INFORMÁTICA Y MECÁNICA			
UNIDADES	DIBUJADO:	Bach. JORDAN DIAZ, Jorge Humberto		
	ASESOR:	Mgt. Ing. SEQUEIROS PEREZ, Walter Efrain	(\oplus)	
mm.	FECHA:	25/12/2022		
ESCALA	LAMINA:			N° DE PLANO
1:1	PLANO DE BIODIGESTOR			2/n

ETAPA DOBLE: ACIDOGÉNICA Y METANOGÉNICA FASE METANOGÉNICA: DENTRO **GASOMETRO** DEL DIGESTOR CONTINUA EL PROCESO DE DESCOMPOSICIÓN CON APROVECHAMIENTO ENERGÉTICO, EL PRETRATAMIENTO CUAL CON AYUDA DE LAS BACTERIAS VAPOR DE DE RSU METANOGÉNICA, GENERA **FORSU AGUA** PRODUCCIÓN DE BIOGÁS. **BIOGAS** Volumen = 259.85 M3 ANTORCHA **DIGESTOR** DE SEGURIDAD **MEZCLADOR** FASE ACIDOGÉNICA: DENTRO DEL MEZCLADOR OCURRIRA LAS FASES **BOMBA PISTON** ACIDOGÉNICA, COMPRENDIDA POR DIGESTATO LOS PROCESO DE HIDROLISIS Y ACDOGÉNESIS, LAS CUALES DESCOMPONES LAS MOLÉCULAS DE Volumen: 4 digestores de ETAPA DE CADENAS LARGAS, TRANSFORMANDO LA MATERIA ORGÁNICA EN DESHIDRATACIÓN SUSTRATOS APROBECHABLES. 259.85 m3 = 1039 m3 **LIXIVIADOS**

FLUJOGRAMA DE PRESIÓN Y TEMPERATURA **GASOMETRO VAPOR DE** $T^{\circ} = 35^{\circ}C$ **AGUA** Pint = 59.46 kpa **FORSU** pH = 6.5 - 7.5**BIOGAS** Volumen = 259.85 M3 ANTORCHA **DIGESTOR** DE SEGURIDAD **MEZCLADOR** $T^{\circ} = 55^{\circ}C$ **BOMBA PISTON** Patm = 70.51 kpa **DIGESTATO** pH = 7.0 - 7.2Volumen: 4 digestores de ETAPA DE DESHIDRATACIÓN 259.85 m3 = 1039 m3LIXIVIADOS