UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA, INFORMÁTICA Y MECÁNICA

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

TESIS:

"ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC"

PRESENTADO POR:

BACH. QUISPE SAIRE, Amilcar. BACH. AYMA MARCA, Elmer.

PARA OPTAR AL TITULO PROFESIONAL DE: INGENIERO MECÁNICO

ASESOR: MG. MACEDO SILVA, Arturo.

CUSCO – PERÚ

2023

PRESENTACIÓN

SEÑOR DECANO DE LA FACULTAD DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA, INFORMÁTICA Y MECÁNICA DE LA UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO.

SEÑORES MIEMBROS DEL JURADO.

En cumplimiento con las disposiciones del reglamento de grados y títulos vigente regidas en nuestra casa de estudios, con la finalidad de optar al título de Ingeniero Mecánico, doy a conocer el trabajo de investigación intitulado: "ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC" a fin de optar el Título profesional de Ingeniero Mecánico.

Bach. QUISPE SAIRE, Amilcar. Bach. AYMA MARCA, Elmer.

DEDICATORIA

A Dios por darme la vida y mi hermosa familia. A mi padre Policarpo Quispe L. y a mi madre Casiana Saire S. quienes con tanto esfuerzo y apoyo incondicional me ayudaron a lograr mi sueño de ser un profesional.

A mi hermana Jatziri Quispe S. quien llego a nuestra familia a llenarnos de muchas alegrías y me enseñó a que la vida puede ser dura, pero siempre se tiene que salir adelante ante la adversidad.

A mis abuelos, tíos, tías, primos y primas por ser parte de mi vida.

AMILCAR QUISPE SAIRE

El presente trabajo dedico con mucho cariño a mi padre Lucas Ayma R, (Q.E.P. D) y a mi madre Raymunda Marca A. por su constante apoyo, comprensión y paciencia en el desarrollo de mi formación profesional y por ser la razón más importante para continuar con mi superación personal y profesional.

A mis hermanos, amigos y docentes, quienes compartieron su conocimiento y sus palabras de aliento sin esperar nada a cambio.

ELMER AYMA MARCA

AGRADECIMIENTO.

A mis docentes de la universidad Nacional De San Antonio Abad Del Cusco, mi más profundo agradecimiento por todas las enseñanzas impartidas en las aulas universitarias.

A mi asesor, Ing. Mag. Arturo Macedo Silva, por su constante apoyo incondicional, por compartir sus experiencias, sus conocimientos para el término de esta tesis.

Al Ing. Mag. Edgar Andrade Orellana por compartir sus experiencias, sus conocimientos y todos sus consejos para ser un buen profesional, también agradecer a toda su familia por todo el apoyo brindado durante los últimos años.

AMILCAR QUISPE SAIRE

Expreso mi especial agradecimiento a nuestro Dios, a mis padres, a mis hermanos, tíos, tías amigos, por brindarme su apoyo incondicional.

Especial agradecimiento a los docentes de la escuela profesional de Ingeniería Mecánica, por ser parte de mi formación profesional y en particular a mi asesor Ingeniero Arturo Macedo Silva, por el apoyo y orientación que nos brindó en el desarrollo de la tesis.

Y también un agradecimiento muy especial a la empresa Vibrotechnology en particular al ingeniero Edgar Andrade Orellana, por el apoyo y orientación en mi formación profesional.

ELMER AYMA MARCA

INTRODUCCIÓN.

El desarrollo del presente trabajo de investigación constituye el estudio del comportamiento dinámico del puente ferroviario Sumbay – Arequipa mediante el análisis experimental y el cálculo analítico.

El puente ferroviario Sumbay ubicado en la localidad de Arequipa data del año 1907 y en los últimos años el tráfico de carga fue incrementado debido al transporte de carga minera. El puente ferroviario tiene 114 años en servicio y es necesario conocer el estado en el que se encuentra en la actualidad y el presente trabajo nos permitirá ello.

En el capítulo I, se describe y formula el problema, se plantea los objetivos, la justificación, las hipótesis, las limitaciones, variables, el alcance de la investigación y la metodología utilizada.

En el capítulo II, se describe los fundamentos teóricos necesarias para el análisis experimental con strain gages y acelerómetros; así también para el cálculo analítico por el método de tres momentos, y para el análisis por fatiga.

En el capítulo III, se realiza el análisis dinámico experimental y el análisis estático experimental haciendo uso de los strain gages y acelerómetros para diferentes estados de carga sobre la estructura del puente ferroviario Sumbay.

En el capítulo IV, se realiza el cálculo analítico de esfuerzos y deformaciones por el método de ecuación de tres momentos, para diferentes condiciones de carga, también se realiza una selección de viga de sección continua.

En el capítulo V, se realiza el análisis FEM de la estructura del puente ferroviario para diferentes condiciones de carga mediante el uso de software computacional ANSYS.

En el capítulo VI, se desarrolla el análisis por fatiga en la estructura principal del puente ferroviario Sumbay considerando una carga cíclica.

En el capítulo VII, se procede a la comparación de resultados obtenidos de manera experimental así también de los obtenidos a través de cálculos realizados.

RESUMEN.

En la presente tesis se investigó el comportamiento dinámico del puente ferroviario Sumbay-Arequipa debido a la variación de velocidad y carga minera transportado en los vagones por la máquina locomotora GT42AC.

La metodología que se utilizó para el desarrollo de esta tesis es de tipo de investigación aplicada utilizando métodos cuantitativos, diseño experimental y nivel explicativo.

Se realizaron mediciones experimentales mediante el uso de strain gages para medir deformaciones y el uso de acelerómetros triaxiales con el fin de obtener amplitudes de vibración. A partir de las deformaciones experimentales se calcularon analíticamente los valores de esfuerzos. Así mismo se comprobó los valores de los resultados experimentales mediante el uso de simulación numérica a través del FEM obteniéndose buena correspondencia de los resultados. Los resultados experimentales y numéricos llevan a la conclusión que los esfuerzos debido a la carga que produce la locomotora son mayores a los esfuerzos producidos por los vagones con o sin carga minera, estos esfuerzos están por debajo de los esfuerzos permisibles del material hierro forjado con un factor de seguridad de 3 considerando el esfuerzo de fluencia del hierro forjado (205 MPa) y con factor de seguridad a la fatiga de 3.92 calculado por el criterio de Soderberg. Mediante el análisis planteado se comprobó que no se producirán fallas en el puente ferroviario Sumbay debido a la variación de velocidad y carga minera transportada en los vagones por la locomotora GT42AC.

ABSTRACT

The present research project aims to study the dynamic behaviour of the Sumbay-Arequipa railway bridge due to the variation of speed and mining load transported in the wagons by the locomotive GT42AC.

The methodology used for the development of this thesis is applied research using quantitative methods, experimental design and explanatory level.

Experimental measurements were carried out using strain gages to measure deformations and triaxial accelerometers to obtain vibration amplitudes. From the experimental deformations, the stress values were calculated analytically. The values of the experimental results were also checked by means of numerical simulation using the FEM, obtaining a good correspondence of the results. The experimental and numerical results lead to the conclusion that the stresses due to the load produced by the locomotive are greater than the stresses produced by the wagons with or without mining load, these stresses are below the permissible stresses of the wrought iron material with a safety factor of 3 considering the yield stress of wrought iron (205 MPa) and with a fatigue safety factor of 3.92 calculated by the Soderberg criterion. By means of the proposed analysis, it was verified that no failures will occur in the Sumbay railway bridge due to the variation of speed and mining load transported in the wagons by the GT42AC locomotive.

ÍNDICE GENERAL.

PRESENTAC	٦ÓN	ii
DEDICATOR	81A	iii
AGRADECIM	AIENTO	iv
INTRODUCC	CIÓN	v
RESUMEN		vi
ABSTRACT		vii
ÍNDICE GEN	ERAL	. viii
ÍNDICE DE T	TABLAS	xv
ÍNDICE DE F	IGURAS	xviii
GLOSARIO		xxvi
NOMENCLA	TURA	cxvii
CAPÍTULO I.		1
1 GENE	RALIDADES	1
1.1 Pla	nteamiento y Antecedentes del Problema.	2
1.2 For	rmulación del Problema	8
1.2.1	Problema general.	8
1.2.2	Problemas específicos	8
1.3 Plai	nteamiento de Objetivos	8
1.3.1	Objetivo general.	8
1.3.2	Objetivos específicos	8
1.4 Just	tificación	9
1.5 Alc	cances	10
1.6 Lin	nitaciones	10
1.7 For	rmulación de Hipótesis	11
1.7.1	Hipótesis general.	11
1.7.2	Hipótesis específica.	11
1.8 Sist	tema de Variables	11
1.8.1	Variables independientes.	11
1.8.2	Variables dependientes.	11
1.9 Met	todología	12
1.9.1	Tipo de investigación	12
1.9.2	Instrumentos de recolección de datos	12
1.9.3	Operacionalización de variables.	12

CAPITULO II		13
2 MARCO	TEÓRICO	13
2.1 Antec	edentes	14
2.1.1 A	Intecedentes internacionales	14
2.1.2 A	Intecedentes nacionales.	14
2.2 Bases	Teóricas	16
2.2.1 0	Carga minera	16
2.2.1.1	Tráfico de carga	16
2.2.2 V	elocidad Operativa	20
2.2.2.1	Locomotora GT42AC.	21
2.2.2.2	Dimensiones de Locomotora GT42AC.	22
2.2.2.3	Dimensiones de Vagón	23
2.2.2.4	Capacidad de Carga	23
2.2.3	Comportamiento Dinámico	23
2.2.3.1	Frecuencia	24
2.2.3.2	Periodo	24
2.2.3.3	Rigidez	24
2.2.3.4	Modos de vibración	25
2.3 Marco	Conceptual	26
2.3.1 E	l ferrocarril en el Perú	26
2.3.1.1	Ferrocarril del sur – Perú	27
2.3.1.2	Ferrocarril del centro – Perú	
2.3.1.3	Enrique Meiggs y los ferrocarriles en Perú	29
2.3.1.4	Ernest Malinowski y los ferrocarriles en Perú	29
2.3.2 F	uente ferroviario Sumbay – Arequipa	31
2.3.3 F	ropiedades de los materiales -hierro forjado	34
2.3.4 I	ntroducción a las vibraciones	36
2.3.4.1	Desplazamiento	37
2.3.4.2	Amplitud.	37
2.3.4.3	Clasificación de las vibraciones.	37
2.3.4.4	Decremento logarítmico.	
2.3.4.5	Frecuencia natural	
2.3.4.6	Pruebas de impacto para determinar frecuencias naturales (Bump Test)	40
2.3.5 N	Iecánica de Materiales	41
2.3.5.1	Esfuerzo normal	41
2.3.5.2	Esfuerzo por flexión en vigas.	42

2.3	3.5.3	Esfuerzo cortante	42
2.3	3.5.4	Esfuerzo cortante en vigas	43
2.3.6	De	formación	43
2.3	3.6.1	Deformación unitaria	43
2.3	3.6.1.1	Deformación unitaria normal	44
2.3	3.6.2	Relación de Poisson.	44
2.3	3.6.3	Ley de Hooke - Módulo de elasticidad	45
2.3.7	Vi	gas estáticamente indeterminadas (hiperestáticas)	45
2.3	3.7.1	Método de la ecuación de tres momentos	47
2.2	3.7.2	Diagramas de fuerzas cortantes y de momento flector	52
2.3.8	Fat	tiga	54
2.2	3.8.1	Falla por fatiga	54
2	3.8.2	Cargas por fatiga	55
2.3	3.8.3	Regímenes de fatiga	57
2.3	3.8.4	Diagrama de Wohler	57
2.3	3.8.5	Construcción aproximada del diagrama de Wohler	58
2.3	3.8.6	Diagrama de Haigh	59
CAPITULO	III		60
3 ANÁ	LISIS	EXPERIMENTAL.	60
3.1 A	nálisis	Dinámico Experimental	61
3.1.1	An	álisis experimental con strain gages	61
3.	1.1.1	Mediciones con strain gages uniaxiales	
3.1	112		
	1.1.2	Deformaciones sin carga minera a 15 km/h	64
3.	1.1.2	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h	64 67
3. 3.	1.1.2 1.1.3 1.1.4	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h Deformaciones con carga mineral a 5km/h	64 67 67
3. 3. 3.	1.1.2 1.1.3 1.1.4 1.1.5	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h Deformaciones con carga mineral a 5km/h Cálculo de esfuerzos con carga minera a 5km/h	64 67 67 67
3. 3. 3. 3.1.2	1.1.2 1.1.3 1.1.4 1.1.5 An	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h Deformaciones con carga mineral a 5km/h Cálculo de esfuerzos con carga minera a 5km/h álisis experimental con rosetas de deformación.	64 67 67 69 70
3. 3. 3. 3.1.2 3.1.2	1.1.2 1.1.3 1.1.4 1.1.5 An 1.2.1	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h Deformaciones con carga mineral a 5km/h Cálculo de esfuerzos con carga minera a 5km/h álisis experimental con rosetas de deformación Medición con rosetas de deformación.	64 67 67 69 70 70
3. 3. 3. 3.1.2 3. 3. 3.	1.1.2 1.1.3 1.1.4 1.1.5 An 1.2.1 1.2.2	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h Deformaciones con carga mineral a 5km/h Cálculo de esfuerzos con carga minera a 5km/h álisis experimental con rosetas de deformación. Medición con rosetas de deformación. Deformaciones de la roseta B sin carga minera a 5km/h	64 67 67 69 70 70 71
3. 3. 3. 3.1.2 3.1.2 3. 3. 3.	1.1.2 1.1.3 1.1.4 1.1.5 An 1.2.1 1.2.2 1.2.3	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h Deformaciones con carga mineral a 5km/h Cálculo de esfuerzos con carga minera a 5km/h álisis experimental con rosetas de deformación. Medición con rosetas de deformación. Deformaciones de la roseta B sin carga minera a 5km/h. Deformación de la roseta B con carga minera a 5km/h.	
3. 3. 3. 3.1.2 3. 3. 3. 3. 3.	1.1.2 1.1.3 1.1.4 1.1.5 An 1.2.1 1.2.2 1.2.3 1.2.4	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h Deformaciones con carga mineral a 5km/h. Cálculo de esfuerzos con carga minera a 5km/h. Cálculo de esfuerzos con carga minera a 5km/h. Medición con rosetas de deformación. Medición con rosetas de deformación. Deformaciones de la roseta B sin carga minera a 5km/h. Deformación de la roseta E sin carga minera a 5 km/h.	
3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	1.1.2 1.1.3 1.1.4 1.1.5 An 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h Deformaciones con carga mineral a 5km/h. Cálculo de esfuerzos con carga minera a 5km/h. Cálculo de esfuerzos con carga minera a 5km/h. Medición con rosetas de deformación. Medición con rosetas de deformación. Deformaciones de la roseta B sin carga minera a 5km/h. Deformación de la roseta B con carga minera a 5km/h. Deformación de la roseta E sin carga minera a 5 km/h. Deformación de la roseta E sin carga minera a 5 km/h.	
3.1 3.1 3.1.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	1.1.2 1.1.3 1.1.4 1.1.5 An 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h Deformaciones con carga mineral a 5km/h. Cálculo de esfuerzos con carga minera a 5km/h. Cálculo de esfuerzos con carga minera a 5km/h. Medición con rosetas de deformación. Medición con rosetas de deformación. Deformaciones de la roseta B sin carga minera a 5km/h. Deformación de la roseta B con carga minera a 5km/h. Deformación de la roseta E sin carga minera a 5 km/h. Deformación de la roseta E sin carga minera a 5 km/h. Deformación de la roseta E con carga minera a 5 km/h.	
3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	1.1.2 1.1.3 1.1.4 1.1.5 An 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h Deformaciones con carga mineral a 5km/h. Cálculo de esfuerzos con carga minera a 5km/h. Medición con rosetas de deformación. Medición con rosetas de deformación. Deformaciones de la roseta B sin carga minera a 5km/h. Deformación de la roseta B con carga minera a 5km/h. Deformación de la roseta E sin carga minera a 5 km/h. Deformación de la roseta E sin carga minera a 5 km/h. Deformación de la roseta E sin carga minera a 5 km/h. Deformación de la roseta D sin carga minera a 5 km/h.	
3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 2. 2. A	1.1.2 1.1.3 1.1.4 1.1.5 An 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 .nálisis	Deformaciones sin carga minera a 15 km/h Cálculo de esfuerzos sin carga minera a 15km/h Deformaciones con carga mineral a 5km/h Cálculo de esfuerzos con carga minera a 5km/h tálisis experimental con rosetas de deformación. Medición con rosetas de deformación. Deformaciones de la roseta B sin carga minera a 5km/h. Deformación de la roseta B con carga minera a 5km/h. Deformación de la roseta E sin carga minera a 5 km/h. Deformación de la roseta E sin carga minera a 5 km/h. Deformación de la roseta E con carga minera a 5 km/h. Deformación de la roseta D sin carga minera a 5 km/h.	

3.2	2.2 D	eformación de la roseta E para prueba estática	
3.2	23 D	eformaciones de la roseta D para prueba estática	95
33	Anális	is Vibracional	98
5.5			
3.3	3.1 Fi	recuencias naturales en la viga principal	
3.3	3.2 A	mortiguamiento de estructura	103
3.3	3.3 M	ledición de amplitudes de vibración y frecuencias de excitación	106
CAPITUI	VI 0	·	
4 CÁ	LCUL	O ANALÍTICO	
4.1	Cálcul	o de Momento de Inercia de la Viga Principal del Puente Sumbay	114
4.1	1.1 C	álculo de la rigidez a la flexión (EI)	115
4.2	Cálcul	o de Carga Permanente por Tramo del Puente Ferroviario Sumbay	115
43	Cálcul	o de Esfuerzos y Deformaciones de la Viga Principal del Puente Ferrovia	rio Sumbay
Mediant	e el Mét	todo de Tres Momentos	117 117
i i i i i i i i i i i i i i i i i i i			
4.3	3.1 Pa	ara una condición de carga de una locomotora – CASO Nº 1	
En la	i figura	4.23 se muestra la configuración del puente ferroviario Sumbay, para	el objeto de
cálculo,	•••••		117
	4.3.1.1	Diagrama de fuerzas cortantes, momento flector y deflexión	126
	4.3.1.2	Esfuerzo máximo	130
	4.3.1.3	Esfuerzo cortante máximo	131
4.3	3.2 Pa	ara una condición de carga de una locomotora y media – CASO N°2	132
	4.3.2.1	Diagrama de fuerzas cortantes, momento flector y deflexión	134
	4.3.2.2	Esfuerzo máximo	136
	4.3.2.3	Esfuerzo cortante máximo	136
4.3	3.3 Pa	ara una condición de carga de dos locomotoras – CASO N°3	137
	4.3.3.1	Diagrama de fuerzas cortantes, momento flector y deflexión	139
	4.3.3.2	Esfuerzo máximo	141
	4.3.3.3	Esfuerzo cortante máximo	141
4.3	3.4 Pa	ara una condición de carga de dos locomotoras y dos vagones – CASO N	J°4142
	4.3.4.1	Diagrama de fuerza cortante, momento flector y deflexión	144
	4.3.4.2	Esfuerzo máximo	146
	4.3.4.3	Esfuerzo cortante máximo	147
4.4	Cálcul	o de Esfuerzos y deformaciones con Combinación de Cargas, Mediante e	l Método de
Tres Mo	mentos.	-	147
Δ	41 C	argas permanentes (DC-DW)	148
	4.2 S	argus permanentes (DC-D ττ).	1/0
····		ou ou gus vi vus (DD).	

XI

	113	Car	race de viente (WI WS)	140
	4.4.5	Ca. 3 1	Carga del viento sobre la estructura:	149
	т.т., Д Д З	3.7	Carga del viento sobre la cohrecarga:	150
	ч.ч., Д Д Д	J.Z Ffe	ecto sísmico (EQ)	150
	445	An	álisis de combinación de carga	151
	446	Par	ansis de combinación de cargas combinadas – CASO N $^{\circ}$ 5	152
La	a figura	4.34	muestra de manera general un esquema geométrico del puente ferroviario Si	ımbay.
	114	5 1	Diagramas de fuerza cortante, momento flector y deflevión	154
	4.4.0	5.1	Esfuerzo máximo	156
	4.4.0	5.2	Estuerzo cortante máximo	150
	4.4.0).5 Cu	estueizo containe maximo.	150
4	4.4.7 5 Sel	Cu eccić	auto de Resumen de Resultados de los Calculos Ananticos	157
т.	5 500		n de ona viga i incipal i ara el i dene Sumbay	150
	4.5.1	Cá	lculo de cargas permanentes para la selección de viga (DC)	158
	4.5.2	Cá	lculo de fuerza cortante máxima y Momento flector máximo	160
	4.5.3	An	álisis y cálculo para la selección de viga	162
	4.5.3	3.1	Primera verificación – estructura compacta o no compacta	166
	4.5.3	3.2	Segunda verificación – esfuerzos cortantes.	167
CAPIT -		·		170
5	CALC		COMPLITACIONAL	
	0112.0	ULU		170
5.	1 Ana	álisis	FEM Con Programa Computacional.	170 171
5.	1 Ana 5.1.1	álisis Sot	FEM Con Programa Computacional	17 0 171 171
5.	1 Ana 5.1.1 5.1.1	álisis Sot 1.1	FEM Con Programa Computacional ftware de simulación ANSYS Creación de modelo en ANSYS.	170 171 171 171
5.	1 Ana 5.1.1 5.1.1 5.1.1	álisis Sot I.1 I.2	FEM Con Programa Computacional ftware de simulación ANSYS Creación de modelo en ANSYS Cargas y condiciones de frontera	170 171 171 171 172
5.	1 Ana 5.1.1 5.1.1 5.1.1 5.1.1	álisis Sof 1.1 1.2 1.3	FEM Con Programa Computacional ftware de simulación ANSYS Creación de modelo en ANSYS Cargas y condiciones de frontera Mallado de modelo en ANSYS	170 171 171 171 172 173
5.	1 Ani 5.1.1 5.1.1 5.1.1 5.1.2	álisis Sof 1.1 1.2 1.3 An	 FEM Con Programa Computacional. ftware de simulación ANSYS. Creación de modelo en ANSYS. Cargas y condiciones de frontera. Mallado de modelo en ANSYS. álisis FEM para una condición estática. 	170 171 171 171 172 173 176
5.	1 Ana 5.1.1 5.1.1 5.1.2 5.1.2 5.1.2	álisis Sof 1.1 1.2 1.3 An 2.1	 FEM Con Programa Computacional. FEM Con Programa Computacional. ftware de simulación ANSYS. Creación de modelo en ANSYS. Cargas y condiciones de frontera. Mallado de modelo en ANSYS. álisis FEM para una condición estática. Análisis estático con carga de una locomotora – CASO N°1. 	170 171 171 171 172 173 176 177
5.	1 Ana 5.1.1 5.1.1 5.1.2 5.1.2 5.1.2 5.1.2	álisis Sot 1.1 1.2 1.3 An 2.1 2.2	 FEM Con Programa Computacional. FEM Con Programa Computacional. ftware de simulación ANSYS. Creación de modelo en ANSYS. Cargas y condiciones de frontera. Mallado de modelo en ANSYS. álisis FEM para una condición estática. Análisis estático con carga de una locomotora – CASO N°1. Análisis estático con carga de una locomotora y media - CASO N°2. 	170 171 171 171 172 173 176 177 181
5.	1 Ana 5.1.1 5.1.1 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2	álisis Sol 1.1 1.2 1.3 An 2.1 2.2	 FEM Con Programa Computacional. FEM Con Programa Computacional. ftware de simulación ANSYS. Creación de modelo en ANSYS. Cargas y condiciones de frontera. Mallado de modelo en ANSYS. álisis FEM para una condición estática. Análisis estático con carga de una locomotora – CASO N°1. Análisis estático con carga de una locomotora y media - CASO N°2. Análisis estático con carga de dos locomotoras - CASO N°3. 	170 171 171 171 172 173 176 177 181 182
5.	1 Ana 5.1.1 5.1.1 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2	álisis Sol 1.1 1.2 1.3 An 2.1 2.2 2.3	 FEM Con Programa Computacional. FEM Con Programa Computacional. ftware de simulación ANSYS. Creación de modelo en ANSYS. Cargas y condiciones de frontera. Mallado de modelo en ANSYS. álisis FEM para una condición estática. Análisis estático con carga de una locomotora – CASO N°1. Análisis estático con carga de una locomotora y media - CASO N°2. Análisis estático con carga de dos locomotoras - CASO N°3. Análisis estático con carga de dos locomotoras y dos vagones – CASO N°4 	170 171 171 171 172 173 176 181 182 184
5.	1 Ana 5.1.1 5.1.1 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2	álisis Sof 1.1 1.2 1.3 An 2.1 2.2 2.3 2.4 An	 FEM Con Programa Computacional. FEM Con Programa Computacional. ftware de simulación ANSYS. Creación de modelo en ANSYS. Cargas y condiciones de frontera. Mallado de modelo en ANSYS. álisis FEM para una condición estática. Análisis estático con carga de una locomotora – CASO N°1. Análisis estático con carga de una locomotora y media - CASO N°2. Análisis estático con carga de dos locomotoras - CASO N°3. Análisis estático con carga de dos locomotoras y dos vagones – CASO N°4 álisis FEM para una condición dinámica. 	170 171 171 171 172 173 173 176 181 182 184 187
5.	1 Ana 5.1.1 5.1.1 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2	álisis Sof 1.1 1.2 1.3 An 2.1 2.2 2.3 2.4 An 3.1	 FEM Con Programa Computacional. FEM Con Programa Computacional. ftware de simulación ANSYS. Creación de modelo en ANSYS. Cargas y condiciones de frontera. Mallado de modelo en ANSYS. álisis FEM para una condición estática. Análisis estático con carga de una locomotora – CASO N°1. Análisis estático con carga de dos locomotoras - CASO N°3. Análisis estático con carga de dos locomotoras y dos vagones – CASO N°4 álisis FEM para una condición dinámica. Análisis dinámico con carga de una locomotora – CASO N°1. 	170 171 171 171 171 172 173 173 176 177 181 182 184 187 188
5.	1 Ana 5.1.1 5.1.1 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2	álisis Sol 1.1 1.2 1.3 An 2.1 2.2 2.3 2.4 An 3.1 3.2	 FEM Con Programa Computacional. FEM Con Programa Computacional. ftware de simulación ANSYS. Creación de modelo en ANSYS. Cargas y condiciones de frontera. Mallado de modelo en ANSYS. álisis FEM para una condición estática. Análisis estático con carga de una locomotora – CASO N°1. Análisis estático con carga de dos locomotoras - CASO N°2. Análisis estático con carga de dos locomotoras y dos vagones – CASO N°4 álisis FEM para una condición dinámica. Análisis estático con carga de una locomotora y media - CASO N°4. 	170 171 171 171 172 172 172 173 173 176 177 181 182 184 187 188 181
5.	1 Ana 5.1.1 5.1.1 5.1.2	álisis Sol 1.1 1.2 1.3 An 2.1 2.2 2.3 2.4 An 3.1 3.2 3.3	 FEM Con Programa Computacional. FEM Con Programa Computacional. ftware de simulación ANSYS. Creación de modelo en ANSYS. Cargas y condiciones de frontera. Mallado de modelo en ANSYS. álisis FEM para una condición estática. Análisis estático con carga de una locomotora – CASO N°1. Análisis estático con carga de una locomotora y media - CASO N°2. Análisis estático con carga de dos locomotoras y dos vagones – CASO N°4 álisis FEM para una condición dinámica. Análisis estático con carga de una locomotora y media - CASO N°4. Análisis fEM para una condición dinámica. Análisis dinámico con carga de una locomotora – CASO N°1. Análisis dinámico con carga de una locomotora – CASO N°1. 	170 171 171 171 172 173 173 173 176 177 181 182 184 184 187 188 191 195
5.	1 Ana 5.1.1 5.1.1 5.1.2	álisis Sol 1.1 1.2 1.3 An 2.1 2.2 2.3 2.4 An 3.1 3.2 3.3 3.4	 FEM Con Programa Computacional. FEM Con Programa Computacional. ftware de simulación ANSYS. Creación de modelo en ANSYS. Cargas y condiciones de frontera. Mallado de modelo en ANSYS. álisis FEM para una condición estática. Análisis estático con carga de una locomotora – CASO N°1. Análisis estático con carga de dos locomotoras - CASO N°3. Análisis estático con carga de dos locomotoras y dos vagones – CASO N°4 álisis FEM para una condición dinámica. Análisis fEM para una condición dinámica. Análisis dinámico con carga de una locomotora y media – CASO N°1. Análisis dinámico con carga de una locomotora y media – CASO N°2. Análisis dinámico con carga de una locomotora y media – CASO N°2. Análisis dinámico con carga de una locomotora y media – CASO N°2. Análisis dinámico con carga de una locomotora y media – CASO N°2. 	170 171 171 171 172 173 176 176 181 182 184 187 188 191 195 198

XII

XIII

5.1.5 Modos de vibración mediante el software ANSYS	
CAPITULO VI	
6 ANÁLISIS POR FATIGA	
6.1 Fatiga	211
6.2 Ubicación de Strain Gages en Puente Ferroviario Sumbay - Arequipa	211
6.3 Deformaciones y esfuerzos para trenes con carga minera	213
6.4 Análisis Por Fatiga	216
6.4.1 Factores que modifican el límite de resistencia a la fatiga	
6.4.1.1 Factor de superficie (ka)	
6.4.1.2 Factor de tamaño kb.	
6.4.1.3 Factor de carga kc.	
6.4.1.4 Factor de temperatura kd.	
6.4.1.5 Factor de confiabilidad ke.	
6.4.2 Diagrama de Wohler para hierro foriado.	
6.4.3 Factor de seguridad a fatiga	
6.4.3.1 Factor de seguridad por Gerber	
6.4.3.2 Factor de seguridad por Goodman	
6.4.3.3 Factor de seguridad por Soderberg.	
6.4.4 Acumulación de daño por fatiga	
6.4.4.1 Conteo Rainflow.	
CAPITULO VII	
7 ANÁLISIS COMPARATIVO DE RESULTADOS	
7.1 Análisis Componetius de Develtedes Experimentales Con Strain Co	I:1
7.1 Analisis Comparativo de Resultados Experimentales Con Strain Gaş	ges Lineales.
	257
7.1.1 Análisis comparativo de esfuerzos máximos y mínimos sin carga minera	
7.1.2 Análisis comparativo de esfuerzos máximos y mínimos con carga minera	a239
7.2 Análisis Comparativo de Resultados Experimentales Con Rosetas De	Deformación.
	241
7.2.1 Análisis comparativo de esfuerzos con roseta en punto "B"	242
7.2.2 Análisis comparativo de esfuerzos con roseta en punto "D"	243
7.2.3 Análisis comparativo de esfuerzos con roseta en punto "E"	244
7.3 Análisis Comparativo de Frecuencias Naturales y Frecuencias de Excitación.	244
7.4 Análisis Comparativo de Resultados Obtenidos Por Método de Tres Momen	itos y Método
de Elementos Finitos en Software Computacional	

XIV

7.5	Análisis Comparativo de Resultados Obtenidos en Campo y FEM en Software	ware
Computa	acional – Condición DINAMICA	.247
7.6	Análisis Comparativo de Resultados Obtenidos en Campo y FEM en Softw	ware
Computa	cional – Condición ESTÁTICA.	248
CONCLU	SIONES	250
RECOME	NDACIONES	.254
BIBLIOG	RAFÍA	.255
ANEXOS.		.257
ANEXOS	– A	.258
А.	Modos de Vibración de Puente Ferroviario Sumbay con Software ANSYS	.258
В.	Valores de Velocidad Friccional Vo y Zo	261
C.	Mapa Eólico del Perú.	.261
D.	Valores de Presión Básica del Viento PB.	.262
E.	Distribución de Isoaceleraciones en Perú	.262
F.	Zonas Sísmicas en Perú.	.263
G.	Factor de Zona Z.	.263
H.	Coeficiente de Sitio.	.264
I.	Factor de Modificación de Respuesta "R".	.264
J.	Factor de Uso Según Categoría	.265
K.	Mapa climático del Perú.	.266
L.	Strain Gages Lineales (Galgas Extensiométricas)	.267
M.	Rosetas de Deformación	.268
N.	Chasis de Adquisición de Datos.	.269
О.	Certificado de Calibración	.270
ANEXOS	B	.271
А.	PLANOS	.271

ÍNDICE DE TABLAS.

TABLA 1. 1 TRÁFICO DE PASAJEROS TRAMO SUR Y SUR-ORIENTE (MILES DE PASAJEROS)	3
TABLA 1. 2 TRÁFICO DE CARGA TRAMO SUR Y SUR-ORIENTE (MILES DE TONELADAS)	4
TABLA 1. 3 TABLA DE PUENTES FERROVIARIOS DE LA SUBDIVISIÓN 04	7
TABLA 2. 1 TRÁFICO DE CARGA TRAMO SUR Y SUR-ORIENTE	17
TABLA 2. 2 TRÁFICO DE CARGA LÍNEA FÉRREA DEL SUR	19
TABLA 2. 3 DETALLES TÉCNICOS DE LA LOCOMOTORA GT42AC.	21
TABLA 2. 4 CAPACIDAD DE CARGA DE VAGONES.	23
TABLA 2. 5 COMPOSICIÓN QUÍMICA DE HIERRO FORJADO	35
TABLA 2. 6 PROPIEDAD FÍSICA DEL HIERRO FORJADO	35
TABLA 2. 7 PROPIEDADES MECÁNICAS DEL HIERRO FORJADO	35
TABLA 2. 8 COEFICIENTE DE POISSON	36
TABLA 2. 9 ROTACIÓN EN LOS APOYOS.	52
TABLA 3. 1 TABLA DE DEFORMACIONES DE LOS MICRO STRAIN PARA UNA CONDICIÓN SIN CARGA A 15	
КМ/Н	66
TABLA 3. 2 TABLA DE ESFUERZOS MÁXIMOS Y MÍNIMOS PARA UNA CONDICIÓN SIN CARGA A 15 KM/H	67
TABLA 3. 3 TABLA DE DEFORMACIONES DE LOS MICRO STRAIN PARA UNA CONDICIÓN CON CARGA A 5	
KM/H	69
TABLA 3. 4 TABLA DE ESFUERZOS MÁXIMOS Y MÍNIMOS PARA CONDICIÓN CON CARGA A 5 KM/H	69
TABLA 3. 5 DEFORMACIONES Y ESFUERZOS DE STRAIN GAGES TIPO ROSETA (ESFUERZOS EN MPA)	98
TABLA 3. 6 FRECUENCIAS NATURALES DE LAS VIGAS PRINCIPALES 1	03
TABLA 3. 7 PORCENTAJE DE AMORTIGUAMIENTO EN TRANSITORIOS OBTENIDOS CON PRUEBAS DE BUMP)
TEST EN VIGA PRINCIPAL	05
TABLA 3. 8 FRECUENCIA DE EXCITACIÓN – DE 5KM/H HASTA 20 KM/H. ENTRE BOGIES DE LAS	
LOCOMOTORAS 01 Y 02(DISTANCIA DE 4.07 M)1	10
TABLA 3. 9 FRECUENCIA DE EXCITACIÓN – DE 5KM/H HASTA 20 KM/H. ENTRE EJES DE BOGIES DE CAD	A
LOCOMOTORA (DISTANCIA 1.86 M)1	10
TABLA 3. 10 FRECUENCIA DE EXCITACIÓN – DE 5KM/H HASTA 20 KM/H. ENTRE BOGIE Y BOGIE DE CAD	ЭА
LOCOMOTORA (DISTANCIA 7.82 M)1	11
TABLA 3. 11 FRECUENCIA DE EXCITACIÓN – DE 5KM/H HASTA 20 KM/H. ENTRE BOGIES DE VAGÓN A	
VAGÓN (DISTANCIA 3.19 M)	11
TABLA 3. 12 FRECUENCIA DE EXCITACIÓN – DE 5KM/H HASTA 20 KM/H. ENTRE EJES DE BOGIES DE	
CADA VAGÓN (DISTANCIA 1.71M)1	12
TABLA 3. 13 FRECUENCIA DE EXCITACIÓN – DE 5KM/H HASTA 20 KM/H. ENTRE BOGIE Y BOGIE DE CAD	ЭА
VAGÓN (DISTANCIA 11.41 M)1	12
TABLA 4 1 CARGA PERMANENTE POR TRAMO EN KILOGRAMO	15

XVI

TABLA 4. 2 CARGA PERMANENTE TOTAL POR TRAMO	116
TABLA 4. 3 CARGAS PERMANENTES DC	148
TABLA 4. 4 CARGAS PERMANENTES DW	148
TABLA 4. 5 COMBINACIÓN DE CARGAS	151
TABLA 4. 6 COMBINACIÓN DE CARGAS	152
TABLA 4. 7 RESUMEN DE RESULTADOS DE CÁLCULOS ANALÍTICOS EN LA VIGA PRINCIPAL DEI	PUENTE 157
TABLA 4. 8 CARGAS PERMANENTES PARA LA SELECCIÓN DE VIGA	159
TABLA 4. 9 PESO POR TRAMO PUENTE FERROVIARIO SUMBAY	159
TABLA 4. 10 TABLA DE PROPIEDADES MECÁNICAS DEL MATERIAL ASTM A-572 GR50	164
TABLA 4. 11 TABLA DE PROPIEDADES DE PERFILES LAMINADOS DE ACERO	165
TABLA 4. 12 VALORES LÍMITES DE LA RELACIÓN ANCHO/ESPESOR PARA ELEMENTOS A COMP	RESIÓN EN
MIEMBROS A FLEXIÓN	166
TABLA 4. 13 VERIFICACIÓN DE SECCIÓN COMPACTA EN EL PATÍN DEL PERFIL	167
TABLA 4. 14 VERIFICACIÓN DE SECCIÓN COMPACTA EN EL ALMA DEL PERFIL	167
TABLA 4. 15 VERIFICACIÓN DE PERFILES SELECCIONADOS	168
TABLA 5. 1 FUERZA CORTANTE, MOMENTO FLECTOR Y DESPLAZAMIENTO CASO N°1	190
TABLA 5. 2 FUERZA CORTANTE, MOMENTO FLECTOR Y DESPLAZAMIENTO CASO N°2	193
TABLA 5. 3 FUERZA CORTANTE, MOMENTO FLECTOR Y DESPLAZAMIENTO CASO N°3	196
TABLA 5. 4 FUERZA CORTANTE, MOMENTO FLECTOR Y DESPLAZAMIENTO CASO N°4	199
TABLA 5. 5 ESFUERZO ARRIOSTRES DE ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY	203
TABLA 5. 6 PORCENTAJE DE MASA EFECTIVA PARA LOS MODOS DE VIBRACIÓN EN EJE X, Y, Z	204
TABLA 6. 1 DEFORMACIONES PRODUCIDAS POR 02 LOCOMOTORAS Y 18 VAGONES CON CARGA	A MINERAL.
	214
TABLA 6. 2 ESFUERZOS MÁXIMOS Y MÍNIMOS DE COMPRESIÓN Y TRACCIÓN	215
TABLA 6. 3 RELACIÓN ENTRE LÍMITE DE FATIGA Y LA RESISTENCIA A LA TRACCIÓN DE DIVER	SOS
MATERIALES	219
TABLA 6. 4 FACTOR DE CARGA KC	223
TABLA 6. 5 FACTOR DE TEMPERATURA KD	223
TABLA 6. 6 FACTOR DE CONFIABILIDAD KE	224
TABLA 6. 7 NUMERO DE CICLOS PARA GENERADOS EN UN AÑO Y NÚMERO DE CICLOS HASTA H	EL
AGOTAMIENTO	235
TABLA 7. 1 PORCENTAJE DE VARIACIÓN DE ESFUERZOS ENTRE 2 PUNTOS – SIN CARGA	238
TABLA 7. 2 PORCENTAJE DE VARIACIÓN DE ESFUERZOS ENTRE 2 PUNTOS – CON CARGA	240
TABLA 7. 3 RESUMEN DE CÁLCULOS ANALÍTICOS EN LA VIGA PRINCIPAL DEL PUENTE SUMBA	Y246
TABLA 7. 4 RESUMEN DE ANÁLISIS FEM EN LA VIGA PRINCIPAL DEL PUENTE SUMBAY	246
TABLA 7. 5 CUADRO COMPARATIVO DE RESULTADOS ENTRE CÁLCULO ANALÍTICO Y ANÁLISIS	S FEM
COMPUTACIONAL	

TABLA 7. 6 CUADRO COMPARATIVO DE RESULTADOS ENTRE CÁLCULO ANALÍTICO Y ANÁLISIS FEM	
COMPUTACIONAL	.247
TABLA 7. 7 CUADRO COMPARATIVO ENTRE VALORES DE STRAIN GAGES LINEALES Y ANÁLISIS FEM	
COMPUTACIONAL	.248
TABLA 7. 8 CUADRO COMPARATIVO ENTRE VALORES DE ROSETA DE DEFORMACIÓN Y ANÁLISIS FEM	
COMPUTACIONAL	.248
VALORES VO Y ZO	.261
PRESIONES BÁSICAS PB CORRESPONDIENTES A VB=160 KM/H	.262
FACTOR DE ZONA "Z"	.263
COEFICIENTE DE SITIO	.264
Factores de Modificación de respuesta R	.264
FACTOR DE USO SEGÚN CATEGORÍA	.265

ÍNDICE DE FIGURAS.

FIGURA 1. 1 TRÁFICO ANUAL DE PASAJEROS ENTRE EL AÑO 2000 HASTA EL 2019	3
FIGURA 1. 2 TRÁFICO ANUAL DE CARGA ENTRE EL AÑO 2000 HASTA EL AÑO 2019	5
FIGURA 1. 3 TIPO DE CARGA TRANSPORTADA EN FERROCARRIL DEL SUR-2019	5
FIGURA 1. 4 CANTIDAD DE CARGA POR PRINCIPALES CLIENTES 2019	6
FIGURA 1. 5 ESQUEMA DE OPERACIONALIZACIÓN DE VARIABLES	12
FIGURA 2. 1 TRÁFICO DE CARGA TRANSPORTADA POR LA VÍA FÉRREA DEL SUR	18
FIGURA 2. 2 CARGA MOVILIZADA EN EL TRAMO SUR, SEGÚN TIPO DE PRODUCTO AÑO 2020	19
FIGURA 2. 3 CARGA MOVILIZADA EN EL TRAMO SUR POR USUARIO AÑO 2020	20
FIGURA 2. 4 VELOCIDAD OPERATIVA	21
FIGURA 2. 5 LOCOMOTORA GT42AC - PUENTE FERROVIARIO SUMBAY	22
FIGURA 2. 6 DIMENSIONES DE LOCOMOTORA GT42AC.	22
FIGURA 2. 7 DIMENSIONES DE VAGÓN Y CONTENEDORES DE TRANSPORTE DE MINERAL	23
FIGURA 2. 8 MODOS DE VIBRACIÓN	25
Figura 2. 9 Mapa de vías férreas del Perú	26
FIGURA 2. 10 FERROCARRIL DEL SUR	27
FIGURA 2. 11 FERROCARRIL DEL CENTRO	28
FIGURA 2. 12 ENRIQUE MEIGGS	29
FIGURA 2. 13 ERNEST MALINOWSKI	30
FIGURA 2. 14 FERROCARRIL CENTRAL ANDINO DISEÑADO POR ERNEST MALINOWSKI	30
FIGURA 2. 15 UBICACIÓN DEL PUENTE FERROVIARIO SUMBAY	31
FIGURA 2. 16 PLACA AMERICAN BRIDGE COMPANY, PUENTE INFIERNILLO EN FERROCARRIL DEL	
Centro.	32
FIGURA 2. 17 PLACA AMERICAN BRIDGE COMPANY, PUENTE SUMBAY EN FERROCARRIL DEL SUR	32
FIGURA 2. 18 PUENTE FERROVIARIO SUMBAY- AREQUIPA	33
FIGURA 2. 19 PUENTE FERROVIARIO INFIERNILLO	34
FIGURA 2. 20 PUENTE FERROVIARIO DANIEL ALCIDES CARRIÓN	34
FIGURA 2. 21 SISTEMA MASA - RESORTE Y DIAGRAMA DE CUERPO LIBRE	37
FIGURA 2. 22 SISTEMA MASA - RESORTE	38
FIGURA 2. 23 VIBRACIÓN FORZADA CON AMORTIGUAMIENTO	38
FIGURA 2. 24 DECREMENTO LOGARÍTMICO	39
FIGURA 2. 25 ELEMENTOS DE UN SISTEMA DE UN GRADO DE LIBERTAD	40
FIGURA 2. 26 GRAFICAS DE PRUEBAS DE IMPACTO	41
FIGURA 2. 27 DEFORMACIÓN UNITARIA NORMAL	44
FIGURA 2. 28 DIAGRAMA ESFUERZO-DEFORMACIÓN	45
FIGURA 2. 29 VIGAS CONTINUAS HIPERESTÁTICAS	47
FIGURA 2. 30 VIGA CARGADA	48

XIX

FIGURA 2. 31 VIGA SECCIONADA
FIGURA 2. 32 DIAGRAMA DE MOMENTOS FLECTORES DE LA VIGA CARGADA
FIGURA 2. 33 CURVA ELÁSTICA DE LA VIGA CARGADA
FIGURA 2. 34 REACCIONES DE LA VIGA CONJUGADA
FIGURA 2. 35 VIGA CON CARGA PUNTUAL P
FIGURA 2. 36 DIAGRAMA DE CUERPO LIBRE DE UNA VIGA CON CARGA PUNTUAL P
FIGURA 2. 37 DIAGRAMA DE FUERZAS CORTANTES DE UNA VIGA CON CARGA PUNTUAL P
FIGURA 2. 38 DIAGRAMA DE MOMENTO FLECTOR DE UNA VIGA CON CARGA PUNTUAL P54
FIGURA 2. 39 CARACTERÍSTICAS DE LA ROTURA POR FATIGA
FIGURA 2. 40 ESFUERZOS QUE VARÍAN EN EL TIEMPO CON AMPLITUDES CONSTANTES56
FIGURA 2. 41 CARGA SEMI-ALEATORIA EN DIFERENTES PERIODOS
FIGURA 2. 42 DIAGRAMA S-N PARA ACERO UNS G4130057
FIGURA 2. 43 DIAGRAMA DE WOHLER EN ESCALA LOGARÍTMICA
FIGURA 2. 44 DIAGRAMA APROXIMADO DE WOHLER PARA COMPONENTE ESTÁTICA DIFERENTE DE $0, \Sigma \neq 0.$
FIGURA 2. 45 DIAGRAMA DE HAIGH
FIGURA 3. 1 STRAIN GAGES
FIGURA 3. 2 UBICACIÓN DE STRAIN GAGES LINEALES EN VIGA PRINCIPAL DE PUENTE FERROVIARIO
SUMBAY
FIGURA 3. 3 POSICIÓN DE LOS STRAIN GAGES LINEALES EN LA VIGA SUPERIOR E INFERIOR AGUAS ARRIBA
Y AGUAS ABAJO
FIGURA 3. 4 FOTOGRAFÍAS DE STRAIN GAGES INSTALADOS EN EL PUENTE SUMBAY
FIGURA 3. 5 TRÁNSITO DE 2 LOCOMOTORAS Y 18 VAGONES SIN CARGA MINERA A 15 KM/H64
FIGURA 3. 6 DEFORMACIÓN AL PASO DEL TREN DE CARGA CON DOS LOCOMOTORAS Y 18 VAGONES SIN
CARGA
DEL TRAMO AREQUIPA A JULIACA A 15KM/H
FIGURA 3. 7 TRAMOS DEL PUENTE FERROVIARIO SUMBAY
FIGURA 3. 8 TRÁNSITO DE 2 LOCOMOTORAS Y 18 VAGONES CON CARGA MINERA A 5 KM/H68
FIGURA 3. 9 DEFORMACIONES AL PASO DEL TREN DE CARGA CON DOS LOCOMOTORAS Y 18 VAGONES CON
CARGA DEL TRAMO JULIACA A AREQUIPA A 5 KM/H68
FIGURA 3. 10 ROSETAS DE DEFORMACIÓN CON CANALES A 45°, 60°, 120°
FIGURA 3. 11 PUNTOS DE INSTALACIÓN DE 03 ROSETAS DE 3 CANALES A 45° CADA UNO70
FIGURA 3. 12 TRÁNSITO DE 2 LOCOMOTORAS Y 18 VAGONES SIN CARGA MINERA A 5 KM/H "PUNTO B". 71
FIGURA 3. 13 DEFORMACIÓN DE LA ROSETA B AL PASO DEL TREN SIN CARGA CON DOS LOCOMOTORAS . 72
Y 18 VAGONES DEL TRAMO AREQUIPA A JULIACA 5KM/H72
FIGURA 3. 14 POSICIÓN DE LA ROSETA EN LA POSICIÓN B72
FIGURA 3. 15 DIAGRAMA DE ESTADO DE DEFORMACIÓN74

FIGURA 3. 16 CÍRCULO DE MHOR PARA DEFORMACIÓN PLANA	75
FIGURA 3. 17 DIAGRAMA DE DEFORMACIONES PRINCIPALES.	76
FIGURA 3. 18 DIAGRAMA DE ESTADO DE ESFUERZOS	
FIGURA 3. 19 CÍRCULO DE MOHR PARA ESFUERZO PLANO	79
FIGURA 3. 20 ESFUERZOS PRINCIPALES Y SU DIRECCIÓN PARA LA ROSETA B AL PA	\$0 DE
FIGURA 3. 21 TRÁNSITO DE 2 LOCOMOTORAS Y 18 VAGONES CON CARGA MINERA	A 5 KM/H "PUNTO B".
FIGURA 3. 22 POSICIÓN DE LA ROSETA EN LA POSICIÓN B	
FIGURA 3. 23 DEFORMACIONES DE LA ROSETA B AL PASO DEL TREN DE CON CARO	3A CON DOS
LOCOMOTORAS	
Y 18 VAGONES DEL TRAMO JULIACA A AREQUIPA 5 Km/h	
FIGURA 3. 24 ESFUERZOS PRINCIPALES Y SU DIRECCIÓN PARA LA ROSETA B AL PA	SO DEL TREN83
CON CARGA PARA UNA CONDICIÓN CON CARGA A 5 KM/H	
FIGURA 3. 25 TRÁNSITO DE 2 LOCOMOTORAS Y 18 VAGONES SIN CARGA MINERA	А 5 КМ/Н "РИМТО Е"83
FIGURA 3. 26 DEFORMACIONES DE LA ROSETA E AL PASO DEL TREN CON DOS LOC	COMOTORAS Y84
18 VAGONES SIN CARGA DEL TRAMO AREQUIPA A JULIACA A 5 KM/H	
FIGURA 3. 27 ESFUERZOS PRINCIPALES Y SU DIRECCIÓN PARA LA ROSETA E AL PA	SO DEL TREN SIN
CARGA	
FIGURA 3. 28 TRÁNSITO DE 2 LOCOMOTORAS Y 18 VAGONES CON CARGA MINERA	A 5 KM/H "PUNTO E".
FIGURA 3. 29 DEFORMACIONES DE LA ROSETA E AL PASO DEL TREN DE CARGA CO)N DOS LOCOMOTORAS Y
18 VAGONES CON CARGA DEL TRAMO JULIACA A AREQUIPA A 5 KM/H	
FIGURA 3. 30 ESFUERZOS PRINCIPALES Y SU DIRECCIÓN PARA LA ROSETA E AL PA	SO DE TREN CON
CARGA	
FIGURA 3. 31 TRÁNSITO DE 2 LOCOMOTORAS Y 18 VAGONES SIN CARGA MINERA	а 5 км/н "Punto D". 87
FIGURA 3. 32 DEFORMACIONES DE LA ROSETA D AL PASO DEL TREN DE CARGA CO	ON DOS LOCOMOTORAS
Y_18 VAGONES SIN CARGA DEL TRAMO AREQUIPA A JULIACA 5KM/H	
FIGURA 3. 33 ESFUERZOS PRINCIPALES Y SU DIRECCIÓN PARA LA ROSETA D AL PA	ASO DEL TREN SIN
CARGA	
FIGURA 3. 34 TRÁNSITO DE 2 LOCOMOTORAS Y 18 VAGONES CON CARGA MINERA	А 5 КМ/Н "Punto D".
FIGURA 3. 35 DEFORMACIÓN DE LA ROSETA D AL PASO DEL TREN DE CARGA CON	DOS LOCOMOTORAS Y
18vagones con carga del tramo Juliaca a Arequipa a 5 Km/h	
FIGURA 3. 36 ESFUERZOS PRINCIPALES Y SU DIRECCIÓN PARA LA ROSETA D AL PA	ASO DEL TREN CON
CARGA	
FIGURA 3. 37 CONDICIÓN ESTÁTICA PARA MEDICIÓN CON STRAIN GAGES EN PUNT	ю В92
FIGURA 3. 38 DEFORMACIONES DE LA ROSETA B PARA CONDICIÓN ESTÁTICA.	

XXI

FIGURA 3. 39 ESFUERZOS PRINCIPALES Y SU DIRECCIÓN PARA LA ROSETA B PRUEBA ESTÁTICA	93
FIGURA 3. 40 CONDICIÓN ESTÁTICA PARA MEDICIÓN CON STRAIN GAGES EN PUNTO E	94
FIGURA 3. 41 DEFORMACIONES DE LA ROSETA E PARA CONDICIÓN ESTÁTICA	94
FIGURA 3. 42 ESFUERZOS PRINCIPALES Y SU DIRECCIÓN PARA LA ROSETA E PRUEBA ESTÁTICA	95
FIGURA 3. 43 CONDICIÓN ESTÁTICA PARA MEDICIÓN CON STRAIN GAGES EN PUNTO D	96
FIGURA 3. 44 DEFORMACIONES DE LA ROSETA D PARA CONDICIÓN ESTÁTICA	96
FIGURA 3. 45 ESFUERZOS PRINCIPALES Y SU DIRECCIÓN PARA LA ROSETA D PRUEBA ESTÁTICA	97
FIGURA 3. 46 POSICIÓN DE INSTALACIÓN DE LOS ACELERÓMETROS UNIAXIALES SOBRE LA VIGA SU	PERIOR
AGUAS ARRIBA Y AGUAS ABAJO	99
FIGURA 3. 47 POSICIÓN DE LOS ACELERÓMETROS	99
FIGURA 3. 48 POSICIÓN DE ACELERÓMETROS EN VIGA PRINCIPAL.	99
FIGURA 3. 49 PRUEBAS DE BUMP TEST PUNTO ABS - FRECUENCIAS NATURALES	100
FIGURA 3. 50 PRUEBAS DE BUMP TEST PUNTO AAS - FRECUENCIAS NATURALES	101
FIGURA 3. 51 PRUEBAS DE BUMP TEST PUNTO CAS - FRECUENCIAS NATURALES	101
FIGURA 3. 52 PRUEBAS DE BUMP TEST PUNTO CBS - FRECUENCIAS NATURALES	102
FIGURA 3. 53 TRANSITORIO DE PRUEBAS DE BUMP TEST EN VIGA PRINCIPAL	104
FIGURA 3. 54 ESPECTRO DE VIBRACIÓN - RECORRIDO DE TREN (AREQUIPA - JULIACA) CON CARGA	А
VELOCIDAD DE 5KM/H	106
FIGURA 3. 55 ESPECTRO DE VIBRACIÓN - RECORRIDO DE TREN (JULIACA - AREQUIPA) CON CARGA	A LA
VELOCIDAD DE 5 KM/H	107
FIGURA 3. 56 ESPECTRO DE VIBRACIÓN-RECORRIDO DE TREN (JULIACA-AREQUIPA) – SIN CARGA -	-
VELOCIDAD DE 5Km/h	107
FIGURA 3. 57 FORMA DE ONDA-RECORRIDO DE TREN (AREQUIPA-JULIACA)-CON CARGA VELOCIDA	AD DE
5Км/н	108
FIGURA 3. 58 RIELES Y ECLISA.	109
FIGURA 4. 1 PERFIL DE LA VIGA PRINCIPAL DEL PUENTE FERROVIARIO SUMBAY	114
FIGURA 4. 2 PUENTE FERROVIARIO SUMBAY SOMETIDO A UNA CARGA DE UNA LOCOMOTORA	118
FIGURA 4. 3 CARGAS PUNTUALES QUE EJERCEN EN LA VIGA PRINCIPAL.	119
FIGURA 4. 4 DISCRETIZACIÓN DE LA VIGA – CASO Nº1	123
FIGURA 4. 5 D.C.L. DE LA VIGA PRINCIPAL – CASO N°1.	126
FIGURA 4. 6 D.F.C. DE LA VIGA PRINCIPAL – CASO N°1	127
FIGURA 4. 7 D.M.F. DE LA VIGA PRINCIPAL – CASO N°1	128
FIGURA 4. 8 DIAGRAMA DE DEFLEXIÓN DE LA VIGA PRINCIPAL – CASO N°1	129
FIGURA 4. 9 DIAGRAMA DE ESFUERZO FLEXIONANTE MÁXIMO DE LA VIGA PRINCIPAL – CASO N°1.	131
FIGURA 4. 10 DISTRIBUCIÓN DE ESFUERZO CORTANTE MÁXIMO DE LA VIGA PRINCIPAL – CASO N°	1132
FIGURA 4. 11 PUENTE FERROVIARIO SUMBAY SOMETIDO A UNA CARGA DE UNA LOCOMOTORA Y M	EDIA.
	133

XXII

FIGURA 4. 12 D.C.L. DE LA VIGA PRINCIPAL - CASO N°2	134
FIGURA 4. 13 D.F.C. DE LA VIGA PRINCIPAL - CASO N°2.	134
FIGURA 4. 14 D.M.F. DE LA VIGA PRINCIPAL - CASO N°2	135
Figura 4. 15 Diagrama de deflexión de la viga principal - CASO N°2	135
FIGURA 4. 16 DISTRIBUCIÓN DE ESFUERZO FLEXIONANTE MÁXIMO DE LA VIGA PRINCIPAL - CASO N	J°2.
	136
FIGURA 4. 17 DISTRIBUCIÓN DE ESFUERZO CORTANTE MÁXIMO DE LA VIGA PRINCIPAL - CASO N°2.	137
FIGURA 4. 18 PUENTE FERROVIARIO SUMBAY SOMETIDO A LA CARGA DE DOS LOCOMOTORAS	138
FIGURA 4. 19 D.C.L. DE LA VIGA PRINCIPAL – CASO N°3	139
FIGURA 4. 20 D.F.C. DE LA VIGA PRINCIPAL – CASO N°3	139
FIGURA 4. 21 D.M.F. DE LA VIGA PRINCIPAL – CASO N°3	140
FIGURA 4. 22 DIAGRAMA DE DEFLEXIÓN DE LA VIGA PRINCIPAL – CASO N°3	140
FIGURA 4. 23 DIAGRAMA DE ESFUERZO FLEXIONANTE MÁXIMO DE LA VIGA PRINCIPAL – CASO N°3	141
FIGURA 4. 24 DISTRIBUCIÓN DE ESFUERZO CORTANTE MÁXIMO DE LA VIGA PRINCIPAL – CASO N°3	142
FIGURA 4. 25 PUENTE FERROVIARIO SUMBAY SOMETIDO A LA CARGA DE DOS LOCOMOTORAS Y DOS	1
VAGONES.	143
FIGURA 4. 26 D.C.L. DE LA VIGA PRINCIPAL – CASO N°4	144
FIGURA 4. 27 D.F.C. DE LA VIGA PRINCIPAL – CASO N°4	144
FIGURA 4. 28 D.M.F. DE LA VIGA PRINCIPAL – CASO N°4	145
FIGURA 4. 29 DIAGRAMA DE DEFLEXIÓN DE LA VIGA PRINCIPAL – CASO N°4	145
FIGURA 4. 30 DIAGRAMA DE ESFUERZO FLEXIONANTE MÁXIMO DE LA VIGA PRINCIPAL – CASO N°4	4146
Figura 4. 31 Distribución de esfuerzo cortante máximo de la viga principal – CASO N°4	147
FIGURA 4. 32 ÁREA DE INCIDENCIA DEL VIENTO SOBRE LA VIGA	150
FIGURA 4. 33 PRESIÓN DEL VIENTO SOBRE LOS VEHÍCULOS	150
FIGURA 4. 34 PUENTE FERROVIARIO SUMBAY SOMETIDO A CARGAS COMBINADAS	153
FIGURA 4. 35 D.C.L. DE LA VIGA PRINCIPAL – CASO N°5	154
FIGURA 4. 36 D.F.C. DE LA VIGA PRINCIPAL – CASO N°5	154
FIGURA 4. 37 D.M.F. DE LA VIGA PRINCIPAL – CASO N°5	155
FIGURA 4. 38 DIAGRAMA DE DEFLEXIÓN DE LA VIGA PRINCIPAL – CASO N°5	155
Figura 4. 39 Distribución de esfuerzo flexionante de la viga principal – CASO N°5	156
FIGURA 4. 40 DISTRIBUCIÓN DE ESFUERZO CORTANTE MÁXIMO DE LA VIGA PRINCIPAL – CASO N°5	157
FIGURA 4. 41 FUERZAS QUE EJERCEN PARA LA SELECCIÓN DE VIGA	160
FIGURA 4. 42 D.C.L. DE LAS CARGAS - SELECCIÓN DE VIGA	161
FIGURA 4. 43 D.F.C PARA LA SELECCIÓN DE VIGA	161
FIGURA 4. 44 D.M.F. PARA LA SELECCIÓN DE VIGA	162
FIGURA 5. 1 MODELO DE PUENTE FERROVIARIO SUMBAY EN 3D	172
FIGURA 5. 2 PUENTE FERROVIARIO SUMBAY CON CARGA ESTÁTICA	173

XXIII

FIGURA 5. 3 PUENTE FERROVIARIO SUMBAY CON CARGA DINÁMICA173
FIGURA 5. 4 CONDICIONES PARA EL MALLADO DEL MODELO 3D
FIGURA 5. 5 DIAGRAMA DE CALIDAD DE MALLADO PARA EL MODELO 3D
FIGURA 5. 6 MALLADO DE PILARES DEL PUENTE FERROVIARIO SUMBAY
FIGURA 5. 7 MALLADO DE VIGA PRINCIPAL DEL PUENTE FERROVIARIO SUMBAY
FIGURA 5. 8 ESTRUCTURA DEL PUENTE FERROVIARIO SOMETIDA A CARGA ESTÁTICA CASO Nº1 177
FIGURA 5. 9 DEFORMACIÓN DE LA ESTRUCTURA DEL PUENTE FERROVIARIO SOMETIDA A CARGA
ESTÁTICA CASON°1178
FIGURA 5. 10 DEFORMACIÓN EN EJE Z EN PUNTO D EN PILAR Nº1
FIGURA 5. 11 DEFORMACIÓN EN EJE X EN PUNTO D EN PILAR Nº1
Figura 5. 12 Deformación en eje Z en punto E tramo N°2 viga principal de puente ferroviario
SUMBAY
Figura 5. 13 Deformación en eje X en punto E tramo N°2 viga principal de puente ferroviario
SUMBAY
FIGURA 5. 14 ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY SOMETIDA A CARGA ESTÁTICA CASO
N°2
FIGURA 5. 15 DEFORMACIÓN DE LA ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY SOMETIDA A
CARGA ESTÁTICA CASO Nº2
FIGURA 5. 16 ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY SOMETIDA A CARGA ESTÁTICA CASO
N°3
FIGURA 5. 17 DEFORMACIÓN DE LA ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY SOMETIDA A
CARGA ESTÁTICA CASO Nº3184
FIGURA 5. 18 ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY SOMETIDA A CARGA ESTÁTICA CASO
N°3
FIGURA 5. 19 DEFORMACIÓN DE LA ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY SOMETIDA A
CARGA ESTÁTICA CASO Nº4186
Figura 5. 20 Deformación en eje X en punto B tramo N°3 viga principal de puente ferroviario
SUMBAY
Figura 5. 21 Deformación en eje Y en punto B tramo N°3 viga principal de puente ferroviario
SUMBAY
FIGURA 5. 22 DEFORMACIÓN DE LA ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY SOMETIDA A
CARGA DINÁMICA CASO N°1
FIGURA 5. 23 DIAGRAMA DE FUERZA CORTANTE, MOMENTO FLECTOR Y DESPLAZAMIENTO CASO N°1.
FIGURA 5. 24 DEFORMACIÓN EN EJE X PUENTE FERROVIARIO SUMBAY – CASO N°1
FIGURA 5. 25 DEFORMACIÓN DE LA ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY SOMETIDA A
CARGA DINÁMICA CASO N°2192

XXIV

FIGURA 5. 26 DIAGRAMA DE FUERZA CORTANTE, MOMENTO FLECTOR Y DESPLAZAMIENTO CA	SO N°2.
FIGURA 5. 27 DEFORMACIÓN DE LA ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY SOMETI	193 DA A
CARGA DINÁMICA CASO N°3	
FIGURA 5. 28 DEFORMACIÓN DE LA ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY SOMETI	DA A
CARGA DINÁMICA CASO N°3	
FIGURA 5. 29 DIAGRAMA DE FUERZA CORTANTE, MOMENTO FLECTOR Y DESPLAZAMIENTO CA	SO N°3.
FIGURA 5. 30 DEFORMACIÓN EN EJE X PUENTE FERROVIARIO SUMBAY – CASO N°3	
FIGURA 5. 31 DEFORMACIÓN DE LA ESTRUCTURA DEL PUENTE FERROVIARIO SUMBAY SOMETI	DA A
CARGA DINÁMICA CASO N°4	
FIGURA 5. 32 DIAGRAMA DE FUERZA CORTANTE, MOMENTO FLECTOR Y DESPLAZAMIENTO CA	SO N°4.
Figura 5. 33 Deformación en eje X puente ferroviario Sumbay – CASO $N^{\circ}4$	
FIGURA 5. 34 ESFUERZOS EN ARRIOSTRES DE PILARES DE PUENTE FERROVIARIO	
FIGURA 5. 35 ESFUERZOS EN ARRIOSTRES DE ESTRUCTURA DE VIGA PRINCIPAL DE PUENTE FER	ROVIARIO.
FIGURA 5. 36 MODO A 3.06 HZ. (FUENTE: ELABORACIÓN PROPIA)	
FIGURA 5. 37 MODO A 3.08 HZ. (FUENTE: ELABORACIÓN PROPIA)	
FIGURA 5. 38 MODO A 5.62 HZ. (FUENTE: ELABORACIÓN PROPIA)	
FIGURA 5. 39 MODO A 6.75 HZ (FUENTE: ELABORACIÓN PROPIA)	
FIGURA 5. 40 MODO A 8.14 HZ. (FUENTE: ELABORACIÓN PROPIA)	
FIGURA 5. 41 MODO A 10.45 HZ. (FUENTE: ELABORACIÓN PROPIA)	
FIGURA 5. 42 MODO A 12.89 HZ. (FUENTE: ELABORACIÓN PROPIA)	
FIGURA 5. 43 MODO A 15.06 HZ. (FUENTE: ELABORACIÓN PROPIA)	
FIGURA 5. 44 MODO A 16.34 HZ. (FUENTE: ELABORACIÓN PROPIA)	
FIGURA 5. 45 MODO A 17.68 HZ (FUENTE: ELABORACIÓN PROPIA)	
FIGURA 6. 1 PUENTE FERROVIARIO SUMBAY – AREQUIPA	211
FIGURA 6. 2 PUNTOS DE COLOCACIÓN DE STRAIN GAGES EN PUENTE FERROVIARIO SUMBAY-A	AREQUIPA.
FIGURA 6. 3 INSTALACIÓN DE 06 STRAIN GAGES TIPO LINEAL PARA ANÁLISIS POR FATIGA	
FIGURA 6. 4 POSICIÓN DE LOS STRAIN GAGES LINEALES EN LA VIGA SUPERIOR E INFERIOR AGU	AS ARRIBA
Y AGUAS ABAJO	
FIGURA 6. 5 AMPLITUD DE LAS DEFORMACIONES DE STRAIN GAGES C AL PASO DEL TREN DE CA	ARGA CON
02 locomotoras y 18 vagones con carga del tramo Juliaca a Arequipa a 5km/	н214
FIGURA 6. 6 VARIACIÓN DEL ESFUERZO PARA CONDICIÓN DE 02 LOCOMOTORAS Y 18 VAGONE	S CON
CARGA MINERAL	

XXV

FIGURA 6. 7 VARIACIÓN DEL ESFUERZO CON RESPECTO AL TIEMPO PARA 02 LOCOMOTORAS Y 18
VAGONES
FIGURA 6. 8 ESFUERZO VARIABLE EN EL CAMPO PULSATORIO
FIGURA 6. 9 GRAFICA DE LÍMITES DE RESISTENCIA A LA FATIGA CONTRA RESISTENCIA A LA TENSIÓN 219
FIGURA 6. 10 PROFUNDIDAD PROMEDIO DE LA RUGOSIDAD RZ
FIGURA 6. 11 COEFICIENTE DE SUPERFICIE O FACTOR DE SUPERFICIE (CS=KA)221
FIGURA 6. 12 VISTA DE SECCIÓN TRANSVERSAL DE SECCIÓN – PERFIL I
Figura 6. 13 Diagrama aproxima de Wohler para $\Sigma m \neq 0$
FIGURA 6. 14 DIAGRAMA DE HAIGH
FIGURA 6. 16 DIAGRAMA DE WOHLER PARA HIERRO FORJADO
FIGURA 6. 17 DIAGRAMA DE FATIGA PARA DIFERENTES CRITERIOS DE FALLA
FIGURA 6. 18 VARIACIÓN DEL ESFUERZO CON RESPECTO AL TIEMPO PARA 02 LOCOMOTORAS Y 18
VAGONES
FIGURA 6. 19 SCRIPT PARA CONTEO RAINFLOW
FIGURA 6. 20 CONTEO DE CICLOS PARA LOS ESFUERZOS EN LA VIGA PRINCIPAL DE PUENTE FERROVIARIO.
FIGURA 6. 21 CONTEO DE CICLOS PARA LOS ESFUERZOS PARA 365 DÍAS DE SERVICIO
FIGURA 6. 22 DIAGRAMA S-N PARA EL HIERRO FORJADO
FIGURA 7. 1 UBICACIÓN DE STRAIN GAGES EN PUENTE FERROVIARIO SUMBAY – SIN CARGA MINERA.
FIGURA 7. 2 2 COMPARATIVO DE ESFUERZOS EN VIGA PRINCIPAL SIN CARGA MINERA – STRAIN GAGES
LINEALES
FIGURA 7. 3 UBICACIÓN DE STRAIN GAGES EN PUENTE FERROVIARIO SUMBAY – CON CARGA
MINERA
FIGURA 7. 4 COMPARATIVO DE ESFUERZOS EN VIGA PRINCIPAL CON CARGA MINERA – STRAIN GAGES
LINEALES
FIGURA 7. 5 COMPARATIVO DE ESFUERZOS MÁXIMOS Y MÍNIMOS PARA CONDICIÓN CON CARGA Y SIN
CARGA MINERA241
FIGURA 7. 6 UBICACIÓN DE ROSETAS DE DEFORMACIÓN EN PUENTE FERROVIARIO SUMBAY242
FIGURA 7. 7 ESFUERZOS PRINCIPALES EN PUNTO B (SIN CARGA MINERA - CON CARGA MINERA -
ESTÁTICO)
FIGURA 7. 8 ESFUERZOS PRINCIPALES EN PUNTO D (SIN CARGA MINERA - CON CARGA MINERA -
ESTÁTICO)
FIGURA 7. 9 ESFUERZOS PRINCIPALES EN PUNTO B (SIN CARGA MINERA - CON CARGA MINERA -
ESTÁTICO)
FIGURA 7. 10 ANÁLISIS COMPARATIVO DE FRECUENCIAS NATURALES Y FRECUENCIAS DE EXCITACIÓN.

GLOSARIO

- FETRANSA: Ferrocarril Transandino.
- AASHTO: American Association of State Highway and Transportation Officials.
- MMG: Mineral And Metals Group.
- **FEM:** Finite Element Method.
- PK: Postes Kilométricos.
- **ASTM:** American Society for Testing and Materials.
- **HSLM:** High-speed train load model.
- AREMA: American Railway Engineering and Maintenance-of-Way Association.
- **LRFD:** Diseño por factor de carga y resistencia.
- NTP: Norma Técnica Peruana.
- ASD: Diseño por esfuerzos permisibles
- **OSITRAN:** Organismo Supervisor de la Inversión en la Infraestructura de Transporte de uso Público.
- **D.C.L**: Diagrama de cuerpo libre
- D.M.F: Diagrama de Momento Flector
- **D.F.C**: Diagrama de Fuerzas Cortantes

NOMENCLATURA

SÍMBOLO	DEFINICIÓN	UNIDAD
τ	: Esfuerzo cortante.	N/m ²
$ au_{máx}$: Esfuerzo cortante máximo.	N/m ²
$ au_{perm}$: Esfuerzo cortante permisible.	N/m^2
$ au_{Prom}$: Esfuerzo cortante promedio en la sección.	N/m ²
σ	: Esfuerzo.	N/m ²
σ_{Alt}	: Limite de resistencia a la fatiga.	N/m ²
σа	: Esfuerzo alternante o amplitud del esfuerzo.	N/m^2
σί	: Esfuerzo inferior.	N/m^2
σ_{m}	: Esfuerzo medio o componente estático del esfuerzo.	N/m^2
σs	: Esfuerzo superior	N/m^2
σ_{min}	: Esfuerzo mínimo.	N/m^2
σ_{max}	: Esfuerzo máximo.	N/m^2
σ_m	: Esfuerzo medio.	N/m ²
σ_{perm}	: Esfuerzo permisible.	N/m ²
σ_{prom}	: Esfuerzo promedio.	N/m^2
σ_y	: Esfuerzo de fluencia del material.	N/m^2
$\sigma_{A(\infty)}$: Esfuerzo alternante para vida infinita.	N/m ²
σ_{x}	: Esfuerzo en "X"	N/m^2
σ_y	: Esfuerzo en "Y"	N/m^2
σ_y	: Esfuerzo de fluencia del material.	N/m ²
σ_B	: Resistencia a la tracción.	N/m ²
δ	: Decremento logarítmico.	
V	: Fuerza cortante.	Ν
v	: Relación de Poisson.	
γ	: Deformación unitaria cortante.	
W	: Carga distribuida sobre la viga principal.	t/m
Т	: Periodo.	S
t	: Tiempo.	S
f	: Frecuencia.	Hz

XXVIII

ξ	: Factor de amortiguamiento.	
fn	: Frecuencia natural.	Hz
G	: Modulo de elasticidad.	N/m^2
Е	: Modulo de Young.	N/m^2
$\gamma_{m\acute{a}x}$: Deformación córtate máxima.	
γ_{xy}	: Deformación angular.	
$\epsilon_1, \epsilon_2, \epsilon_3$: Deformación normal.	
ε	: Deformación	
€ _{máx}	: Deformación máxima.	
ϵ_{\min}	: Deformación mínima.	
ϵ_{prom}	: Deformación promedio.	
ε _x	: Deformación unitaria en el eje "X"	
ε _y	: Deformación unitaria en el eje "Y"	
$\theta_1, \theta_2, \theta_3$: Angulo de rosetas de deformación.	
E	: Deformación unitaria normal.	
К	: Constante de rigidez.	t/m
L	: Longitud.	m
L_n	: Longitud del tramo de viga.	m
М	: Momento flector.	N.m
Р	: Carga axial.	Ν
[F]	: Matriz columna de fuerzas y momentos	
F_V	: Fuerzas verticales.	t
$M_{m lpha x}$: Momento flector máximo.	N.m
S _{req}	: Módulo de sección requerida.	mm ³
t_w	: Espesor del alma del perfil W.	mm
А	: Área transversal.	mm ²
[δ]	: Matriz columna de desplazamientos y rotaciones.	
$\delta_1, \ \delta_2, \ \delta_3, \ldots$: Deflexión de viga o flecha.	Mm
ΔL	: Variación de longitud.	m
Λ	: Razón de ancho – espesor.	
Λр	: Límite superior para la categoría de compactas.	
Λr	: Límite superior para la categoría de no compactas.	
S	: Módulo de sección.	mm ³

XXIX

A ^T	: Matriz trans	puesta.		
A ⁻¹	: Matriz inversa.			
A	: Matriz deter	minante.		
F	: Fuerza defor	mante.	Т	
Х	: Variación qu	e experimenta la longitud del resorte.	М	
DC	: Carga perma	inente.		
LL	: Sobrecarga v	vehicular.		
WL	: Viento sobre	la sobrecarga.		
WS	: Viento sobre	la estructura.		
EQ	: Efecto sísmio	CO.		
$Adj(A^T)$: Matriz adjun	ta de la matriz transpuesta de A.		
$M_A, M_B, M_C,$	M_D, M_E, M_F	: Momento hiperestático o momento flector.	t.m	
$P_{3V'}, P_{2V'}, P_{11}$	7'	: Fuerza que implica el segundo vagón.	t	
P_{4V}, P_{3V}, P_{2V}	, <i>P</i> _{1V}	: Fuerza que implica el primer vagón.	t	
P_6, P_5, P_4, P_3	$, P_2, P_1$: Fuerzas que implica la primera locomotora.	t	
$P_{6'}, P_{5'}, P_{4'}, P_{4$	$P_{3'}, P_{2'}, P_{1'}$: Fuerzas que implica la segunda locomotora.	t	
R_A, R_B, R_C, R	$_D, R_E, R_F$: Reacciones en los puntos de apoyo.	t	
c: La distancia	a perpendicular	desde el eje neutro hasta el punto más	m	
alejado del eje neutro.				
I: Momento d	I: Momento de inercia del área de la sección transversal alrededor mm ⁴			

del eje neutro.

CAPÍTULO I

GENERALIDADES.

1.1 Planteamiento y Antecedentes del Problema.

En el Perú se construyeron los primeros ferrocarriles debido a la necesidad de generar medios de transporte para los diferentes puntos a nivel nacional y debido a los accidentes geográficos tan característicos en nuestro país; es por ello que se tienen los puentes ferroviarios más largos y más altos del mundo, como es el caso del puente Verrugas con 175 m de longitud y 83 m sobre el valle; también tenemos el puente Infiernillo que se encuentra ubicado entre dos túneles. La gran mayoría de puentes ferroviarios son estructuras de acero y datan del siglo XIX, como es el caso del puente Sumbay. (Kemp, 2004, p. 1)

El presente trabajo surge debido a que la empresa FETRANSA (Ferrocarril Transandino S.A), administrador de la infraestructura ferroviaria del Sur y Sur Oriente tiene la necesidad de conocer el estado actual del puente ferroviario Sumbay del departamento de Arequipa; para así poder garantizar la operación de transporte de carga minera y de pasajeros de manera segura.

En el año 2015, la empresa PeruRail y la compañía Minera las Bambas de la multinacional MMG (Minerals and Metals Group) realizaron un contrato por 15 años para el transporte de mineral por vía férrea hacia el Puerto Matarani, con una distancia aproximadamente de 295 km; mediante dicho contrato se busca reducir significativamente el tráfico de vehículos pesados entre Pillones y el Puerto Matarani, tal es así que las actividades de transporte de concentrados se dieron inicio por el tramo Pillones - Arequipa de la línea férrea del sur en el año 2016. (PORTAL MINERO, s.f.)

En la Tabla 1.1 se muestra el tráfico de pasajeros desde el año 2000 hasta el año 2019 de los tramos SUR y SUR-ORIENTE, los cuales son administrados por FETRANSA (Ferroviaria Trasandino), en la Tabla 1 se puede apreciar que el mayor número de pasajeros transportados está en el tramo SUR-ORIENTE (comprende de Cusco a Aguas Calientes), esto debido a la afluencia de turistas a una de las maravillas del mundo que es Machu-Picchu; mientras que en el tramo SUR (comprende de Cusco a Mollendo) el transporte de personal es en menor cantidad.

7	Tabla	1.	1	

AÑO	SUR (MATARANI-CUSCO)	SUR-ORIENTE (CUSCO-MACHU PICCHU)	FETRANSA
2000	118.6	757.8	876.4
2001	74.2	757.5	831.7
2002	38.0	792.6	830.6
2003	30.7	884.4	915.1
2004	32.5	1020.8	1053.3
2005	32.1	1151.1	1183.2
2006	31.5	1185	1216.5
2007	31.8	1378.6	1410.4
2008	25.7	1491.5	1517.2
2009	18.0	1587.5	1605.5
2010	13.1	1284.1	1297.2
2011	14.5	1728.7	1743.2
2012	18.5	1939.5	1958.0
2013	19.2	2064.2	2083.4
2014	21.3	2256.3	2277.6
2015	22.0	2454.1	2476.1
2016	20.7	2644.0	2664.7
2017	10.0	2686.6	2696.6
2018	18.9	2848.5	2867.4
2019	21.1	2860.1	2881.2

Tráfico de pasajeros tramo SUR y SUR-ORIENTE (Miles de Pasajeros).

Fuente: OSITRAN

En la Figura 1.1 se muestra el tráfico de pasajeros en los tramos administrados por FETRANSA, en el año 2019 se trasladaron un total de 2 millones 881 mil pasajeros, de los cuales solo 21 mil pasajeros se trasladaron por el tramo SUR. Por ello se concluye que por el puente Sumbay el tráfico de personas no es muy considerable.

En la Tabla 1.2 se muestra el tráfico de carga desde el año 2000 hasta el año 2019 de los tramos SUR (comprende de Cusco a Mollendo) y SUR-ORIENTE (comprende de Cusco a Aguas Calientes), los cuales son administrados por FETRANSA (Ferroviaria Trasandino); en la Tabla 1.2 se puede apreciar que la mayor cantidad de carga es transportada por el tramo SUR que compren desde Cusco hasta el puerto Matarani en Mollendo, toda esta carga que se muestra transita por el puente ferroviario Sumbay y como se ve en la Tabla 1.2 la carga fue incrementando con el pasar de los años, debido al contrato realizado entre PeruRail y la compañía Minera Las Bambas se muestra un incremento de la carga desde el año 2016 según se muestra en la Tabla 1.2.

Tabla 1. 2 Tráfico de carga tramo SUR y SUR-ORIENTE (Miles de Toneladas).

AÑO	SUR (MATARANI-CUSCO)	SUR-ORIENTE (CUSCO-MACHU PICCHU)	FETRANSA
2000	539.2	39.8	579.0
2001	619.3	23.7	643.0
2002	451.2	12.8	464.0
2003	290.4	21.6	312.1
2004	299.6	15.7	315.3
2005	325.4	16.0	341.4
2006	387.0	22.1	409.1
2007	1083.9	27.1	1111.0
2008	1275.3	21.0	1296.3
2009	1183.8	22.7	1206.5
2010	1251.9	13.1	1265.0
2011	1115.4	16.1	1131.5
2012	1124.6	20.5	1145.0
2013	1129.6	15.8	1145.3
2014	925.9	18.2	944.0
2015	1031.5	18.1	1049.5
2016	2635.4	21.4	2656.8
2017	3241.3	22.2	3263.5
2018	3140.6	21.1	3161.7
2019	2756.1	23.4	2779.5

Fuente: OSITRAN

En la Figura 1.2 se muestra el tráfico de carga en los tramos administrados por FETRANSA, en el año 2019 se trasladaron un total de 2 millones 779 mil toneladas de carga, de los cuales

2 millones 756 mil toneladas son trasladadas por el tramo SUR. Por ello se concluye que por

el puente Sumbay la carga que más influye es carga comprendida entre petróleo y minerales.

En la Figura 1.3 se especifica el tipo de carga que es transportada en el tramo SUR, en el año 2019 el 96.5% de la carga transportada comprende minerales y metales, mientras que solo el 3.5% de la carga transportada es petróleo y derivados.

Figura 1. 3 Tipo de carga transportada en ferrocarril del SUR-2019. (Fuente: OSITRAN)

En la Figura 1.4 se muestra la carga transportada por cada cliente, 33% de la carga transportada por PERURAIL es la carga proporcionada por Minera Las Bambas S.A. y el 64% de la carga transportada es proporcionada por la Sociedad Minera Cerro Verde.

(Fuente: OSITRAN)

El puente ferroviario Sumbay data del año 1907, con una longitud de 73.23 m, situado en el kilómetro 115.758 subdivisión 04 del tramo Pillones - Arequipa de la línea férrea del sur, y según FETRANSA debido a la longitud con que cuenta este puente es considerado uno de los más largos entre el tramo Mollendo y Cusco, ver Tabla 1.3.

Considerando todos los antecedentes vistos anteriormente, surge la pregunta; ¿El puente ferroviario Sumbay estará comportándose de forma adecuada ante los cambios que sufre en la actualidad debido a la antigüedad, el incremento en la demanda de transporte de carga y a la longitud que esta posee? Interrogante que se resolverá a lo largo del desarrollo de esta investigación, con un análisis dinámico del puente ferroviario Sumbay, puesto que el análisis dinámico de estructuras, como es el caso del puente ferroviario Sumbay, se refiere al análisis de las pequeñas vibraciones que puede sufrir una estructura alrededor de su posición de equilibrio, debido a las cargas sometidas; tal es así, que el análisis dinámico es muy importante

porque ese movimiento vibratorio produce una modificación de las tensiones, deformaciones y nos permite conocer las frecuencias existentes en la estructura. Conocer las frecuencias naturales y frecuencias de excitación son importantes para este estudio, puesto que si la frecuencia de excitación producida por las locomotoras GT42AC y vagones coincide con alguna de las frecuencias naturales del puente ferroviario Sumbay; entonces se dice que se alcanzó una condición de resonancia.

En la Tabla 1.3 se tiene los puentes existentes en la subdivisión 04, así como la ubicación y la longitud que tiene cada uno de ellos los puentes; así también se tiene detalles del puente ferroviario Sumbay.

NOMBRE	CUDDU/ICION	LIDICACIÓN	LONCITUD
	SURDIVISION	UBICACIÓN	LUNGITUD
	(AREQUIPA-JULIACA)	(PK)	(m)
Tres Cruces	4	0.236	39.52
S/N	4	9.152	6.80
Corpac	4	10.521	37.20
S/N	4	18.367	6.07
S/N	4	21.154	6.08
S/N	4	30.696	7.85
S/N	4	44.082	22.76
S/N	4	62.094	6.86
S/N	4	68.019	7.63
S/N	4	93.147	6.85
S/N	4	96.186	6.85
S/N	4	99.671	6.89
Sumbay	4	115.758	73.23
Imata (I)	4	164.094	22.95
Imata (II)	4	164.198	22.95
Colca	4	180.895	18.30
S/N	4	241.915	7.97
Chocorosi	4	253.019	20.55
S/N	4	264.499	6.58
S/N	4	268.04	9.76
S/N	4	297.579	6.98
S/N	4	303.676	6.10

Tabla 1. 3
Tabla de puentes ferroviarios de la Subdivisión 04

(Fuente: Elaboración propia con datos de FETRANSA)

7

1.2 Formulación del Problema.

1.2.1 Problema general.

Por las consideraciones anteriores, el problema puede ser formulado con la siguiente pregunta:

¿Cómo verificar la integridad estructural de la viga principal del puente ferroviario Sumbay-Arequipa debido a la variación de velocidad y carga minera de la máquina locomotora GT42AC?

1.2.2 Problemas específicos.

- ¿Cómo realizar un análisis dinámico experimental del puente ferroviario Sumbay-Arequipa?
- ¿Cómo realizar un análisis de tensiones y obtener una solución numérica de la estructura del puente ferroviario Sumbay-Arequipa?
- ¿Cómo determinar la resistencia de la estructura del puente ferroviario Sumbay- Arequipa sometida a una carga cíclica?
- ¿Cómo realizar la comparación de los resultados mediante los diferentes métodos de análisis?

1.3 Planteamiento de Objetivos.

1.3.1 Objetivo general.

Estudiar el comportamiento dinámico del puente ferroviario Sumbay-Arequipa debido a la variación de velocidad y carga minera de la máquina locomotora GT42AC.

1.3.2 Objetivos específicos.

 Realizar el análisis del comportamiento dinámico mediante un método experimental, efectuando medidas de deformación con strain gages y espectros de vibración mediante acelerómetros.

- Determinar los esfuerzos y deformaciones de la viga principal del puente ferroviario Sumbay mediante el método de tres momentos y análisis FEM con software computacional para condiciones de carga variable sobre la viga.
- Realizar el estudio de Fatiga en la viga principal del puente ferroviario Sumbay-Arequipa.
- Analizar y comparar los resultados obtenidos mediante los diferentes métodos de análisis realizando cuadros comparativos.

1.4 Justificación.

El puente ferroviario Sumbay PK 115.758 subdivisión 04 del tramo Pillones – Arequipa, es el más largo de la subdivisión 04 y es uno de los puentes de la línea férrea del Sur que soporta un incremento en la demanda de transporte de carga desde el año 2016. El puente ferroviario Sumbay data del año 1907 al 2022 cuenta con 115 años de antigüedad, por ende, es necesario saber el estado actual del mismo.

Así mismo, con esta investigación se pretende aportar información necesaria sobre la influencia de la variación de velocidad de la locomotora (GT42AC) y la carga, en la deformación y frecuencia natural del puente ferroviario Sumbay- Arequipa, dicha información será de mucha importancia para la empresa FETRANSA, para así garantizar el tránsito de trenes de carga y trenes de pasajeros de manera segura y realizar acciones correctivas en caso de ser necesarios.

El desarrollo de la tesis se enfocará en el estudio de la viga principal del puente ferroviario Sumbay – Arequipa, debido a que es la zona más crítica de la estructura al paso de las locomotoras y vagones con carga de concentrado de minerales.

El análisis dinámico del puente ferroviario Sumbay con Strain Gages y Acelerómetros es una técnica muy poco utilizada en nuestro país y podrá servir como punto de partida para

estudios posteriores referentes a puentes ferroviarios de gran longitud y con muchos años de antigüedad.

1.5 Alcances.

El alcance de la presente tesis es estudiar el comportamiento dinámico del puente ferroviario Sumbay - Arequipa debido a la variación de velocidad y carga minera de la maquina locomotora GT42AC, mediante un análisis experimental se utilizará strain gages para medir deformaciones y acelerómetros para medir amplitudes de vibración. Así mismo se determinará las deformaciones y esfuerzos en la viga principal del puente ferroviario Sumbay mediante un método analítico para diferentes condiciones de carga; los resultados obtenidos experimentalmente y analíticamente serán validados mediante el análisis FEM por software computacional.

1.6 Limitaciones.

La investigación de la tesis titulada "Estudio del comportamiento dinámico del puente ferroviario Sumbay – Arequipa debido a la variación de velocidad y carga minera de la máquina locomotora GT42AC" Se limita:

- Al estudio de la parte crítica de la estructura (viga principal del puente ferroviario Sumbay – Arequipa).
- Al análisis dinámico experimental del puente ferroviario Sumbay-Arequipa mediante uso de Strain Gages y Acelerómetros.
- A las velocidades de 5 km/h y 15 km/h de la locomotora GT42AC.
- A las cargas de 380 t (peso bruto de 18 vagones y 2 locomotora).
- Realizar el análisis modal mediante software computacional.
- A validar los datos de campo obtenidos realizando un análisis FEM con software computacional.

1.7 Formulación de Hipótesis.

1.7.1 Hipótesis general.

El estudio del análisis dinámico permitirá evaluar el comportamiento dinámico del puente ferroviario Sumbay-Arequipa debido a la variación de velocidad y carga minera de la máquina locomotora GT42AC.

1.7.2 Hipótesis específica.

- Realizando un estudio experimental con strain gages, acelerómetros y Software computacional, se podrá realizar un análisis dinámico experimental de la estructura del puente ferroviario Sumbay-Arequipa.
- Realizando cálculos matemáticos, y análisis FEM con software computacional, se determinará esfuerzos y deformaciones en la viga principal del puente ferroviario Sumbay-Arequipa.
- Realizando el Análisis de Fatiga, se determinará la resistencia de la viga principal del puente ferroviario Sumbay-Arequipa sometida a una carga cíclica.
- Realizando el análisis y comparando los resultados experimentales y numéricos, permitirá conocer si los resultados son consistentes.

1.8 Sistema de Variables.

1.8.1 Variables independientes.

- Carga Minera.
- Velocidad de Locomotora.
- Localización de locomotora y vagones.

1.8.2 Variables dependientes.

• Comportamiento dinámico del puente ferroviario Sumbay-Arequipa.

1.9 Metodología.

1.9.1 Tipo de investigación.

El presente trabajo es un proyecto de investigación que permitirá la aplicación de conocimientos adquiridos en nuestra formación académica y técnica. El modelo que se desarrollara a lo largo del proyecto es:

- Enfoque: Investigación cuantitativa.
- Nivel: Explicativo
- Tipo: Investigación aplicada, utilizando métodos cuantitativos.
- Diseño: Investigación experimental.

1.9.2 Instrumentos de recolección de datos.

- Equipo de mediciones de campo Vibro Gages con colector de datos de deformación National Instrument con 32 canales simultáneos.
- Colector de vibraciones modelo DCX de Azima DLI de 4 canales simultáneos.
- Colector de datos de deformación National Instrument de 4 canales simultáneos.
- Strain gages de tipo roseta y acelerómetros uniaxiales y triaxiales de 100 mV/G.
- Software Expert Alert, National Instrument.

1.9.3 Operacionalización de variables.

CAPITULO II

MARCO TEÓRICO.

2.1 Antecedentes.

2.1.1 Antecedentes internacionales.

1) (Tesis de título "Análisis del comportamiento dinámico de puentes ferroviarios de alta velocidad frente al paso de trenes de geometría no convencional: Disposición de ejes no asimétrica" Del Autor Adrián Zapatero Matesanz, de la Universidad Carlos III de Madrid - España 2019). En esta tesis se determina si un tren regular con distribución de coches asimétrica se puede considerar interoperable a través de la red ferroviaria transeuropea de alta velocidad. Para ello, se estudia los límites impuestos por el Euro código 1 y se realiza un estudio dinámico en aceleraciones y desplazamientos para una batería de trenes sobre un amplio número de puentes isostáticos comprobando si estos superan los límites marcados.

2) (Tesis de maestría "Desarrollo y aplicación de modelos de cálculo dinámico para puentes de ferrocarril en líneas existentes" Del Autor, Santiago Rodríguez Lorente, de la Universidad Politécnica de Madrid – Madrid 2018). En esta tesis se desarrolla los efectos dinámicos debido al paso de trenes de alta velocidad en los puentes de ferrocarril de la línea que une las ciudades de valencia y Tarragona (España), de esta línea férrea se selecciona dos puentes, en las que se realiza un estudio tridimensional mediante ABAQUS que sirve para varios objetivos entre los que se encuentra valorar la fiabilidad de los modelos simplificados.

2.1.2 Antecedentes nacionales.

 (Tesis de título "Evaluación, análisis y propuesta de refuerzo del puente ferroviario Sumbay – Distrito de Sumbay, Arequipa - Perú" de los autores, Cano Mac Dowall Andrea Patricia, y Vizcarra Escalante Andrea Carolina, de la Universidad Católica de Santa María, 2018).

En esta tesis se propone determinar si el puente, en su estado actual, está en condiciones de soportar las cargas que transitan actualmente o con el uso continuo y sin el debido reforzamiento, podrían producir una falla estructural.

Se desarrolla la propuesta de refuerzo en base al modelamiento del puente mediante el uso de CSI-Bridge y los resultados son analizados según el manual de AREMA (American Railway Engineering and Maintenance-of-Way Association). Con ello se llegó a las siguientes conclusiones:

- Que el puente bajo el tránsito del tren de cargas actual (tren compuesto por 2 Locomotoras GT42AC + 18 vagones) sí requiere ser reforzado, tanto en la superestructura (viga principal) como en la subestructura (pilares).
- Para el tren de cargas que transita actualmente (2 Locomotoras GT42AC + 18 vagones), se propone el uso de platabandas en los tramos 1, 3 y 5 de la superestructura.
- También se realizó una propuesta de refuerzo para el caso del tránsito de un tren de cargas Cooper E-80, el cual es el tren de diseño actual según AREMA. Al implementar platabandas de la misma forma que en el caso anterior se pudo observar que aún no se podía reducir los esfuerzos de compresión de la viga principal, superando el límite permisible de esfuerzos de fatiga. Se concluye que el refuerzo para esta carga tiende a ser inviable.
- Al evaluar los resultados obtenidos en la subestructura para un tren de cargas E-80, se pudo observar que las fuerzas axiales derivan esfuerzos prácticamente el doble de los esfuerzos permisibles. Al igual que en el caso de la superestructura.
- Para el tipo de carga viva de diseño utilizada que pertenece a un tren de cargas Cooper
 E40, la viga principal del tablero no supera los esfuerzos permisibles.

 A nivel general y para la carga que transita actualmente, el puente presenta un desempeño aceptable con pocas modificaciones a realizarse (tren compuesto por 2 Locomotoras GT42AC + 18vagones).

2.2 Bases Teóricas.

2.2.1 Carga minera.

En el caso de estudio la carga minera comprende concentrado de cobre y concentrado de molibdeno; los cuales son transportados en contenedores especiales para el transporte de los minerales hasta el puerto Matarani en la costa oeste de Perú.

2.2.1.1 Tráfico de carga.

En la Tabla 2.1 se muestra el tráfico de carga desde el año 2000 hasta el 2020 en los tramos SUR y SUR-ORIENTE, los cuales son administrados por FETRANSA (Ferroviaria Trasandino); en la Tabla 2.1 se puede apreciar que la mayor cantidad de carga es transportada por el tramo SUR que compren desde Cusco hasta el puerto Matarani en Mollendo, en el año 2016 se incrementó la carga debido al contrato firmado entre PeruRail y Las Bambas.

Tabla 2.1 Tráfico de carga tramo SUR y SUR-ORIENTE.

AÑO	SUR	SUR-ORIENTE	Carga Total
	(Matarani-Cusco)	(Cusco-Machu Picchu)	toneladas
2000	539200	39800	579000
2001	619300	23700	643000
2002	451200	12800	464000
2003	290400	21600	312100
2004	299600	15700	315300
2005	325400	16000	341400
2006	387000	22100	409100
2007	1083900	27100	1111000
2008	1275300	21000	1296300
2009	1183800	22700	1206500
2010	1251900	13100	1265000
2011	1115400	16100	1131500
2012	1124600	20500	1145000
2013	1129600	15800	1145300
2014	925900	18200	944000
2015	1031500	18100	1049500
2016	2635400	21400	2656800
2017	3241300	22200	3263500
2018	3140600	21100	3161700
2019	2756100	23400	2779500
2020	2648000	10000	2658000
Enortes (NUTTD A N		LINID A D. tomala dag

Fuente: OSITRAN

UNIDAD: toneladas

En la Figura 2.1 se representa de manera gráfica el tráfico de carga por la vía férrea del SUR desde el año 2000 hasta el 2020; claramente se aprecia el incremento de carga a partir del año 2016, después de haberse firmado el contrato entre Las Bambas y PeruRail para el transporte de carga minera. En el año 2017 se registró un total de 3 millones 264 mil toneladas de carga transportada por las vías férreas del SUR y SUR-ORIENTE de los cuales 3 millones 241 mil toneladas de carga son transportadas por la vía férrea del SUR.

Del 100% de la carga transportada por las vías férreas administradas por FETRANSA, el 99% de la carga es transportada por la vía férrea del SUR y solo el 1% de la carga es transportada por la vía férrea del SUR-ORIENTE.

(Fuente: OSITRAN)

En la Tabla 2.2 se muestra la carga transportada por la línea férrea del Sur, en ella se tiene minerales, metales, petróleo, mercadería en general (cemento, cerveza, agropecuarios, etc.). Como se puede apreciar la carga minera fue aumentado considerablemente en los últimos años caso contrario ocurre con el transporte de mercadería en general que fue desapareciendo en los últimos años; mientras que el transporte de petróleo se sigue realizando, pero en menor cantidad.

AÑO	Minerales	Petróleo	Mercadería	Carga Total
	y Metales	y Derivado	General	toneladas
2000	37940	123098	378162	539200
2001	40438	121693	457169	619300
2002	2881	87509	360810	451200
2003	-	97811	192589	290400
2004	-	114150	185450	299600
2005	-	125568	199832	325400
2006	10618	139905	236477	387000
2007	767460	152874	163566	1083900
2008	955363	192740	127197	1275300
2009	885046	176911	121843	1183800
2010	983375	179287	89238	1251900
2011	927084	169583	18733	1115400
2012	935996	180904	7700	1124600
2013	934881	188930	5789	1129600
2014	769403	151609	4888	925900
2015	887243	140132	4125	1031500
2016	2466329	166077	2994	2635400
2017	3128578	112722	-	3241300
2018	3019434	121166	-	3140600
2019	2659949	96151	-	2756100
2020	2570271	77729	-	2648000

Tabla 2. 2
Tráfico de carga línea férrea del SUR

Fuente: OSITRAN

UNIDAD: toneladas.

Según información proporcionada por OSITRAN en el año 2020 el 97% de carga transportada por la línea férrea del Sur corresponde a minerales y metales; mientras que el 3% corresponde a petróleo y derivados, ver Figura 2.2.

(Fuente: OSITRAN)

Para 2020 del 97% de la carga mineral transportada por la línea férrea del SUR 61% de la carga es proporcionada por la Minera Cerro Verde, quien hace uso de la línea férrea para transportar minerales desde la estación La Joya hasta la estación Matarani; mientras que el 36% de la carga es proporcionada por la Minera Las Bambas, quien hace uso de la línea férrea para transportar minerales desde la estación Pillones hasta la estación Matarani. Solo el 3% es carga proporcionada por Petro-Perú para el transporte de petróleo y derivados, Figura 2.3.

Figura 2. 3 Carga movilizada en el tramo SUR por usuario AÑO 2020. (Fuente: OSITRAN)

2.2.2 Velocidad Operativa.

Según al Reglamento Nacional de Ferrocarriles la velocidad de operación de la locomotora se clasifica en función de la velocidad máxima permisible por secciones o tramos, como se muestra en la Figura 2.4.

De acuerdo a la información adquirida por FETRANSA (Ferroviaria Trasandino) se tiene una velocidad máxima 15 km/h en el tramo del puente ferroviario Sumbay y es validado por la velocidad máxima permitida emitida en el diario el peruano para una clase de vía tipo 1.

	Máxima Velocidad de Operación Permitida		
Clase de Via	Trenes de Mercancias (Km/Hora)	Trenes de Pasajeros (Km/Hora)	
1	16	24	
2	40	48	
3	64	96	
4	96	128	
5	128	144	

Figura 2. 4 Velocidad operativa. (Fuente: El Peruano)

2.2.2.1 Locomotora GT42AC.

Tabla 2.3

La locomotora que circula por la línea férrea del Sur es una locomotora GT42AC, fabricado por la empresa EMD (Electro – Motive – Diesel), una empresa dedicada al diseño, fabricación y venta de locomotoras diésel de Estado Unidos.

En la Tabla 2.3 nos muestra los detalles técnicos para la locomotora GT42AC.

Detalles técnicos de la locomotora GT42AC. CARACTERÍSTICAS GT42AC Sistema de tracción de la locomotora AC tracción 12-710 Motor diésel 6 Numero de ejes 4.231 m Locomotora Altura Longitud sobre acopladores 20.314 m 2.237 kW Caballos de fuerza de tracción Velocidad máxima 100 km/h A partir de tracción Esfuerzo 500 kN Continuo esfuerzo de tracción 470 kN Frenado Dinámico Esfuerzo 264 kN Capacidad de combustible (utilizable) 5.000 litros Intervalo de mantenimiento (mínimo) 92 días Peso máximo 120 T Máxima carga del árbol 20 T 1000 – 1435 mm Ancho de vía Diseñado para América de Sur Fuente: EMD

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

La Figura 2.5 nos muestra la locomotora GT42AC cruzando por el puente ferroviario Sumbay. La locomotora es perteneciente a PeruRail y transporta el mineral generado por minera Las Bambas en contenedores especiales para el transporte de carga minera.

Figura 2. 5 Locomotora GT42AC - puente ferroviario Sumbay. (Fuente: Fotografía Propia)

2.2.2.2 Dimensiones de Locomotora GT42AC.

En la Figura 2.6 se muestra las dimensiones de la locomotora GT42AC que transita por la

vía ferroviaria del SUR.

Figura 2. 6 Dimensiones de locomotora GT42AC. (Fuente: Ferrocarril Transandino S.A.)

2.2.2.3 Dimensiones de Vagón.

En la Figura 2.7 se muestra las dimensiones de los vagones especiales para el transporte de

contenedores especializados para trasladar cobre hacia el puerto Matarani.

Figura 2. 7 Dimensiones de vagón y contenedores de transporte de mineral. (Fuente: FETRANSA)

2.2.2.4 Capacidad de Carga.

Tabla 2. 4			
Capacidad de carga de vagones.			
Capacidad De Carga De Los Vagones			
CAP	63200 kg		
TARA	16800 kg		
Fuente: FETRANSA			

2.2.3 Comportamiento Dinámico.

El comportamiento de los puentes ferroviarios difiere de los puentes de vehículos debido a que están sometidas al paso de cargas elevadas, concentradas.

En la mayoría de los casos se puede suponer que la carga incidente en una estructura es solo estática, es decir, que no varían con el tiempo; pero en realidad existen otros factores que actúan sobre la estructura, como puede ser el viento o el sismo; que son acciones que varían con el tiempo.

El fenómeno que es posible tener en los puentes ferroviarios es la resonancia debido a que la separación regular de los ejes de las locomotoras da lugar a una excitación periódica. Si la

frecuencia de excitación que se produce cada cierto tiempo coincide en algún momento con la frecuencia propia de la estructura se produce la resonancia.

2.2.3.1 Frecuencia.

Se considera frecuencia al número de ciclos completos en una unidad de tiempo, la frecuencia es la inversa del periodo.

$$f = \frac{1}{T} = \frac{w}{2\pi}$$

Donde:

T = periodo, segundos/ciclo.

f = frecuencia, ciclos/segundo (CPS) o Hertz (Hz).

w = frecuencia angular, radianes por segundo (rad/s).

La frecuencia en ciclos por minuto (CPM) es 60 veces los ciclos/segundo.

2.2.3.2 Periodo.

El periodo es el intervalo de tiempo requerido necesario que le tome a una partícula dar un ciclo completo. El periodo se expresa mediante la fórmula:

$$T = \frac{1}{f} = \frac{2\pi}{w}$$

Donde:

T = periodo, segundo/ciclo.

w = frecuencia angular, radianes por segundo (rad/s).

2.2.3.3 Rigidez.

La rigidez es la capacidad que tiene los elementos de una estructura de soportar los esfuerzos sin deformarse excesivamente.

La relación entre fuerza externa aplicada y la deformación elástica se conoce como el "módulo de Young". Cuanto menor sea el módulo de Young, menor será la rigidez, como consecuencia el material se puede deformar fácilmente.

En el caso de edificios, puentes, etc. es necesario tener rigidez, pero no total; debido a que las cargas pueden provocar roturas en casos como:

- Movimiento sísmico, donde las estructuras requieren cierta flexibilidad.
- Cambios de temperatura, donde las estructuras requieren un porcentaje de elasticidad debido a que el cambio de temperatura ocasiona dilatación de la misma.

2.2.3.4 Modos de vibración

Una estructura tiene tantas frecuencias naturales como grados de libertad. Cada modo de vibración esta caracterizado por una frecuencia natural.

El modo generalmente representa el desplazamiento de un modo de la estructura relativa al resto de modos del modelo. (MOLERO, 2016)

La Figura 2.8 nos muestra los modos de vibración para una viga continua.

(Fuente: Antolín Lorenzana)

2.3 Marco Conceptual.

2.3.1 El ferrocarril en el Perú.

Ramón Castilla es quien realizo el primer proyecto de ferrocarril en el Perú, realizando el tramo desde el Callao a Lima, así posteriormente los presidentes que le sucedieron al presidente Ramón Castilla continuaron con la construcción de más ferrocarriles en el Perú, es así que se tiene grandes líneas férreas debido a que en el Perú se tiene zonas muy accidentadas y de difícil acceso. Los ferrocarriles llegaron al Perú para poder dinamizar la economía, como una alternativa en el transporte y para poder comunicar las diferentes regiones por donde se construyeron los ferrocarriles.

La Figura 2.9 muestra todas las vías férreas existentes en el Perú.

Figura 2. 9 Mapa de vías férreas del Perú. (Fuente: OSITRAN)

2.3.1.1 Ferrocarril del sur – Perú.

El ferrocarril del sur en su primer tramo de Mollendo-Arequipa fue construido en 1870 con un costo de 1 millón ochocientos mil soles y puesta en servicio el 6 de enero de 1871, posteriormente se construyó el tramo Arequipa-Puno con un costo de 33 millones de soles, este tramo entro en servicio en enero de 1874. Los trabajos del ferrocarril estuvieron a cargo de obreros peruanos y bolivianos.

En 1872 se inició la construcción del tramo Juliaca-Cusco por 25 millones de soles y se paralizo en 1875 debido a la deficiencia económica en el Perú; ya en 1890 después de quince años de inactividad debido a la guerra y otras causas, firmando el contrato Grace, las obras de construcción se reiniciaron y estuvo a cargo de Peruvian, para concluir las obras hasta en Cusco. En el año 1894 llego a Maranganí, en 1894 a Sicuani y ya en 1908 llegando al Cusco.

En la Figura 2.10 se muestra la vía férrea del tramo SUR que comprende desde el puerto Matarani hasta la ciudad del Cusco.

Figura 2. 10 Ferrocarril del Sur. (Fuente: Ministerio de Transportes y Comunicaciones.)

2.3.1.2 Ferrocarril del centro – Perú.

El ferrocarril del centro fue un proyecto de modernización en el Perú entre afines del siglo XIX e inicios del siglo XX; es una vía férrea que va desde el Callao hasta Huancayo. La construcción del ferrocarril central en 1869 y así logro unir en pocos años el puerto del Callao con la Oroya y Cerro de Pasco; para la construcción de esta línea férrea fue necesaria la intervención de obreros de otras nacionalidades como chilenos, bolivianos y chinos.

Su construcción es una de las maravillas de la ingeniería de su época. Comenzó en 1870 y terminó en 1908. El puente Verrugas -hoy llamado Daniel A. Carrión- fue construido con una longitud de 175.35 metros, y se constituyó en el tercero más largo del mundo en su época. Con 83 metros sobre el fondo del valle se convirtió, asimismo, en el puente más alto del planeta. Otra maravilla de la ingeniería es sin duda el puente Infiernillo, colocado entre dos túneles. Fue construido en una época en la que no existía ningún acceso para grúas u otro equipo pesado de apoyo. En total, para llegar a La Oroya fueron necesarios 61 puentes, construyéndose además 60 túneles en esta sección. Con el tiempo, a fuerza de huaicos y derrumbes, se tuvo que cambiar la línea en muchos puntos.

En la Figura 2.11 se muestra la línea férrea del Centro del Perú que comprende desde el Callao hasta la Oroya, donde existe una separación hacia Cerro de Pasco y hacia Huancayo.

Figura 2. 11 Ferrocarril del Centro. (Fuente: Diario el Correo)

2.3.1.3 Enrique Meiggs y los ferrocarriles en Perú.

Enrique Meiggs es una de las figuras que interviene en la construcción de los ferrocarriles en Perú; al solicitar hacerse cargo de la construcción aseguro al gobierno peruano que colocaría rieles por donde caminas las llamas.

En 1868 llegó a Perú convocado por el gobierno de Diez Canseco para la construcción de un ferrocarril de Arequipa a la Costa. Ganó la licitación por su fama de puntualidad, y con el tiempo logró ser el principal contratista del Estado. Participó en Mollendo-Arequipa (192 km), Arequipa-Puno (364 km), Juliaca-Cusco (132 km), Callao-La Oroya (141 km), Ilo-Moquegua (100 km), Chimbote-Huaraz (83 km), Pacasmayo-Magdalena (247 km), haciendo un total de 1.159 km.

Figura 2. 12 Enrique Meiggs. (Fuente: Diario Prensa Regional)

2.3.1.4 Ernest Malinowski y los ferrocarriles en Perú.

Es seguro que este ingeniero no tenía miedo a las alturas porque diseño el Ferrocarril Central Andino, que en algunos puntos alcanza 5000 metros de altura sobre el nivel del mar.

En 1852 aceptó, con otros ingenieros franceses, la invitación de Echenique para trabajar para el Estado contribuyendo al diseño de la red ferrocarrilera, aunque trabajó también para empresarios privados, como Meiggs. De los 1782 km de vías férreas en el Perú, participó en la planificación y construcción de 814 km: Pisco - Ica, Central Trasandino – Callao – Lima - La

Oroya, Pacasmayo - Cajamarca, Salaverry – Trujillo - Santiago de Chuco, Chimbote - Huaraz Recuay, Arequipa - Puno, Puno - Cusco y Lima - Chorrillos.

Entró al servicio de Meiggs en 1869 con el encargo de comenzar la construcción del Ferrocarril Central a la Oroya. Como se conoce, el resultado fue una de las maravillas de la ingeniería moderna.

Figura 2. 13 Ernest Malinowski. (Fuente: Blog Tendencias 2016)

Figura 2. 14 Ferrocarril Central Andino diseñado por Ernest Malinowski. (Fuente: David Gubler)

2.3.2 Puente ferroviario Sumbay – Arequipa.

Ubicación del puente ferroviario Sumbay

Distrito: Sumbay.

Provincia: Sumbay.

Departamento: Arequipa.

Altitud: 4100 msnm

El puente ferroviario Sumbay data del año 1907, tiene una longitud de 73.23 m, está situado en el kilómetro 115.758 subdivisión 04 del tramo Pillones - Arequipa de la línea férrea del sur, según FETRANSA (Ferrocarril Trasandino) debido a la longitud con que cuenta este puente es considerado uno de los más largos entre el tramo Mollendo - Cusco.

Figura 2. 15 Ubicación del puente ferroviario Sumbay. (Fuente: Fotografía Propia)

En la actualidad no se encuentra información del tipo de material con el que fue construido el puente ferroviario Sumbay, pero debido a referencias encontradas se considera que el tipo de material usado para la construcción de dicho puente es el hierro forjado; esto se concluye debido a los siguientes factores:

El hierro forjado entre el siglo XIX y XX era usado con mucha frecuencia en la ingeniería, como es el caso de puentes ferroviarios.

En la construcción de la línea férrea del sur intervienen el estadounidense Enrique Meiggs y el polaco Ernesto Malinowski quienes también se hicieron cargo de la construcción del ferrocarril central en Perú, donde la construcción de puentes ferroviarios era necesario debido a la accidentada geografía peruana.

En el ferrocarril del centro se tiene dos maravillas de la ingeniería en cuanto a puentes ferroviarios; puente verrugas, el cual hoy es llamado puente Daniel A. Carrión y el puente Infiernillo; estos dos puentes tienen las mismas características que el puente ferroviario Sumbay.

En el puente ferroviario Infiernillo y el puente ferroviario Sumbay se encontró placas idénticas que indican el mismo año de construcción y la empresa encargada de la construcción de ambos puentes como se puede ver en la Figura 2.16 y Figura 2.17.

Figura 2. 16 Placa American Bridge Company, puente Infiernillo en Ferrocarril del Centro. (Fuente: Trenes Perú)

Figura 2. 17 Placa American Bridge Company, puente Sumbay en Ferrocarril del Sur. (Fuente: Fotografía Propia)

Según Kirti Gandhi presidente de Gandhi Engineering, Inc. En su artículo llamado "Verrugas Viaduct and its Reconstruction, Perú, South América" indica que el puente ferroviario Verrugas fue construido con hierro forjado.

En conclusión; los puentes ferroviarios Infiernillo, Verrugas y Sumbay, tienen las mismas características en el diseño; los años de construcción de los puentes mencionados están entre el siglo XIX y XX y las personas que intervienen para la construcción de estos puentes ferroviarios son las mismas, por ende, se concluye que el material con el que fue construido el puente ferroviario Sumbay es de hierro forjado.

En las Figura 2.18, Figura 2.19 y Figura 2.20 se muestran el Puente Sumbay, Puente Infiernillo y puente Daniel Alcides Carrión respectivamente.

Figura 2. 18 Puente Ferroviario Sumbay- Arequipa. (Fuente: Fotografía Propia)

Figura 2. 19 Puente Ferroviario Infiernillo. (Fuente: Railpictures.net)

Figura 2. 20 Puente Ferroviario Daniel Alcides Carrión. (Fuente: Universidad Nacional Mayor De San Marcos)

2.3.3 Propiedades de los materiales -hierro forjado.

El hierro forjado es una aleación de hierro con muy bajo contenido de carbono con respecto al hierro fundido. Es suave, dúctil, magnético y tiene alta elasticidad y resistencia a la tracción. Se puede calentar, recalentar y trabajar en varias formas.

Aunque el hierro forjado exhibe propiedades que no se encuentran en otras formas de metales ferrosos, carece del contenido de carbono necesario para el endurecimiento mediante tratamiento térmico. El hierro forjado puede soldarse de la misma manera que el acero dulce, pero la presencia de óxidos o inclusiones proporcionará resultados defectuosos. (AZOM, 2013.)

Tabla 2. 5	
Composición quími	ca de hierro forjado
Elemento	Contenido (%)
Hierro, Fe	99 – 99.8
Carbono, C	0.05 - 0.25
Fosforo P	0.05 - 0.2
1 031010, 1	0.03 - 0.2
Silicio. Si	0.02 - 0.2
·	
Azufre, S	0.02 - 0.1
Manganeso, Mn	0.01 - 0.1

Fuente: AZOM.COM, 2013

Tabla 2. 6		
Propiedad física de	l hierro forjado	
Propiedades	Métrico	Ingles
•		0
Densidad	7.7 g/cm^3	0.278 lb/plg^3
	-	
Punto de fusión	1540 °C	2800 °F
Fuente: AZOM.COM,	2013	

Tabla 2. 7 Propiedades mecánicas del hierro forjado

Propiedades	Métrico	Ingles
Resistencia a la tracción	234 – 372 MPa	34000 – 54000 psi
Límite de elasticidad	159 – 221 MPa	23000 – 32000 psi
Módulo de elasticidad	193053 MPa	28000 ksi

Fuente: AZOM.COM, 2013

Material	Poisson (v)	Material	Poisson (v)
Aluminio	0.334	Níquel plata	0.322
Cobre berilio	0.285	Bronce fosforoso	0.349
Latón	0.340	Caucho	0.500
Hierro fundido, gris	0.211	Acero, fundido	0.265
Cobre	0.340	Alto en carbono	0.295
Inconel	0.290	Suave	0.303
Plomo	0.431	Níquel	0.291
Magnesio	0.350	Hierro forjado	0.278
Monel metal	0.320	Zinc	0.331

Tabla 2. 8 Coeficiente de Poisson.

Fuente: AZOM 2013

2.3.4 Introducción a las vibraciones.

Cualquier movimiento que se repite después de un intervalo de tiempo se llama vibración u oscilación. El vaivén de un péndulo y el movimiento de una cuerda pulsada son ejemplos comunes de vibración. La teoría de la vibración tiene que ver con el estudio de los movimientos oscilatorios de los cuerpos y las fuerzas asociadas con ellos. (Rao, 2012, p.12)

La vibración se considera al movimiento repetitivo de una máquina o estructura que por lo general visualmente no se puede detectar; pero si es posible detectar al tocar y a veces puede oírse. Las vibraciones son causadas por fuerzas que se generan en el interior de la máquina o por fuerzas externas aplicadas sobre las máquinas o estructuras; por lo tanto, las máquinas o estructuras vibran en respuesta a una o más fuerzas pulsantes que a menudo son llamadas fuerzas excitadoras.

Los espectros de vibración son un medio visible generado por la vibración en las máquinas o estructuras, captados por sensores de vibración que proporcionan la señal en la dirección en

la que son montadas mientras que la máquina continúa trabajando sin la necesidad de desmontarlo; los espectros de vibración son utilizados para poder indicar si el equipo o estructura se encuentra en las condiciones normales, descubrir y evaluar severidad de las fallas si en caso existen.

2.3.4.1 Desplazamiento.

El desplazamiento se considera a la separación que existe entre la partícula y la posición de equilibrio, el desplazamiento se mide en metros "m" y se da en un tiempo "t".

2.3.4.2 Amplitud.

La amplitud es el valor máximo de la vibración en una determinada posición de un equipo; la amplitud tiene un valor máximo positivo y negativo.

2.3.4.3 Clasificación de las vibraciones.

2.3.4.3.1 Vibración libre.

Vibración libre es el movimiento periódico que se obtiene al desplazar un sistema de su posición de equilibrio estático. En este tipo de vibración no se aplica al sistema ninguna fuerza de excitación externa.

Esta vibración se llama vibración libre o también llamada transitoria; un ejemplo de vibración libre es la oscilación de un péndulo simple, Figura 2.21.

Figura 2. 21 Sistema masa - resorte y diagrama de cuerpo libre. (Fuente: William T. Thompson.)

2.3.4.3.2 Vibración forzada.

Vibración forzada es la resultante de un sistema que se encuentra sometido a una fuerza externa repetitiva que excita al sistema durante su movimiento vibratorio, Figura 2.22.

Si la frecuencia de la fuerza externa que excita al sistema coincide con alguna de las frecuencias naturales del sistema surge la resonancia y el sistema sufre oscilaciones peligrosamente grandes.

Figura 2. 22 Sistema masa - resorte. (Fuente: William T. Thomson.)

2.3.4.3.3 Vibración forzada con amortiguamiento.

En la Figura 2.23 se muestra un sistema con un grado de libertad que tiene

vibración forzada con amortiguamiento

2.3.4.4 Decremento logarítmico.

Una manera de determinar la cantidad de amortiguamiento que posee un sistema.

El decremento logarítmico representa la velocidad a la cual se reduce la amplitud de una

vibración libre amortiguada. (SINGIRESU S., 2012, p. 152)

La expresión para el decremento logarítmico es entonces:

$$\delta = ln \frac{x_1}{x_2}$$

Se define como el logaritmo natural de la relación de cualquiera de las dos amplitudes sucesivas.

Figura 2. 24 Decremento Logarítmico. (Fuente: Elaboración Propia)

También se puede expresar como relación de amortiguamiento:

$$\xi = \frac{\delta}{\sqrt{(2\pi)^2 + \delta}^2}$$

2.3.4.5 Frecuencia natural.

Todos los objetos tienen una frecuencia característica, el cual permite que el objeto vibre después de aplicar una fuerza que perturbe su estado de reposo.

Figura 2. 25 Elementos de un sistema de un grado de libertad. (Fuente: Manuel Rodríguez Súnico)

Frecuencia natural no amortiguada:

$$w_n = \sqrt{\frac{k}{m}}$$

Wn: Frecuencia natural.

K: Constantes del resorte o rigidez.

m: Masa.

2.3.4.6 Pruebas de impacto para determinar frecuencias naturales (Bump Test).

Con el fin de evaluar el comportamiento de vibración de las máquinas, a menudo es deseable medir las frecuencias naturales inherentes en la estructura. La forma clásica de hacer es el de impartir una fuerza medida en la estructura con un excitador de vibración.

El equipo consiste en un martillo modal para equipos pequeños o como una viga de madera para estructuras, también es necesario el uso de acelerómetros en el componente que se mide.

El acelerómetro mide la respuesta. Luego el software genera una función de transferencia en el dominio de frecuencia: la relación entre la respuesta y la fuerza. Los picos de la función de transferencia corresponden a las frecuencias naturales del componente que se mide. La amplitud indica al analista la energía requerida para excitar el modo (frecuencia natural).

Figura 2. 26 Graficas de pruebas de impacto. (Fuente: Valmet)

2.3.5 Mecánica de Materiales

La mecánica de materiales es una rama de la mecánica que estudia las relaciones entre las cargas externas aplicadas a un cuerpo deformable y la intensidad de las fuerzas internas que actúan dentro del cuerpo. Este tema es básico en la ingeniería ya que relaciona la resistencia y el funcionamiento físico de las estructuras.

2.3.5.1 Esfuerzo normal

Es la fuerza por unidad de área, o la intensidad de las fuerzas distribuidas a través de una sección dada, se llama esfuerzo sobre esa sección y se representa con la letra griega σ (sigma). (Ferdinand P. Beer, 2013, p. 6).

$$\sigma = \frac{P}{A}$$

 σ = Esfuerzo normal en cualquier punto del área de la sección transversal.

P = Fuerza normal interna.

A =Área de la sección transversal de la barra, donde se determina σ .

2.3.5.2 Esfuerzo por flexión en vigas.

La flexión es el esfuerzo resultante al aplicar fuerzas perpendicularmente al eje principal del elemento, lo que produce que el elemento se doble. La flexión produce tracción en la parte convexa del elemento y compresión en la parte cóncava (lado opuesto).

En el diseño o análisis de vigas, lo que se pretende por lo general es determinar los esfuerzos máximos de tensión y compresión. Estos esfuerzos máximos dependen de la distancia del eje neutro a las caras superiores e inferiores y se designa como "c".

El esfuerzo causado por flexión también es proporcional a la magnitud del momento flexionante aplicado a la sección de interés.

$$\sigma_{max} = \frac{M * c}{I}$$

 σ_{max} = El esfuerzo máximo por flexión.

M = Momento flexionante en la sección de interés.

c = Distancia perpendicular desde del eje neutro hasta el punto más alejado del eje neutro.

I = Momento de inercia del área de la sección transversal alrededor del eje neutro.

2.3.5.3 Esfuerzo cortante.

El esfuerzo cortante se define como la componente del esfuerzo que actúa en el plano del área seccionada.

$$\tau_{Prom} = \frac{V}{A}$$

 τ_{Prom} = Esfuerzo cortante promedio en la sección.

V = Fuerza cortante interna resultante en la sección determinada.

A =Área en la sección.

2.3.5.4 Esfuerzo cortante en vigas.

La ecuación de esfuerzo cortante en vigas se utiliza para determinar el esfuerzo cortante (τ) en cualquier punto de la sección transversal de una viga de sección simétrica. (James M, 2016, p. 443)

El esfuerzo cortante máximo en la viga va depender de la magnitud de Q y t.

$$\tau = \frac{V * Q}{I * t}$$

 $\tau =$ Esfuerzo cortante en el elemento, en el punto situado a una distancia y desde el eje.

V = Fuerza cortante

I = Momento de inercia de toda la sección transversal calculada respecto del eje neutro.

t = Ancho o espesor de la sección transversal del elemento del elemento.

 $Q = \overline{Y'} * A'$, Momento estático, donde A' es la parte superior o inferior del área de la sección transversal del elemento, por encima o debajo del plano de sección donde se mide t. y $\overline{y'}$ es la distancia desde el eje neutro hasta el centroide de A'.

2.3.6 Deformación.

Cuando se aplica una fuerza a un cuerpo, ésta tiende a cambiar la forma y el tamaño de cuerpo, estos cambios se conocen como deformación, la cual puede ser visible o casi imperceptible. (Hibbeler, 2011, p. 65)

2.3.6.1 Deformación unitaria.

Con el fin de describir la deformación de un cuerpo por los cambios en la longitud de segmentos de línea y los cambios en los ángulos que existen entre éstos, se desarrollara el concepto de deformación unitaria. La medición real de la deformación unitaria se realiza por medio de experimento. (Hibbeler, 2017, p. 70)

2.3.6.1.1 Deformación unitaria normal.

Si se aplica una carga axial P a la barra de la Figura 2.27, la longitud de la barra cambiará de L_0 a L. Definiremos la deformación unitaria normal promedio \in (épsilon) de la barra como el cambio en su longitud δ (delta) = $L - L_0$ dividido entre su longitud original, es decir:

$$\epsilon_{prom} = \frac{L - L_O}{L_O} \qquad \qquad \epsilon_{prom} = \frac{\delta}{L_O}$$

2.3.6.1.2 Deformación unitaria cortante.

Las deformaciones no sólo ocasionan que los segmentos de línea se alarguen o se contraigan, si no también hacen que cambien de dirección. Si se seleccionan dos segmentos de línea que originalmente eran perpendiculares entre sí, entonces el cambio en el ángulo que ocurre entre estos dos segmentos de línea se denomina deformación unitaria cortante. Este ángulo se denota por γ (gama) y siempre se mide en radianes (rad), que son unidades adimensionales. (Hibbeler,

2011, p. 67)
$$\gamma = \frac{\pi}{2} - \theta$$

2.3.6.2 Relación de Poisson.

Cuando un cuerpo deformable se somete a una fuerza, este no sólo se alarga, sino que también se contrae de manera lateral.

La relación de Poisson. v (nu), tiene un valor numérico que es único para cada material particular que sea homogéneo. Expresado en forma matemática:

$$v = -\frac{\epsilon_{lat}}{\epsilon_{long}}$$

El signo negativo se incluye aquí porque la elongación longitudinal (deformación positiva) ocasiona una contracción lateral (deformación negativa), y viceversa. (Hibbeler, 2011, pág. 102)

2.3.6.3 Ley de Hooke - Módulo de elasticidad.

La mayor parte de las estructuras de ingeniería se diseñan para sufrir deformaciones relativamente pequeñas, que involucran sólo la parte recta del diagrama de esfuerzo deformación correspondiente. Para esta porción inicial del diagrama (Figura 2.28), el esfuerzo σ es directamente proporcional a la deformación \in (Ferdinand P. Beer, 2013, p.48).

Figura 2. 28 Diagrama esfuerzo-deformación. (Fuente: Ferdinand P. Beer, 2013, pág. 46)

La ecuación de la ley de Hooke:

$$\sigma = E * \epsilon$$

El coeficiente E se denomina módulo de elasticidad del material involucrado o, también, módulo de Young.

2.3.7 Vigas estáticamente indeterminadas (hiperestáticas).

Para el desarrollo de las vigas hiperestáticas todos los criterios que se van a desarrollar implican una comparación entre el número de magnitudes de fuerzas independientes

desconocidas y el número de ecuaciones independientes de equilibrio que están disponibles para la solución de incógnitas. Los criterios siempre toman la forma siguiente:

- Si existe más ecuaciones que incógnitas, la estructura es estáticamente inestable.
- Si existe el mismo número de ecuaciones que de incógnitas, la estructura es estáticamente determinada (isostática).
- Si existe menor número de ecuaciones que de incógnitas, la estructura es estáticamente indeterminado (hiperestática).

La característica principal de las vigas estáticamente indeterminadas o hiperestáticas, es que las reacciones no se pueden determinar por simple aplicación de las condiciones de equilibrio estático. Para determinarlas habrá que recurrir a diferentes metodologías, por mencionar algunas:

- Método de la doble integración
- Método de área de momentos
- Método de superposición
- Método de la Viga Conjugada
- Método de la Ecuación de Tres Momentos
- En general, métodos iterativos (Cross, Kanni), métodos energéticos (Trabajo Virtual, Teoremas de Castigliano), métodos matriciales (Rigideces, Flexibilidades).

Los diferentes tipos de vigas continuas hiperestáticas que se pueden presentar se esquematizan en la Figura 2.29.

Figura 2. 29 Vigas continuas hiperestáticas. (Fuente: Ortiz Berrocal, 2007, p. 534)

Para el grado de hiperestaticidad de las vigas continuas, se toma en cuenta lo siguiente: que el apoyo articulado fijo equivale a dos incógnitas, el apoyo móvil a una incógnita, y el empotramiento a tres incógnitas.

En una viga continua hiperestática, la rigidez de un tramo dificulta la deformación del tramo contiguo, por lo que cada apoyo actúa como un empotramiento elástico. (Ortiz Berrocal, 2007, p. 534)

2.3.7.1 Método de la ecuación de tres momentos.

El método de la ecuación de tres momentos o teorema de Clapeyron es una relación deducida de la teoría de flexión de vigas y usada en análisis estructural para resolver ciertos problemas de flexión hiperestática, fue demostrado por Émile Clapeyron a principios del siglo XIX. (Parra, 2016)

Con este método puede analizarse una viga sostenida por cualquier número de apoyos. De hecho, el teorema soluciona los momentos flectores en los apoyos sucesivos entre sí, y con las cargas que actúan en la viga.

En el caso de una viga con tres apoyos únicamente, este método permite el cálculo directo del momento en el apoyo intermedio. Las condiciones de los extremos proporcionan datos para calcular los momentos en ellos. Luego pueden usarse los principios de estática para determinar las reacciones.

Consideremos una viga cargada como se muestra en la (Figura 2.30).

Figura 2. 30 Viga cargada. (fuente: Universidad de los Andes)

Se han elegido tres puntos cualesquiera sobre la viga ('1', '2' y '3'), donde realizaremos cortes transversales y estableceremos las cargas a las que están sometidas estas secciones, manteniendo las que están aplicadas sobre los tramos L_{12} y L_{23} .

Se tendría entonces:

Note que los momentos flectores (M_1, M_2, M_3) se han dispuesto en su sentido positivo, según el convenio establecido. Las fuerzas cortantes V_{2i} y V_{2d} no son necesariamente iguales; depende de la condición de apoyo o carga que exista en el punto '2'.

Luego, planteamos las cargas y los momentos flectores de forma separada, agregando y quitando fuerzas, como se muestra en la (Figura 2.31). En el caso mostrado, se ha asumido que $(M_2 < M_1)$ y $(M_2 < M_3)$.

Figura 2. 31 Viga seccionada. (Fuente: Universidad de los Andes)

Posteriormente, se realizan los diagramas de momento flector (Figura 2.32) para los casos anteriormente mostrados. Recordamos nuevamente que se ha asumido $(M_2 < M_1)$ y $(M_2 < M_3)$.

Figura 2. 32 Diagrama de momentos flectores de la viga cargada. (Fuente: Universidad de los Andes)

Ahora, observemos una representación exagerada de la curva elástica entre los puntos 1 y 3 (Figura 2.33). Puede notarse que se cumple la relación de triángulos:

$$\frac{h_1 - t_{1/2}}{L_{12}} = \frac{h_{3/2} - h_3}{L_{23}} \tag{1}$$

Figura 2. 33 Curva elástica de la viga cargada. (Fuente: Universidad de los Andes)

Posteriormente podemos establecer las expresiones de deflexión de los puntos '1' y '3' respecto a la tangente que pasa por '2' (Figura 2.33).

$$t_{1/2} = \bar{X}_1 \cdot \int_{x_1}^{x_2} \frac{M(x)}{E \cdot I} dx$$

$$t_{1/2} = \frac{1}{E \cdot I} \left[\left(\frac{1}{2} M_1 \cdot L_{12} \right) \left(\frac{1}{3} L_{12} \right) + \left(\frac{1}{2} M_2 \cdot L_{12} \right) \left(\frac{2}{3} L_{12} \right) + A_{12} \cdot \bar{X}_1 \right] \qquad (2)$$

$$t_{3/2} = \bar{X}_1 \cdot \int_{x_3}^{x_2} \frac{M(x)}{E \cdot I} dx$$

$$t_{3/2} = \frac{1}{E \cdot I} \left[\left(\frac{1}{2} M_2 \cdot L_{23} \right) \left(\frac{2}{3} L_{23} \right) + \left(\frac{1}{2} M_3 \cdot L_{23} \right) \left(\frac{1}{3} L_{23} \right) + A_{23} \cdot \bar{X}_3 \right] \qquad (3)$$

Finalmente, al sustituir $t_{1/2}$ y $t_{2/3}$ en la ecuación (1), se obtiene:

$$M_1.L_{12} + 2M_2(L_{12} + L_{23}) + M_3.L_{23} + \frac{6A_{12}.\bar{X}_1}{L_{12}} + \frac{6A_{23}.\bar{X}_3}{L_{23}} = 6.E.I.\left(\frac{h_1}{L_{12}} + \frac{h_3}{L_{23}}\right)$$
(4)

Esta ecuación 4. expresa una relación general entre los momentos flectores en tres puntos cualesquiera de la viga, razón por la cual se llama ecuación de los tres momentos. Si los puntos '1', '2' y '3' están al mismo nivel en la viga flexionada, los términos h_1 y h_3 se anulan, con lo cual el miembro derecho de la ecuación (4) se hace cero y la ecuación resulta de la siguiente manera.

$$M_1 \cdot L_{12} + 2M_2(L_{12} + L_{23}) + M_3 \cdot L_{23} = -\frac{6A_{12} \cdot \bar{X}_1}{L_{12}} - \frac{6A_{23} \cdot \bar{X}_3}{L_{23}}$$
(5)

Donde:

 M_1 , M_2 , M_3 : Momento flectores en los apoyos.

 L_{12} , L_{23} : Longitud de los tramos.

 A_{12} , A_{23} : Área de diagramas.

 \bar{X}_1 : Distancia del centro del diagrama de momentos flectores del tramo 1 a 2, lado izquierdo.

 \overline{X}_3 : Distancia del centro del diagrama de momentos flectores del tramo 2 a 3, lado derecho.

Una forma alterna de la ecuación de los tres momentos se obtiene al observar que los términos de la derecha de la ecuación (4) son simplemente las reacciones de las vigas conjugadas. En la cual se tiene reacciones de la viga conjugada para diversas solicitaciones de carga, como se muestra en la (Figura 2.34).

Figura 2. 34 Reacciones de la viga conjugada. (Fuente: Rodríguez Valdez, 2017)

Siendo a_{2i} y a_{2d} reacciones correspondientes a los tramos 1-2 y 2-3 respectivamente. $\left(\frac{A_{12}.\bar{X}_1}{L_{12}}\right) = \alpha_{2d}$ $\left(\frac{A_{23}.\bar{X}_3}{L_{22}}\right) = \alpha_{2i}$

Remplazando a_{2i} y a_{2d} en la ecuación 5. queda de la siguiente manera la ecuación general de tres momentos.

$$M_1 L_{12} + 2M_2(L_{12} + L_{23}) + M_3 L_{23} = -6(\alpha_{2d})_{12} - 6(\alpha_{2i})_{23}$$
(6)

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

Para aplicar la ecuación (6), resulta útil tablas como la Tabla 2.9, en la cual se tiene reacciones de la viga conjugada para diversas solicitaciones de carga.

Tabla 2. 9

Rotación en los apoyos.

Fuente: Rodríguez

2.3.7.2 Diagramas de fuerzas cortantes y de momento flector

Según (Ferdinand P. Beer, 2013) la determinación de los valores absolutos máximos del cortante y del momento flector en una viga se facilitan mucho si V y M se grafican contra la

distancia x medida desde un extremo de la viga. El conocimiento de M como una función de x es esencial para la determinación de la flexión de una viga.

Para tener una idea clara sobre los diagramas de fuerzas cortantes y momentos flectores de una viga, procederemos con un ejemplo de una viga sometida a una carga puntual P (Figura 2.35).

(Fuente: Ferdinand P. Beer, 2013. Pág. 267)

Primero se obtienen las reacciones en los soportes a partir del diagrama de cuerpo libre de

la viga entera (Figura 2.36); se encuentra que la magnitud de cada reacción es igual a P/2.

Figura 2. 36 Diagrama de cuerpo libre de una viga con carga puntual P (Fuente: Ferdinand P. Beer, 2013. Pág. 267)

Una vez obtenida las reacciones en los apoyos de la viga, se procede a trazar el diagrama de

fuerzas cortantes como se muestra en la Figura 2.37.

Figura 2. 37 Diagrama de fuerzas cortantes de una viga con carga puntual P (Fuente: Ferdinand P. Beer, 2013. Pág. 267)

El diagrama de momento flector se obtiene a partir de las áreas del diagrama de fuerzas

cortantes (Figura 2.38).

Figura 2. 38 Diagrama de momento flector de una viga con carga puntual P. (Fuente: Ferdinand P. Beer, 2013. Pág. 268)

2.3.8 Fatiga.

Debido a que los comportamientos en las estructuras y máquinas no solo son estáticos si no también están sometidas a cargas variables en el tiempo es necesario realizar el estudio del comportamiento para que los elementos diseñados resistan las diferentes cargas.

El estudio de la fatiga es muy importante debido a que muchos de los elementos de máquinas durante el trabajo son sometidos a esfuerzos que varían cíclicamente en función del tiempo.

2.3.8.1 Falla por fatiga.

Hay casos en que se analizan elementos de máquinas que han fallado bajo la acción de esfuerzos repetidos o variados en el tiempo. Un análisis correspondiente de falla muestra que los esfuerzos máximos reales estaban por debajo del esfuerzo máximo o de rotura del material, o lo que es aún más sorprendente, por debajo del esfuerzo de fluencia. El común denominador de estas fallas es que los esfuerzos fluctuaron en el tiempo. A este tipo de falla se le denomina falla por fatiga. (Rodriguez,2018, p.3-1)

La Figura 2.39 muestra una sección fracturada por fatiga, el área de las piezas en algún momento ha disminuido tanto que ya no son capaces de soportar el esfuerzo y se rompe bruscamente.

"ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY- AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC"

Figura 2. 39 Características de la rotura por fatiga. (Fuente: Jorge Rodríguez Hernández)

La rotura de un elemento de máquina por fatiga es repentina y peligrosa, mientras que si se tiene elementos de máquina sometida a cargas estáticas se tendrá deformaciones grandes cuando los esfuerzos superan la resistencia a la fluencia y la falla será visible.

2.3.8.2 Cargas por fatiga.

Lo que provoca la falla por fatiga en los elementos de máquinas son los esfuerzos que varían respecto al tiempo, también influye el acabado superficial así también los lugares donde existe concentración de esfuerzos.

Para el análisis de resistencia a la fatiga de elementos que se encuentran sometidos a esfuerzos variables se descompondrá el esfuerzo en dos componentes; una que es el esfuerzo estático (sin variación en el tiempo), denominada componente estática del esfuerzo y otra correspondiente a un esfuerzo alternante denominado esfuerzo alternante.

La Figura 2.40 muestra estos esfuerzos en relación al tiempo.

Figura 2. 40 Esfuerzos que varían en el tiempo con amplitudes constantes. (Fuente: Norton 4° edición)

 σ_a : esfuerzo alternante o amplitud del esfuerzo.

 σ m: esfuerzo medio o componente estática del esfuerzo.

σs: esfuerzo superior o máximo.

σi: esfuerzo inferior o mínimo.

 Δ **σ**: variación de esfuerzos.

Esfuerzo medio: $\boldsymbol{\sigma}_{m} = \frac{\sigma_{máx} + \sigma_{min}}{2}$

Esfuerzo alternante: $\sigma_a = \frac{\sigma_{máx} - \sigma_{min}}{2}$

Variación del esfuerzo: $\Delta \boldsymbol{\sigma} = \sigma_{máx} - \sigma_{min}$

Los esfuerzos con amplitud variable, como se muestra en la Figura 2.41, están relacionados con el tráfico de vehículos, con las olas agitando las plataformas marítimas o con el viento actuando en las alas de aviones. Todas las tensiones que se producen debido a todo lo anteriormente mencionado generan unas tensiones variables y se consideran que son de naturaleza aleatoria.

Figura 2. 41 Carga semi-aleatoria en diferentes periodos. (Fuente: Norton 4° edición)

2.3.8.3 Regímenes de fatiga.

Los regímenes de fatiga son dos; régimen de fatiga de ciclo bajo (Low Cycle Fatigue - LCF) o régimen de fatiga de ciclo alto (High Cycle Fatigue - HCF), esto indica el número de ciclos de esfuerzo al que trabaja una pieza durante su tiempo de vida.

Según Juvinal, Norton y Shigley sugieren $N = 10^3$ ciclos para dividir el LCF del HCF como podemos ver en la Figura 2.42.

2.3.8.4 Diagrama de Wohler.

El diagrama de Wohler es el resultado de varias pruebas en laboratorios donde se determina los parámetros de resistencia de los metales frente a la fatiga.

El diagrama de Wohler también se suele presentar en escala logarítmica o semilogarítmica,

donde la curva se convierte en tramos rectos como se puede ver en la Figura 2.43.

Figura 2. 43 Diagrama de Wohler en escala logarítmica. (Fuente: Jorge Rodríguez Hernández)

"La resistencia a la fatiga se define como el valor máximo de esfuerzo alternante que resistirá sin fallar un material para un numero dado de ciclos de carga" (Rodríguez, p.3-7).

En el diagrama de Wohler se puede ver una línea inclinada, donde las probetas se rompen a un determinado número de ciclos; también se puede ver una línea horizontal que se conoce como límite de fatiga, por debajo de la cual las probetas no se rompen; esto quiere decir que, si se tiene una probeta sometida a un esfuerzo por debajo del límite de fatiga, podría girar infinitamente sin fallar por fatiga o, dicho de otra manera, tendría vida infinita.

2.3.8.5 Construcción aproximada del diagrama de Wohler.

En caso de no disponer de datos exactos para el material con el cual se trabaja, es posible construir un diagrama de Wohler aproximado, como se muestra en la Figura 2.44 donde el valor que corresponde a la amplitud límite para obtener vida ilimitada se denomina, límite de fatiga o esfuerzo limite alternante σ_A , también cabe mencionar que la Figura 2.44 corresponde a esfuerzos alternantes puros, es decir a una componente estática nula $\sigma_m = 0$.

Figura 2. 44 Diagrama aproximado de Wohler para componente estática diferente de 0, $\sigma \neq 0$. (Fuente: Jorge Rodríguez Hernández)

2.3.8.6 Diagrama de Haigh.

El diagrama de Haigh contiene la misma información que el diagrama de Smith.

Cuando la componente estática de la tensión σ_m no es nula será necesario recurrir al diagrama de Haigh debido a que una situación donde $\sigma_m \neq 0$ colabora al fallo por fatiga de la pieza; el diagrama de Haigh de la Figura 2.45 representa los ensayos realizados sobre piezas y probetas con diferentes combinaciones de tensiones que se representan valores de la tensión media frente a la tensión variable o también llamada alternante.

Figura 2. 45 Diagrama de Haigh. (Fuente: Jorge Rodríguez Hernández)

CAPITULO III

ANÁLISIS EXPERIMENTAL.

3.1 Análisis Dinámico Experimental.

Para el análisis dinámico experimental se hará uso de dos elementos muy importantes para la toma de datos; como son strain gages (galgas extensiométricas) y acelerómetros.

El análisis dinámico se realiza teniendo como una carga móvil, 2 locomotoras y 18 vagones que se transportan a velocidades de 5km/h y 15 km/h; con las condiciones mencionadas, con los strain gages se logran obtener las deformaciones producidas en la estructura principal del puente ferroviario; mientras que con los acelerómetros se obtendrá el amortiguamiento, frecuencias naturales y amplitudes de vibración que se presentan en la estructura principal cuando la locomotoras y los vagones transitan sobre el puente ferroviario.

3.1.1 Análisis experimental con strain gages.

Strain Gages o también llamados Galgas Extensiométricas, el Strain Gages es la manera más común de medir la tensión; es un dispositivo electrónico que su resistencia eléctrica varia en proporción con la cantidad de tensión aplicada en el dispositivo.

El Strain Gages consiste en un fino alambre o, más conocido como rejilla como se muestra la Figura 3.1. La rejilla se adjunta a la base aislante flexible y este se une directamente a la pieza de prueba. Por lo tanto, la tensión experimentada en la pieza se transmite directamente al Strain Gages y este responde con un cambio lineal en resistencia eléctrica.

Figura 3. 1 Strain Gages. (Fuente: Elaboración Propia)

3.1.1.1 Mediciones con strain gages uniaxiales.

En la Figura 3.2 podemos ver la posición donde se encuentran ubicadas los Strain Gages uniaxiales (lineales) en la estructura principal de puente ferroviario.

Los Strain Gages uniaxiales están ubicados en la posición AAS (punto A aguas arriba superior), ABS (punto A aguas abajo superior), AAI (punto A aguas arriba inferior), CAS (punto C aguas arriba superior), CBS (punto C aguas abajo superior) y CAI (punto C aguas arriba inferior).

Figura 3. 2 Ubicación de strain gages lineales en viga principal de puente ferroviario Sumbay. (Fuente: Elaboración Propia.)

La Figura 3.3 muestra una vista de planta del puente ferroviario, donde se puede apreciar claramente los puntos **A** y **C**; así como una vista de corte en los puntos anteriormente mencionados, también se puede apreciar la ubicación de los strain en la vista de corte haciendo referencia de la parte superior e inferior; así como de la posición aguas arriba y aguas abajo.

Figura 3. 3 Posición de los strain gages lineales en la viga superior e inferior aguas arriba y aguas abajo. (Fuente: Elaboración Propia.)

La Figura 3.4 muestra la fotográfica de todos Strain Gages uniaxiales que se colocaron para

la toma de datos los diferentes puntos de la estructura del puente ferroviario.

Figura 3. 4 Fotografías de Strain Gages instalados en el puente Sumbay (Fuente: Fotografía propia)

3.1.1.2 Deformaciones sin carga minera a 15 km/h.

La condición para la toma de deformaciones con strain gages uniaxiales se muestra en la Figura 3.5; para este caso se tiene el tránsito de 2 locomotoras y 18 vagones en dirección de Arequipa a Juliaca sin carga minera y con una velocidad de tránsito de 15 km/h. Los Strain gages lineales están ubicados en los puntos **AAS**, **ABS**, **AAI**, **CAS**, **CBS** y **CAI**, en la estructura principal.

Figura 3. 5 Tránsito de 2 locomotoras y 18 vagones sin carga minera a 15 km/h. (Fuente: Elaboración Propia)

La Figura 3.6 nos muestra los valores de la deformación lineal producida en los puntos AAS, ABS, AAI, CAS, CBS y CAI; la condición medida fue realizada en la dirección Arequipa a Juliaca.

Figura 3. 6 Deformación al paso del tren de carga con dos locomotoras y 18 vagones sin carga del tramo Arequipa a Juliaca a 15km/h (Fuente: SIGNAL EXPRESS.)

Los diferentes tramos se deforman en función a su longitud, los Strain Gages lineales tanto

para tracción y compresión comienzan a medir deformación cuando la carga esta sobre el tramo

de instalación del Strain Gages.

En la Figura 3.6 según los Strain Gages **AAS**, **ABS** y **AAI** se percibe la deformación cuando la primera locomotora entra en el Tramo N°4 entre el Pilar 2 y el Pilar 3, como se muestra en la Figura 3.6, por ello se puede indicar que el Pilar 2 se comporta de manera muy rígida.

Figura 3. 7 Tramos del puente ferroviario Sumbay. (Fuente: Elaboración Propia)

Los Strain Gages uniaxiales muestran la deformación dinámica al paso de las 2 locomotoras y 18 vagones por el puente ferroviario en un tiempo de 35 segundos como se muestra la Figura 3.6 y en la Tabla 3.1 se muestran las deformaciones máximas captadas por el Strain Gages en los puntos **AAS**, **ABS**, **AAI**, **CAS**, **CBS**, **CAI** y se puede apreciar que la compresión máxima llega hasta -173µɛ (micro strain) y la tracción máxima llega a 146µɛ (micro strain).

Tabla 3. 1

Tabla de deformaciones de	los micro strain p	para una condición s	in carga a 15 km/h.
---------------------------	--------------------	----------------------	---------------------

Prueba sin carga de mineral - Deformaciones - MicroStrain [με]							
Posici	ón	AAS	ABS	AAI	CAS	CBS	CAI
	Max	-170.00	-173.00	141.00	-170.00	-163.00	146.00
με	Min	-28.00	-30.00	15.00	-27.00	-30.00	15.00

Fuente: Elaboración Propia.

3.1.1.3 Cálculo de esfuerzos sin carga minera a 15km/h.

Para determinar los esfuerzos se hace uso de la ley de Hooke donde el esfuerzo es directamente proporcional a la deformación como se muestra en la siguiente ecuación:

$$\boldsymbol{\sigma} = \boldsymbol{E} \ast \boldsymbol{\varepsilon}$$

Para este caso se utiliza Modulo de Young del hierro forjado; $\mathbf{E} = 193.053$ GPa y la

deformación utilizada será las obtenidas con los strain gages, mostrados en la Tabla 3.1.

Cálculo de los esfuerzos máximos y mínimos en el punto AAS:

$$\sigma_{max} = 193.053(10^{9}) * (-170.00(10^{-6}))$$
$$\sigma_{max} = -32.819 MPa$$
$$\sigma_{min} = 193.053(10^{9}) * (-28.00(10^{-6}))$$
$$\sigma_{min} = -5.405 MPa$$

Se procede de la misma manera para los puntos **ABS**, **AAI**, **CAS**, **CBS**, **CAI**; obteniéndose los resultados en la Tabla 3.2, donde se muestran los esfuerzos máximos y mínimos para una condición de 2 locomotoras y 18 vagones a 5km/h sin carga minera.

Tabla 3. 2 Tabla de esfuerzos máximos y mínimos para una condición sin carga a 15 km/h.

Esfuerzos máximos de Compresión y Tracción [MPa]							
Posición		AAS	ABS	AAI	CAS	CBS	CAI
σ	Max	-32.819	-33.398	27.221	-32.819	-31.468	28.186
	Min	-5.405	-5.792	2.896	-5.212	-5.792	2.896

Fuente: Elaboración Propia.

3.1.1.4 Deformaciones con carga mineral a 5km/h.

La condición para la toma de deformaciones con strain gages uniaxiales se muestra en la Figura 3.8; para este caso se tiene el tránsito de 2 locomotoras y 18 vagones en dirección de Arequipa a Juliaca con carga minera y con una velocidad de tránsito de 5 km/h. Los Strain gages lineales están ubicados en los puntos **AAS**, **ABS**, **AAI**, **CAS**, **CBS** y **CAI**, en la estructura principal.

Figura 3. 8 Tránsito de 2 locomotoras y 18 vagones con carga minera a 5 km/h. (Fuente: Elaboración Propia)

La Figura 3.9 nos muestra los valores de la deformación lineal producida en los puntos AAS,

ABS, AAI, CAS, CBS y CAI; la condición medida fue realizada en la dirección Juliaca a

Arequipa.

Figura 3. 9 Deformaciones al paso del tren de carga con dos locomotoras y 18 vagones con carga del tramo Juliaca a Arequipa a 5 Km/h. (Fuente: SIGNAL EXPRESS.)

En la Tabla 3.3 se muestra las deformaciones captadas por el strain gages en los puntos AAS, ABS, AAI, CAS, CBS, CAI y se puede apreciar que la compresión máxima llega hasta 158 με (micro strain) y la tracción máxima a 152 με (micro strain).

Tabla 3. 3			
Tabla de deformaciones	de los micro stra	iin para una condicio	ón con carga a 5 km/h

Prueba sin carga de mineral - Deformaciones - MicroStrain [με]							
Posició	n	AAS	ABS	AAI	CAS	CBS	CAI
	Max	-129.00	-129.00	130.00	-158.00	-142.00	152.00
με	Min	-74.00	-74.00	65.00	-74.00	-60.00	75.00

Fuente: Elaboración Propia.

3.1.1.5 Cálculo de esfuerzos con carga minera a 5km/h.

Para determinar los esfuerzos se hace uso de la ley de Hooke donde el esfuerzo es directamente proporcional a la deformación como se muestra en la siguiente ecuación:

$$\sigma = E * \varepsilon$$

Para este caso se utiliza Modulo de Young del hierro forjado; $\mathbf{E} = 193.053$ GPa y la

deformación utilizada será las obtenidas con los strain gages.

Cálculo de los esfuerzos máximos y mínimos en el punto AAS:

$$\sigma_{max} = 193.053(10^{9}) * (-129.00(10^{-6}))$$
$$\sigma_{max} = -24.904 MPa$$
$$\sigma_{min} = 193.053(10^{9}) * (-74.00(10^{-6}))$$
$$\sigma_{min} = -14.286 MPa$$

Se procede de la misma manera para los puntos **ABS**, **AAI**, **CAS**, **CBS**, **CAI**; obteniéndose los resultados en la Tabla 3.4, donde se muestran los esfuerzos máximos y mínimos para una condición de 2 locomotoras y 18 vagones a 5km/h con carga minera.

Tabla 3. 4			
Tabla de esfuerzos m	áximos y mínimos	para condición	con carga a 5 km/h.

	Esfuerzos máximos de Compresión y Tracción [MPa]						
P	osición	AAS	ABS	AAI	CAS	CBS	CAI
_	Max	-24.904	-24.904	25.097	-30.502	-27.414	29.344
O	Min	-14.286	-14.286	12.548	-14.286	-11.583	14.479

Fuente: Elaboración Propia.

3.1.2 Análisis experimental con rosetas de deformación.

Las Rosetas de deformación son un arreglo de 3 Strain Gages lineales que son utilizados para medir el estado de deformaciones de un material en el plano.

La Figura 3.10 nos muestra la configuración de los strain gages para diferentes grados de inclinación, siendo 45° para el caso de estudio del puente ferroviario Sumbay.

(Fuente: Elaboración Propia)

3.1.2.1 Medición con rosetas de deformación.

En la Figura 3.11 podemos ver la posición donde se encuentran ubicadas las Rosetas a 45° en el puente ferroviario Sumbay. Las Rosetas de deformación están ubicados en los puntos **B**, **E** y **D** en la estructura del puente ferroviario.

Figura 3. 11 Puntos de instalación de 03 rosetas de 3 canales a 45° cada uno. (Fuente: Elaboración Propia.)

3.1.2.2 Deformaciones de la roseta B sin carga minera a 5km/h.

Este análisis experimental se realiza con un strain gages tipo roseta ubicado en el punto **B** con una condición de tránsito de 2 locomotoras y 18 vagones sin carga minera a 5 km/h en dirección Arequipa a Juliaca, ver Figura 3.12.

Figura 3. 12 Tránsito de 2 locomotoras y 18 vagones sin carga minera a 5 km/h "Punto B". (Fuente: Elaboración Propia)

Las deformaciones producidas por la carga móvil se encuentran en la Figura 3.13, este análisis dinámico se realiza en un tiempo de 35 segundos, es el tiempo que tarda en pasar el puente las locomotoras y vagones.

En la Figura 3.13 se tiene que la deformación máxima lo producen las locomotoras, mientras que los vagones no producen una gran deformación y a partir de que las locomotoras salen del puente ferroviario la deformación solo lo producen los vagones en menor magnitud.

Figura 3. 13 Deformación de la roseta B al paso del tren sin carga con dos locomotoras y 18 vagones del tramo Arequipa a Juliaca 5Km/h. (Fuente: SIGNAL EXPRESS.)

La Figura 3.14 nos muestra la configuración de la Roseta en el punto B, conocer la dirección

donde se encuentra situado es muy importante para los cálculos que se realizaran.

Figura 3. 14 Posición de la roseta en la posición B. (Fuente: Elaboración Propia)

Usando roseta de 45° se han determinado las siguientes deformaciones en el punto **B** para el paso de tren **SIN CARGA A 5km/h** se obtiene las siguientes deformaciones máxima, ver Figura 3.13.

$$\epsilon_1 = 30 \,\mu \qquad \epsilon_2 = -100 \,\mu \qquad \epsilon_3 = -131 \,\mu$$

Ángulos a los que se encuentran los strain gages uniaxiales.

$$\theta_1 = 45^\circ$$
 $\theta_2 = 90^\circ$ $\theta_3 = 135^\circ$

Sustituyendo estos valores en la ecuación para determinar las deformaciones normales. (Ferdinand P. Beer, 2013)

$$\begin{aligned} \epsilon_1 &= \epsilon_x \cos^2 \theta_1 + \epsilon_y \sin^2 \theta_1 + \gamma_{xy} \sin \theta_1 \cos \theta_1 \\ \epsilon_2 &= \epsilon_x \cos^2 \theta_2 + \epsilon_y \sin^2 \theta_2 + \gamma_{xy} \sin \theta_2 \cos \theta_2 \\ \epsilon_3 &= \epsilon_x \cos^2 \theta_3 + \epsilon_y \sin^2 \theta_3 + \gamma_{xy} \sin \theta_3 \cos \theta_3 \\ 30x10^{-6} &= \epsilon_x \cos^2 45^\circ + \epsilon_y \sin^2 45^\circ + \gamma_{xy} \sin 45^\circ \cos 45^\circ \\ -100x10^{-6} &= \epsilon_x \cos^2 90^\circ + \epsilon_y \sin^2 90^\circ + \gamma_{xy} \sin 90^\circ \cos 90^\circ \\ -131x10^{-6} &= \epsilon_x \cos^2 135^\circ + \epsilon_y \sin^2 135^\circ + \gamma_{xy} \sin 135^\circ \cos 135^\circ \end{aligned}$$

Se procede a resolver el sistema de ecuaciones para obtener los valores de deformación unitaria en el eje X y en el eje Y; así también la deformación angular.

$\epsilon_x = -1.00 \ \mu$	"Deformación Unitaria en el eje X"
$\epsilon_y = -100.00 \ \mu$	"Deformación Unitaria en el eje Y"
$\gamma_{xy} = 161.00 \ \mu$	"Deformación Angular"

En la figura 3.15 se muestra el diagrama del estado de deformación unitaria en el eje X e Y con una deformación angular.

(Fuente: Elaboración Propia)

A partir de los valores obtenidos, graficamos el círculo de Mohr para poder determinar las deformaciones principales (Ferdinand P. Beer, 2013).

Para poder determinar el centro del círculo de Mohr se determina la deformación promedio sustituyendo la ecuación.

$$\epsilon_{prom} = \frac{1}{2} (\epsilon_x + \epsilon_y) = \frac{1}{2} ((-1.00) + (-100.00)) = -50.50 \,\mu$$

Con el valor obtenido el centro del círculo de Mohr es: C (-50.50, 0)

Con los valores de deformación normal y cortante obtenidas anteriormente se obtiene las coordenadas de los puntos X e Y del círculo de Mhor; figura 3.17.

Coordenadas punto X:

Coordenadas punto Y:

$$\mathbf{X} = (\mathcal{E}_{x}, -\frac{1}{2}\gamma_{xy}) \qquad \mathbf{Y} = (\mathcal{E}_{y}, +\frac{1}{2}\gamma_{xy})$$
$$\mathbf{X} = (-1, -80.5) \qquad \mathbf{Y} = (-100, 80.5)$$

La Figura 3.16 nos muestra el círculo de Mohr para deformación plana graficado con los valores de deformación promedio para el centro del círculo y las coordenadas para los puntos **X** e **Y**.

Seguidamente se determina el radio del círculo de Mhor para deformación plana gráficamente utilizando el círculo de Mohr o sustituyendo en la ecuación.

$$R = \sqrt{\left(\frac{\epsilon_x - \epsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2} = \sqrt{\left(\frac{-1.0 - (-100.0)}{2}\right)^2 + \left(\frac{161.0}{2}\right)^2} = 94.501\,\mu$$

Para determinar el ángulo de la deformación primaria se sustituye en la siguiente ecuación.

$$\tan 2\theta_p = \frac{\gamma_{xy}}{\epsilon_x - \epsilon_y} = \frac{161.0}{-1 - (-100)} = 1.626$$
$$2\theta_p = 58.412$$

 $\boldsymbol{\theta}_{p}=29.206^{\circ}$ (+) antihorario

El ángulo θ_p define la dirección del eje principal de deformación OX' como se muestra en la Figura 3.17.

Gráficamente se determina las deformaciones principales o reemplazando en las siguientes ecuaciones.

$$\epsilon_{min} = \epsilon_a = \epsilon_{prom} - R$$

 $\boldsymbol{\epsilon}_{\boldsymbol{m} \acute{a} \boldsymbol{x}} = \boldsymbol{\epsilon}_{b} = \boldsymbol{\epsilon}_{prom} + R$

$$\epsilon_{min} = -50.50 - 94.50 = -145.00 \ \mu$$

 $\epsilon_{m \acute{a} x} = -50.50 + 94.50 = 44.00 \,\mu$

En el caso de la deformación principal la cortante es igual a:

 $\frac{\gamma}{2} = 0$

figura 3. 17 Diagrama de deformaciones principales (Fuente: Elaboración Propia)

Para determinar la deformación principal ϵ_c se considera $\sigma_z = 0$ en la superficie y se considera la siguiente ecuación para un análisis tridimensional de la deformación (Ferdinand P. Beer, 2013).

$$\epsilon_c = -\frac{\nu}{1-\nu}(\epsilon_a + \epsilon_b) = -\frac{0.278}{1-0.278}(-145.00 + 44.00) = 38.89\,\mu$$

Posteriormente se dibuja el circulo de Mhor para deformación plana con los valores de deformación principal hallados anteriormente.

Figura 3.19 Círculo de MHOR para determinar deformación cortante máxima. (Fuente: Elaboración Propia)

A partir del círculo de Mhor se puede determinar la deformación cortante máxima gráficamente o reemplazando en la siguiente ecuación.

$$\frac{1}{2}\gamma_{max} = \frac{1}{2}(145 + 44) = 189.00\,\mu$$

Aplicando la Ley de Hooke Generalizada para un estado de esfuerzo plano se calcula los esfuerzos en ejes X e Y (Ferdinand P. Beer, 2013).

$$\epsilon_x = \frac{\sigma_x}{E} - \frac{\nu}{E} \sigma_y \qquad \qquad \epsilon_y = \frac{\sigma_y}{E} - \frac{\nu}{E} \sigma_x$$
$$-1.00(10^{-6}) = \frac{\sigma_x}{193.053(10^9)} - \frac{0.278}{193.053(10^9)} \sigma_y$$
$$-100.00(10^{-6}) = \frac{\sigma_y}{193.053(10^9)} - \frac{0.278}{193.053(10^9)} \sigma_x$$

Resolvemos las ecuaciones y se obtiene los valores de esfuerzos normales en X e Y.

 $\sigma_x = -6.024 MPa$ "Esfuerzo normal en X" $\sigma_y = -20.978 MPa$ "Esfuerzo normal en Y"

Determinamos el módulo de rigidez haciendo uso del módulo de elasticidad para el hierro

forjado.

Módulo de elasticidad: E = 193.053 GPa

Coeficiente de Poisson: $\nu = 0.278$

$$G = \frac{E}{2(1+\nu)} = \frac{193.053(10^9)}{2(1+0.278)} = 75529.343 MPa$$

Posteriormente se calcula el esfuerzo cortante mediante la aplicación de la ley de Hooke para

esfuerzo cortante.

 $\tau_{xy} = G\gamma_{xy} = 75529.343(10^6) * 161(10^{-6})$

 $\tau_{xy} = 12.160 MPa$

Figura 3. 18 Diagrama de estado de esfuerzos (Fuente: Elaboración Propia)

Con los valores obtenidos graficamos el círculo de Mohr para poder determinar los esfuerzos principales (Ferdinand P. Beer, 2013).

Para poder determinar el centro del círculo de Mohr se determina el esfuerzo promedio.

$$\sigma_{prom} = \frac{1}{2} (\sigma_x + \sigma_y) = \frac{1}{2} (-6.024 + (-20.978))$$

$\sigma_{prom} = -13.501 MPa$

 $\mathbf{X} = (\sigma_x, \tau_{xy})$

Con lo obtenido anteriormente el centro del círculo de Mohr es: C (-13.501, 0)

Con los valores de esfuerzo normal y cortante obtenidas anteriormente se tendrán las coordenadas de los puntos **X** e **Y** del círculo de Mhor; Figura 3.19.

Coordenadas punto X: Coordenadas punto Y:

$$\mathbf{X} = (-6.024, 12.16)$$
 $\mathbf{Y} = (-20.978, -12.16)$

 $\mathbf{Y} = (\sigma_{v}, -\gamma_{xv})$

La Figura 3.19 nos muestra el círculo de Mohr graficado con los valores de esfuerzo promedio para el centro del círculo y los puntos **X** e **Y**.

Figura 3. 19 Círculo de Mohr para esfuerzo plano. (Fuente: Elaboración Propia.)

Seguidamente se determina el radio del círculo de Mhor para esfuerzo plano gráficamente utilizando el círculo de Mohr o sustituyendo en la siguiente ecuación (Ferdinand P. Beer, 2013).

$$\boldsymbol{R} = \sqrt{\left(\frac{\boldsymbol{\sigma}_x - \boldsymbol{\sigma}_y}{2}\right)^2 + \boldsymbol{\tau}_{xy}^2} = \sqrt{\left(\frac{(-6.024) - (-20.978)}{2}\right)^2 + (12.16)^2} = 14.275 \, MPa$$

$\tau_{max} = 14.275 MPa$

Determinar el ángulo de esfuerzo primario.

$$\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} = \frac{2(12.16)}{-6.024 - (-20.978)} = 1.626$$
$$2\theta_p = 58.413$$

 $\boldsymbol{\theta}_{p} = 29.207^{\circ}$ (+) antihorario

Gráficamente se determina los esfuerzos principales o reemplazando en las siguientes ecuaciones (Ferdinand P. Beer, 2013).

$$\sigma_{min} = \sigma_{prom} - R$$

 $\sigma_{min} = -13.501 - 14.275 = -27.776 MPa$

$$\sigma_{m \acute{a} x} = \sigma_{prom} + R$$

 $\sigma_{max} = -13.501 + 14.275 = 0.774 MPa$

Figura 3. 20 Esfuerzos principales y su dirección para la roseta B al paso de paso del tren para una condición sin carga a 5 km/h. (Fuente: Elaboración Propia.)

3.1.2.3 Deformación de la roseta B con carga minera a 5km/h.

Este análisis experimental se realiza con un strain gages tipo roste ubicado en el punto **B** con una condición de tránsito de 2 locomotoras y 18 vagones con carga minera a 5 km/h en dirección de Juliaca a Arequipa, ver Figura 3.21.

Figura 3. 21 Tránsito de 2 locomotoras y 18 vagones con carga minera a 5 km/h "Punto B". (Fuente: Elaboración Propia)

La Figura 3.22 nos muestra la configuración de la Roseta en el punto **B**; conocer la dirección donde se encuentra situado es muy importante para los cálculos que se realizaran.

Figura 3. 22 Posición de la roseta en la posición B. (Fuente: Elaboración Propia)

Las deformaciones producidas por la carga móvil se encuentran en la Figura 3.22, este análisis dinámico se realiza en un tiempo de 44 segundos.

En la Figura 3.22 se tiene que la deformación producida por las locomotoras y vagones, para el caso de análisis se hará el uso de los valores máximos que se producen según las rosetas.

Figura 3. 23 Deformaciones de la roseta B al paso del tren de con carga con dos locomotoras y 18 vagones del tramo Juliaca a Arequipa 5 Km/h. (Fuente: SIGNAL EXPRESS.)

Usando rosetas de 45° se han determinado las siguientes deformaciones en el punto **B** para el paso de tren **SIN CARGA A 5 km/h** se obtiene las siguientes deformaciones máximas, ver Figura 3.23.

$$\epsilon_1 = 20 \ \mu$$
 $\epsilon_2 = -150 \ \mu$ $\epsilon_3 = -132 \ \mu$

Ángulos a los que se encuentran los strain gages uniaxiales.

 $\theta_1 = 45^\circ$ $\theta_2 = 90^\circ$ $\theta_3 = 135^\circ$

El procedimiento de cálculo para obtener los esfuerzos principales es igual al que se presenta

en la sección 3.1.2.2 "Deformaciones de la roseta B sin carga minera a 5km/h".

Obteniéndose como resultado para los esfuerzos principales.

$$\sigma_{min} = -33.231 MPa$$
 $\sigma_{max} = 3.287 MPa$ $\theta_p = 19.478^\circ$ (+) antihorario

Posteriormente de muestra un gráfico con los esfuerzos principales y su dirección.

Figura 3. 24 Esfuerzos principales y su dirección para la roseta B al paso del tren con carga para una condición con carga a 5 km/h. (Fuente: Elaboración Propia.)

3.1.2.4 Deformación de la roseta E sin carga minera a 5 km/h.

Este análisis experimental se realiza con un strain gages tipo rosete ubicado en el punto **E** con una condición de tránsito de 2 locomotoras y 18 vagones sin carga minera a 5 km/h en dirección de Arequipa a Juliaca, ver Figura 3.25.

(Fuente: Elaboración Propia)

Las deformaciones producidas por la carga móvil se encuentran en la Figura 3.26; este análisis dinámico se realiza en un tiempo de 35 segundos, es el tiempo que tarda en pasar el puente las locomotoras y vagones.

En la Figura 3.26 se tiene que la deformación máxima lo producen las locomotoras, mientras que los vagones no producen una gran deformación y a partir de que las locomotoras salen del puente ferroviario solo lo producen los vagones en menor magnitud.

Figura 3. 26 Deformaciones de la roseta E al paso del tren con dos locomotoras y 18 vagones sin carga del tramo Arequipa a Juliaca a 5 Km/h. (Fuente: SIGNAL EXPRESS.)

El procedimiento de cálculo para obtener los esfuerzos principales es igual al que se presenta

en la sección 3.1.2.2 "Deformaciones de la roseta B sin carga minera a 5km/h".

Obteniéndose como resultado para los esfuerzos principales.

$$\sigma_{min} = -17.892 MPa$$
 $\sigma_{max} = 3.182 MPa$ $\theta_p = 37.731^{\circ} (+)$ horario

Posteriormente de muestra un gráfico con los esfuerzos principales y su dirección.

Figura 3. 27 Esfuerzos principales y su dirección para la roseta E al paso del tren sin carga. (Fuente: Elaboración Propia.)

3.1.2.5 Deformación de la roseta E con carga minera a 5km/h.

Este análisis experimental se realiza con un strain gages tipo rosete ubicado en el punto **E** con una condición de tránsito de 2 locomotoras y 18 vagones con carga minera a 5 km/h en dirección de Juliaca a Arequipa, ver Figura 3.28.

Figura 3. 28 Tránsito de 2 locomotoras y 18 vagones con carga minera a 5 km/h "Punto E". (Fuente: Elaboración Propia)

Las deformaciones producidas por la carga móvil se encuentran en la Figura 3.29, este análisis dinámico se realiza en un tiempo de 44 segundos, es el tiempo que tarda en pasar el puente las locomotoras y vagones. En la Figura 3.29 se tiene que la deformación máxima lo producen las locomotoras, mientras que los vagones no producen una gran deformación y a partir de que las locomotoras salen del puente ferroviario solo lo producen los vagones en menor magnitud.

Figura 3. 29 Deformaciones de la roseta E al paso del tren de carga con dos locomotoras y 18 vagones con carga del tramo Juliaca a Arequipa a 5 Km/h. (Fuente: SIGNAL EXPRESS.)

El procedimiento de cálculo para obtener los esfuerzos principales es igual al que se presenta en la sección 3.1.2.2 "Deformaciones de la roseta B sin carga minera a 5km/h".

Obteniéndose como resultado para los esfuerzos principales.

$$\sigma_{min} = -14.942 MPa$$
 $\sigma_{max} = 5.582 MPa$ $\theta_p = 41.830^{\circ} (+)$ horario

Posteriormente de muestra un gráfico con los esfuerzos principales y su dirección.

Figura 3. 30 Esfuerzos principales y su dirección para la roseta E al paso de tren con carga. (Fuente: Elaboración Propia)

3.1.2.6 Deformación de la roseta D sin carga minera a 5 km/h.

Este análisis experimental se realiza con un strain gages tipo rosete ubicado en el punto **D** con una condición de tránsito de 2 locomotoras y 18 vagones sin carga minera a 5 km/h en dirección de Arequipa a Juliaca, ver Figura 3.31.

Figura 3. 31 Tránsito de 2 locomotoras y 18 vagones sin carga minera a 5 km/h "Punto D". (Fuente: Elaboración Propia)

Las deformaciones producidas por la carga móvil se encuentran en la Figura 3.31, este análisis dinámico se realiza en un tiempo de 30 segundos, es el tiempo que tarda en pasar el puente las locomotoras y vagones.

En la Figura 3.31 se tiene que la deformación máxima lo producen las locomotoras, mientras que los vagones no producen una gran deformación y a partir de que las locomotoras salen del puente ferroviario solo lo producen los vagones en menor magnitud.

Figura 3. 32 Deformaciones de la roseta D al paso del tren de carga con dos locomotoras y 18 vagones sin carga del tramo Arequipa a Juliaca 5Km/h. (Fuente: SIGNAL EXPRESS.)

El procedimiento de cálculo para obtener los esfuerzos principales es igual al que se presenta

en la sección 3.1.2.2 "Deformaciones de la roseta B sin carga minera a 5km/h".

Obteniéndose como resultado para los esfuerzos principales.

$$\sigma_{min} = -27.063 MPa$$
 $\sigma_{max} = -2.083 MPa$ $\theta_p = 1.907^{\circ}$ (+) antihorario

Posteriormente de muestra un gráfico con los esfuerzos principales y su dirección.

Figura 3. 33 Esfuerzos principales y su dirección para la roseta D al paso del tren sin carga. (Fuente: Elaboración Propia.)

3.1.2.7 Deformación de la roseta D con carga minera a 5km/h.

Este análisis experimental se realiza con un strain gages tipo rosete ubicado en el punto **D** con una condición de tránsito de 2 locomotoras y 18 vagones con carga minera a 5 km/h en dirección de Arequipa a Juliaca, ver Figura 3.34.

Figura 3. 34 Tránsito de 2 locomotoras y 18 vagones con carga minera a 5 km/h "Punto D". (Fuente: Elaboración Propia)

Las deformaciones producidas por la carga móvil se encuentran en la Figura 3.35, este análisis dinámico se realiza en un tiempo de 45 segundos, es el tiempo que tarda en pasar el puente las locomotoras y vagones.

Figura 3. 35 Deformación de la roseta D al paso del tren de carga con dos locomotoras y 18vagones con carga del tramo Juliaca a Arequipa a 5 Km/h. (Fuente: SIGNAL EXPRESS.)

El procedimiento de cálculo para obtener los esfuerzos principales es igual al que se presenta

en la sección 3.1.2.2 "Deformaciones de la roseta B sin carga minera a 5km/h".

Obteniéndose como resultado para los esfuerzos principales.

 $\sigma_{min} = -24.088 MPa$ $\sigma_{max} = 0.288 MPa$ $\theta_p = 1.952^{\circ}$ (+) antihorario

Posteriormente de muestra un gráfico con los esfuerzos principales y su dirección.

Figura 3. 36 Esfuerzos principales y su dirección para la roseta D al paso del tren con carga. (Fuente: Elaboración Propia)

3.2 Análisis Estático Experimental.

3.2.1 Deformación de la roseta B para prueba estática.

Este análisis experimental se realiza con un strain gages tipo rosete ubicado en el punto **B** con una condición estática de 2 locomotoras y 2 vagones con carga minera, tal como se muestra en la figura 3.37. La roseta de deformación está situada en la parte superior de pilar ubicada al centro del puente ferroviario.

Para la medición en condición estática se detiene las locomotoras y vagones en la condición mostrada en la figura 3.37.

Figura 3. 37 Condición estática para medición con strain gages en punto B. (Fuente: Elaboración Propia)

Las deformaciones producidas por una carga estática sobre la estructura se encuentran en la

Figura 3. 38 Deformaciones de la roseta B para condición estática. (Fuente: SIGNAL EXPRESS.)

una condición estática CON CARGA de 2 locomotoras y 2 vagones con carga minera.

 $\epsilon_1 = 5 \mu$ $\epsilon_2 = -128 \mu$ $\epsilon_3 = -132 \mu$

Ángulos a los que se encuentran los strain gages uniaxiales.

 $\theta_1 = 45^\circ$ $\theta_2 = 90^\circ$ $\theta_3 = 135^\circ$

El procedimiento de cálculo para obtener los esfuerzos principales es igual al que se presenta

en la sección 3.1.2.2 "Deformaciones de la roseta B sin carga minera a 5km/h".

Obteniéndose como resultado para los esfuerzos principales.

 $\sigma_{min} = -31.190 MPa$ $\sigma_{max} = -2.764 MPa$ $\theta_p = 23.363^\circ$ (+) antihorario

Posteriormente de muestra un gráfico con los esfuerzos principales y su dirección.

Figura 3. 39 Esfuerzos principales y su dirección para la roseta B prueba estática. (Fuente: Elaboración Propia)

3.2.2 Deformación de la roseta E para prueba estática.

Este análisis experimental se realiza con un strain gages tipo rosete ubicado en el punto **E** con una condición estática de 1 locomotoras ubicada en el primer tramo del puente ferroviario, tal como se muestra en la Figura 3.40.

La roseta de deformación está situada en la viga placa de la viga principal del puente ferroviario.

Figura 3. 40 Condición estática para medición con strain gages en punto E. (Fuente: Elaboración Propia)

Las deformaciones producidas por una carga estática sobre la estructura se encuentran en la

Figura 3.41, para esta condición de análisis se realiza con vagones con carga minera

Figura 3. 41 Deformaciones de la roseta E para condición estática. (Fuente: SIGNAL EXPRESS.)

El procedimiento de cálculo para obtener los esfuerzos principales es igual al que se presenta

en la sección 3.1.2.2 "Deformaciones de la roseta B sin carga minera a 5km/h".

Obteniéndose como resultado para los esfuerzos principales.

$$\sigma_{min} = -6.912 MPa$$
 $\sigma_{max} = 3.162 MPa$ $\theta_p = 40.69^{\circ} (+)$ horario

Posteriormente de muestra un gráfico con los esfuerzos principales y su dirección.

Figura 3. 42 Esfuerzos principales y su dirección para la roseta E prueba estática. (Fuente: Elaboración Propia.)

3.2.3 Deformaciones de la roseta D para prueba estática.

Este análisis experimental se realiza con un strain gages tipo rosete ubicado en el punto **D** con una condición estática de 2 locomotoras y 2 vagones con carga minera, tal como se muestra en la figura 3.43. La roseta de deformación está situada en la parte superior de pilar ubicada al centro del puente ferroviario.

Para la medición en condición estática se detiene las locomotoras y vagones en la condición mostrada en la Figura 3.43

Figura 3. 43 Condición estática para medición con strain gages en punto D. (Fuente: Elaboración Propia)

Las deformaciones producidas por una carga estática sobre la estructura se encuentran en la

Figura 3. 44 Deformaciones de la roseta D para condición estática (Fuente: SIGNAL EXPRESS.)

El procedimiento de cálculo para obtener los esfuerzos principales es igual al que se presenta en la sección 3.1.2.2 "Deformaciones de la roseta B sin carga minera a 5km/h".

Obteniéndose como resultado para los esfuerzos principales.

$$\sigma_{min} = -28.422 MPa$$
 $\sigma_{max} = 0.612 MPa$ $\theta_p = 1.184^{\circ} (+)$ antihorario

Posteriormente de muestra un gráfico con los esfuerzos principales y su dirección.

Figura 3. 45 Esfuerzos principales y su dirección para la roseta D prueba estática. (Fuente: Elaboración Propia)

Los cálculos para todas las condiciones son las mismas a las que se realizaron en la sección 3.1.2.2 para "Deformaciones de la roseta B sin carga minera a 5km/h".

La Tabla 3.5 muestra un resumen de todos los resultados obtenidos anteriormente para las rosetas en los puntos B, D y E; para las diferentes condiciones de carga y velocidad.

La Tabla 3.5 muestra las deformaciones para condición, sin carga, con carga y estático; así también se muestran los esfuerzos máximos, mínimos y los ángulos a los que están ubicados.

Tabla 3.5

CANAL	Angulo de roseta	Deformaciones medidas en microstrain με		Esfuerzos Máximos y su dirección.				
В		Sin	Con Carga Estático	Esfuerzos Máximos	Sin Carga	Con Carga	Estático	
		Carga			σmáx	0.774	3.287	-2.764
1	45 °	30	20	5	σmin	-27.776	-33.231	-31.190
2	90 °	-100	-150	-128	τmax	14.275	18.259	14.213
3	135°	-131	-132	-132	θ°	29.207°	19.478°	23.363°
D		Sin	Sin Con arga Carga	Estático	Esfuerzos Máximos	Sin	Con	Estático
		SIII Carga				Carga	Carga	
		Carga			σmáx	-2.083	0.288	0.612
1	90 °	-138	-125	-148	σmin	-27.063	-24.088	-28.422
2	135°	-60	-50	-56	τmax	12.490	12.188	14.517
3	180°	28	36	44	θ°	1.907°	1.952°	1.184°
			Con	Estático	Esfuerzos	Sin	Con	Fatático
	E	SIII Corgo			Estático Máximos	Carga	Carga	LStaticu
		Carga	arga Carga		σmáx	3.182	5.582	3.162
1	90 °	-10	-10	-2	σmin	-17.892	-14.942	-6.912
2	135°	40	50	26	τmax	10.537	10.262	5.037
3	180°	-45	-25	-12	θ°	-37.731°	-41.830°	-40.690°

Deformaciones y esfuerzos de strain gages tipo roseta (Esfuerzos en MPa).

Fuente: Elaboración Propia.

3.3 Análisis Vibracional.

El análisis vibracional es una técnica de diagnóstico que nos permite relacionar el nivel de vibración con la condición en la que se encuentra un equipo y/o estructura.

Para el caso de estudio se coloca los acelerómetros en la estructura del puente ferroviario Sumbay, con el fin de poder obtener las frecuencias naturales, así como también el tipo de amortiguamiento que posee la estructura.

En la Figura 3.46 se muestra la ubicación de los acelerómetros uniaxiales de 100mV/g, para las diferentes direcciones (Horizontal, Vertical, Axial); también para los diferentes puntos GA (punto A), GB (punto B).

Figura 3. 46 Posición de instalación de los acelerómetros uniaxiales sobre la viga superior aguas arriba y aguas abajo. (Fuente: Elaboración Propia.)

La Figura 3.47 muestra la forma en que se colocaron el strain gages, acelerómetro uniaxial

y acelerómetro triaxial.

Figura 3. 47 Posición de los acelerómetros. (Fuente: Fotografía Propia.)

3.3.1 Frecuencias naturales en la viga principal.

Para la toma de vibraciones en la viga principal del puente ferroviario se realiza con acelerómetro triaxiales con una sensibilidad de 100mV/g en los puntos A y C como se muestra en la Figura 3.48.

Figura 3. 48 Posición de acelerómetros en viga principal. (Fuente: Elaboración Propia)

Para encontrar las posibles frecuencias naturales se hará una prueba de impacto o también conocido como Bump Test; el Bump Test es una técnica que nos permite identificar las frecuencias naturales, sus modos de deformación y coeficiente de amortiguamiento en una máquina o estructura. Para nuestro caso de estudio se realizan varias pruebas de Bump Test mediante el golpe de una madera contra la viga principal obteniéndose la respuesta en frecuencia de la viga principal como se puede ver en las Figuras 3.49, 3.50, 3.51 y 3.52.

Los espectros se muestran en tres ejes (Axial, Vertical y Horizontal) debido a que se realizó la toma con un acelerómetro triaxial. Los picos del espectro nos indican las posibles frecuencias de resonancia del sistema.

Figura 3. 49 Pruebas de Bump Test punto ABS - Frecuencias Naturales. (Fuente: ExpertALERT.)

La Figura 3.49 muestra el resultado de una prueba de bump test y se muestra como un espectro en el dominio de la frecuencia. La ubicación del acelerómetro para esta condición es en el punto A, aguas abajo superiores. El golpe con la madera hacia la viga principal se realiza cerca a la ubicación del acelerómetro triaxial.

101

Figura 3. 50 Pruebas de Bump Test punto AAS - Frecuencias Naturales. (Fuente: ExpertALERT.)

Para el espectro de la figura 3.50 el acelerómetro está ubicado en el punto A, aguas arriba superiores.

Figura 3. 51 Pruebas de Bump Test punto CAS - Frecuencias Naturales. (Fuente: ExpertALERT.)

Para el espectro de la figura 3.51 el acelerómetro está ubicado en el punto B, aguas arriba

superiores.

Figura 3. 52 Pruebas de Bump Test punto CBS - Frecuencias Naturales. (Fuente: ExpertALERT.)

Para el espectro de la figura 3.52 el acelerómetro está ubicado en el punto B, aguas abajo inferiores.

Los valores señalados en Figuras 3.49, 3.50, 3.51 y 3.52 son diferentes debidos a la posición de donde se colocaron los acelerómetros para la toma de datos; así también cabe señalar que las amplitudes que se visualizan dependen mucho de la fuerza con la cual se realizó el impacto de la madera contra la viga principal. Los valores de frecuencia que se consideran como posibles frecuencias naturales son los valores que se excitaron en las múltiples pruebas que se realizaron, es por ello que se considera mostrar convenientemente los espectros que mejor muestren dichas frecuencias.

A partir de los espectros obtenidos de la prueba de Bump Test en los puntos A y C de la viga principal, se podría indicar que las frecuencias mostradas en la Tabla 3.6 son las posibles frecuencias naturales.

102

recuencius nannaies ac ius rigus prin				
Frecuencias Naturales en Hz				
Posición "A"	Posición "C"			
0.25	-			
-	0.56			
0.63	0.60			
1.00	1.12			
-	1.98			
3.25	3.25			
4.50	4.50			
8.25	8.25			
-	9.35			
10.00	10.25			
11.00	-			
12.25	12.00			
14.50	-			
16.18	-			
-	29.13			

Tabla 3. 6 Frecuencias naturales de las vigas principales

Fuente: Elaboración Propia.

3.3.2 Amortiguamiento de estructura.

A partir de la prueba del apartado anterior se obtiene una onda de tiempo de régimen transitoria con las cuales se puede hallar el porcentaje de amortiguamiento ξ .

La figura 3.53 nos muestra el transitorio obtenido con pruebas de bump test en la viga principal del puente ferroviario Sumbay.

En la figura 3.53 el transitorio generado por la prueba de bump test está representada con la línea de color blanco; la línea de color rojo nos ayuda a visualizar el decremento que se produce en la amplitud de la onda de tiempo y la línea de color azul nos ayuda a visualizar como varia la forma de onda en el tiempo.

104

Figura 3. 53 Transitorio de pruebas de Bump Test en viga principal. (Fuente: SIGNAL EXPRESS.)

Con los valores obtenidos de la amplitud de la Figura 3.53 se determina el decremento logarítmico, haciendo uso de la siguiente ecuación señalada en la sección 2.4 del libro titulado "Teoría de Vibraciones-William T. Thomson".

$$\delta = \frac{1}{n} \ln \left(\frac{x_1}{x_{n+1}} \right)$$

	Х	δ
X 1	837.50	0.293
X 2	625.00	0.248
X3	487.50	0.230
X4	387.50	0.215
X5	312.50	0.223
X 6	250.00	0.223
X 7	200.00	0.208
X 8	162.50	0.262
X 9	125.00	0.223
X10	100.00	0.288
X11	75.00	

Una vez obtenido los valores del decremento logarítmico se determina el factor de amortiguamiento para cada punto con la siguiente ecuación señalada en la sección 2.4 del libro titulado "Teoría de Vibraciones-William T. Thomson":

δ

$$\begin{split} \xi &= \frac{}{\sqrt{4\pi^2 - \delta^2}} \\ \hline \delta & \xi \\ 0.293 & 0.0466 \\ 0.248 & 0.0396 \\ 0.230 & 0.0366 \\ 0.215 & 0.0343 \\ 0.223 & 0.0355 \\ 0.223 & 0.0355 \\ 0.208 & 0.0331 \\ 0.262 & 0.0418 \\ 0.223 & 0.0355 \\ 0.288 & 0.0458 \end{split}$$

En la Tabla 3.7 se muestra los valores obtenidos anteriormente para poder obtener el factor de amortiguamiento en la viga principal del puente ferroviario Sumbay.

Tabla 3. 7 Porcentaje de amortiguamiento en transitorios obtenidos con pruebas de Bump Test en viga principal.

δ	າ	ξ%
0.293	0.0466	4.66
0.248	0.0396	3.96
0.230	0.0366	3.66
0.215	0.0343	3.43
0.223	0.0355	3.55
0.223	0.0355	3.55
0.208	0.0331	3.31
0.262	0.0418	4.18
0.223	0.0355	3.55
0.288	0.0458	4.58
Promedio	0.0384	3.84

Podemos concluir que el tipo de amortiguamiento es SUB-AMORTIGUADO debido a que el factor de amortiguamiento es menor a 1 ($\xi < 1$).

3.3.3 Medición de amplitudes de vibración y frecuencias de excitación.

Las mediciones de vibraciones se realizan con acelerómetros triaxiales de 100 mV/g de sensibilidad colocados de tal manera se obtenga los resultados en los tres ejes (Axial, Vertical y Horizontal) y muestran bajas amplitudes de vibración por ello no se consideran un problema. Ver figura 3.54, 3.55, 3.56, 3.57.

Figura 3. 54 Espectro de Vibración - Recorrido de Tren (Arequipa - Juliaca) con carga a velocidad de 5km/h. (Fuente: ExpertALERT.)

La figura 3.54 muestra el espectro generado al paso de las locomotoras y vagones a 5km/h; el acelerómetro está ubicado en la posición B, aguas abajo superiores como se muestra en la figura 3.46.

La figura 3.54 muestra un espectro en dominio de la frecuencia, donde se visualiza que la mayor amplitud se genera a 5.06 Hz en la dirección vertical llegando a 0.0893 mm/s RMS; por ello podemos indicar que no se generan problemas por vibración.

Figura 3. 55 Espectro de Vibración - Recorrido de Tren (Juliaca - Arequipa) con carga a la velocidad de 5 km/h (Fuente: ExpertALERT.)

La figura 3.55 muestra el espectro generado al paso de las locomotoras y vagones a 5km/h;

el acelerómetro se ubica en la posición A, aguas arriba superiores; ver Figura 3.46.

Figura 3. 56 Espectro de Vibración-Recorrido de Tren (Juliaca-Arequipa) – Sin carga – Velocidad de 5Km/h (Fuente: ExpertALERT.)

107

La Figura 3.56 muestra el espectro generado al paso de las locomotoras y vagones a 5km/h;

el acelerómetro está ubicado en el punto D que se muestra en la Figura 3.46.

Figura 3. 57 Forma de onda-Recorrido de Tren (Arequipa-Juliaca)-con carga Velocidad de 5Km/h. (Fuente: ExpertALERT.)

La Figura 3.57 muestra la onda de tiempo para el tránsito de las 2 locomotoras y 18 vagones. La medida se realizó con acelerómetro triaxial para obtener resultado en los ejes axial, vertical y horizontal de la viga principal del puente ferroviario. En el eje axial se muestra una amplitud máxima de 2mm/s pico-pico; en el eje vertical se muestra una amplitud máxima de 8 mm/s pico-pico y en el eje horizontal se muestra una amplitud máxima de 3mm/s pico-pico; todas estas amplitudes máximas son generados por las locomotoras.

Las vibraciones generadas por las locomotoras y vagones se deben a que se produce un pequeño impacto al pasar las ruedas por uniones de rieles. La vibración generada por las ruedas

108

de las locomotoras y vagones esta señalada con líneas discontinuas de color rojo; ver figura 3.57.

La figura 3.58 nos ayuda a visualizar la configuración de las uniones entre los rieles; el impacto se produce cuando las ruedas de las locomotoras y vagones pasan por las ranuras debidas a la separación que existe entre rieles generando una vibración en la estructura.

A partir de la onda de tiempo de la Figura 3.57 se procede a calcular las frecuencias que se excitan al paso de locomotoras y vagones. En la primera fila de las Tablas 3.8, 3.9, 3.10, 3.11, 3.12 y 3.13 se tiene la velocidad a la que se toma las vibraciones al paso de las locomotoras y vagones como se muestra en la Figura 3.57; posterior a ello se tiene el tiempo que se tiene de pico a pico para las diferentes distancias que se indican en el título de cada tabla.

Posteriormente se realiza un cálculo variando a diferentes velocidades de la locomotora; desde 5km/h hasta 20km/h. Como se sabe mientras mayor sea la velocidad de tránsito menor será el tiempo de recorrido y por ende se tendrá una variación en la frecuencia de excitación.

La finalidad de las tablas anteriormente mostradas es tener una idea de las posibles frecuencias que se podrían excitar al paso de las locomotoras y vagones.

Tabla 3.8

Frecuencia de Excitación – De 5Km/h hasta 20 Km/h. Entre Bogies de las Locomotoras 01 y 02(distancia de 4.07 m).

in in in in i	ala jalala		
VELOCIDAD (Km/h)	VELOCIDAD (m/s)	TIEMPO (Seg)	FRECUENCIA EXC. (Hz)
5	1.389	2.932	0.341
6	1.667	2.443	0.409
7	1.944	2.094	0.478
8	2.222	1.833	0.546
9	2.500	1.629	0.614
10	2.778	1.466	0.682
11	3.056	1.333	0.750
12	3.333	1.222	0.818
13	3.611	1.128	0.887
14	3.889	1.047	0.955
15	4.167	0.977	1.024
16	4.444	0.916	1.092
17	4.722	0.862	1.160
18	5.000	0.814	1.229
19	5.278	0.772	1.295
20	5.556	0.733	1.364

Fuente: Elaboración Propia.

Tabla 3.9

Frecuencia de Excitación – De 5Km/h hasta 20 Km/h. Entre Ejes de Bogies de cada locomotora (distancia 1.86 m).

ininin ininin ininin ininin						
VELOCIDAD	VELOCIDAD	TIEMPO	FRECUENCIA			
(Km/h)	(m/s)	(Seg)	EXC. (HZ)			
5	1.389	1.336	0.749			
6	1.667	1.116	0.896			
7	1.944	0.957	1.045			
8	2.222	0.837	1.195			
9	2.500	0.744	1.344			
10	2.778	0.670	1.494			
11	3.056	0.609	1.643			
12	3.333	0.558	1.792			
13	3.611	0.515	1.941			
14	3.889	0.478	2.091			
15	4.167	0.446	2.240			
16	4.444	0.419	2.389			
17	4.722	0.394	2.539			
18	5.000	0.372	2.688			
19	5.278	0.352	2.838			
20	5.556	0.335	2.987			

Frecuencia de Excitación – De 5Km/h hasta 20 Km/h. Entre Bogie y Bogie de cada locomotora (distancia 7.82 m).

111

ining ining plain and a second						
VELOCIDAD (Km/h)	VELOCIDAD (m/s)	TIEMPO (Seg)	FRECUENCIA EXC. (Hz)			
5	1.389	5.633	0.180			
6	1.667	4.694	0.213			
7	1.944	4.025	0.248			
8	2.222	3.521	0.284			
9	2.500	3.130	0.320			
10	2.778	2.817	0.355			
11	3.056	2.560	0.391			
12	3.333	2.348	0.426			
13	3.611	2.167	0.462			
14	3.889	2.012	0.497			
15	4.167	1.878	0.533			
16	4.444	1.761	0.568			
17	4.722	1.657	0.604			
18	5.000	1.565	0.639			
19	5.278	1.482	0.675			
20	5.556	1.408	0.710			

Fuente: Elaboración Propia.

Tabla 3. 11

Frecuencia de Excitación – De 5Km/h hasta 20 Km/h. Entre Bogies de Vagón a Vagón (distancia 3.19 m).

ininin ininin ininin						
VELOCIDAD (Km/h)	VELOCIDAD (m/s)	TIEMPO (Seg)	FRECUENCIA EXC. (Hz)			
5	1.389	2.297	0.435			
6	1.667	1.914	0.522			
7	1.944	1.641	0.609			
8	2.222	1.436	0.696			
9	2.500	1.276	0.784			
10	2.778	1.149	0.871			
11	3.056	1.044	0.958			
12	3.333	0.957	1.045			
13	3.611	0.884	1.132			
14	3.889	0.820	1.219			
15	4.167	0.766	1.306			
16	4.444	0.718	1.393			
17	4.722	0.676	1.480			
18	5.000	0.638	1.567			
19	5.278	0.604	1.654			
20	5.556	0.574	1.741			

Tabla 3. 12

Frecuencia de Excitación – De 5Km/h hasta 20 Km/h. Entre Ejes de Bogies de cada Vagón (distancia 1.71m).

ining ining states and states						
VELOCIDAD	VELOCIDAD	TIEMPO	FRECUENCIA			
(Km/h)	(m/s)	(Seg)	EXC. (Hz)			
5	1.389	1.234	0.79			
6	1.667	1.028	0.973			
7	1.944	0.882	1.134			
8	2.222	0.771	1.296			
9	2.500	0.686	1.459			
10	2.778	0.617	1.621			
11	3.056	0.561	1.783			
12	3.333	0.514	1.945			
13	3.611	0.475	2.107			
14	3.889	0.441	2.269			
15	4.167	0.411	2.431			
16	4.444	0.386	2.593			
17	4.722	0.363	2.755			
18	5.000	0.343	2.917			
19	5.278	0.325	3.079			
20	5.556	0.309	3.241			

Fuente: Elaboración Propia.

Tabla 3. 13 Frecuencia de Excitación – De 5Km/h hasta 20 Km/h. Entre Bogie y Bogie de cada Vagón (distancia 11.41 m).

tatata tatata tatata mining mining						
	1 1					
VELOCIDAD	VELOCIDAD	TIEMPO	FRECUENCIA			
(Km/h)	(m /s)	(Seg)	EXC. (Hz)			
5	1.389	8.212	0.122			
6	1.667	6.843	0.146			
7	1.944	5.868	0.170			
8	2.222	5.133	0.195			
9	2.500	4.563	0.219			
10	2.778	4.106	0.244			
11	3.056	3.732	0.268			
12	3.333	3.422	0.292			
13	3.611	3.159	0.317			
14	3.889	2.933	0.341			
15	4.167	2.737	0.365			
16	4.444	2.567	0.390			
17	4.722	2.416	0.414			
18	5.000	2.281	0.438			
19	5.278	2.161	0.463			
20	5.556	2.053	0.487			

CAPITULO IV

CÁLCULO ANALÍTICO

4.1 Cálculo de Momento de Inercia de la Viga Principal del Puente Sumbay.

En toda la viga principal del puente ferroviario Sumbay se considerará una sección constante, como se muestra en la figura 4.1

Para determinar el momento de inercia del perfil de la viga principal del puente ferroviario Sumbay (figura 4.1), se utilizará el teorema de Steiner, conocido también como teorema de ejes paralelos.

Figura 4. 1 Perfil de la viga principal del puente ferroviario Sumbay. (Fuente: Elaboración Propia)

Centro de gravedad del perfil de viga.

$$\overline{X} = \frac{\sum \overline{x} * A}{\sum A} \qquad \overline{X} = 161 mm$$
$$\overline{Y} = \frac{\sum \overline{y} * A}{\sum A} \qquad \overline{Y} = 921 mm$$

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

Cálculo de momento de inercia del perfil de la viga.

$$I_{x} = \bar{I}_{x'} + A * dy^{2}$$

$$I_{x} = 4\left(\frac{156 * 13^{3}}{12} + 156 * 13 * 914.5^{2}\right) + 4\left(\frac{13 * 142^{3}}{12} + 13 * 142 * 837^{2}\right) + \frac{10 * 1842^{3}}{12}$$

$$I_{x} = 17177.87 * 10^{6} mm^{4}$$

$$I_{y} = \bar{I}_{y'} + A * dx^{2}$$

$$(13 * 156^{3}) = (142 * 13^{3}) = (142 * 13^{3})$$

$$I_{y} = 4\left(\frac{13*156^{3}}{12} + 156*13*80.5^{2}\right) + 4\left(\frac{142*13^{3}}{12} + 13*142*11.5^{2}\right) + \frac{1842*10^{3}}{12}$$

 $I_y = 70.25 * 10^6 mm^4$

4.1.1 Cálculo de la rigidez a la flexión (EI)

La rigidez a la flexión es una propiedad que tiene un elemento que le permite resistir un límite de esfuerzos a flexión sin deformarse.

Módulo de elasticidad para hierro forjado (Tabla 2.7): E = 193053 MPa

$$EI = 193053 Mpa * 17177.87 * 10^6 mm^4$$

$$EI = 193053 \frac{N}{mm^2} * 17177.87 * 10^6 \frac{mm^4}{10^6 mm^2} * \frac{1m^2}{10^6 mm^2} * \frac{1Kg}{9.8N} * \frac{1t}{1000Kg}$$

 $EI = 338391.77 \ t . m^2$

4.2 Cálculo de Carga Permanente por Tramo del Puente Ferroviario Sumbay.

Para realizar cálculo analítico se debe determinar la carga permanente o carga muerta existente en el puente ferroviario Sumbay (Tabla 4.1)

TRAMO TRAMO TRAMO TRAMO TRAMO **ELEMENTOS** N°4 N°1 N°2 N°3 N°5 Ala 15.6x15.6x1.3 cm 2862.979 4683.93 2153.77 4682.75 2864.16 Plancha 1.0X184.2 cm 3403.206 5567.76 5566.36 3404.61 2560.17 Cruceta horizontal 10X7.7X0.993 cm 151.301 201.74 100.87 201.74 151.30 130.18 43.39 86.79 Cruceta transversal 10x7.5x0.993 cm 130.18 130.18

TOTAL	13236.08	26882.46	9764.78	26821.5	13204.03
Platabanda N°3		715.86		727.90	
Platabanda N°2		1814.33		1819.74	
Platabanda N°1		2740.01		2654.83	
Rieles	2894.17	4734.98	2177.24	4733.79	2895.37
Durmientes 021X0.20X3.15 cm	2480.00	4000.00	1840.00	4000.00	2480.00
Eclisa 115RE	45.26	74.04	34.05	74.02	45.27
Tirafondos	67.58	109.00	50.14	109.00	67.58
Remaches Ø1"	435.528	661.08	210.35	661.08	435.53
Arriostre inferior 10x7.7x0.99 cm		312.06		317.73	
Arriostre superior 10x7.7x0.99 cm	204.25	312.06	136.17	317.73	211.82
Rigidizador secundario 10x8.89x0.89 cm	262.98	525.97	219.15	525.97	262.98
Rigidizador primario 13x9.03x1.04 cm	298.62	298.63	238.90	298.63	298.63

Fuente: Elaboración Propia.

Tabla 4. 2

TRAMO	CARGA PERMANENT E (kg)	CARGA PERMANENT E (t)	CARGA EN LAS DOS VIGAS DEL PUENTE (t/m)	CARGA EN UNA SOLA VIGA DEL PUENTE (t/m)
TRAMO N°1	13236.085	13.236	1.09	0.545
TRAMO N°2	26882.457	26.882	1.35	0.675
TRAMO N°3	9764.579	9.765	1.07	0.535
TRAMO N°4	26821.502	26.822	1.35	0.675
TRAMO N°5	13204.034	13.204	1.09	0.545
TOTAL	89908.66	89.909		

Fuente: Elaboración Propia.

En la Tabla 4.2 se muestra la carga permanente total que equivale a 89.909 toneladas (t), y para la distribución de carga se divide la carga total por tramo con respecto a la longitud de cada tramo, como se muestra en la columna de "carga en las dos vigas del puente".

en una sola viga del puente"

4.3 Cálculo de Esfuerzos y Deformaciones de la Viga Principal del Puente

Ferroviario Sumbay, Mediante el Método de Tres Momentos.

El cálculo se realizará para diferentes casos de carga sometidos a la viga principal del puente

ferroviario Sumbay.

Para los cálculos en adelante:

Peso bruto de locomotora: 120 t (fuente: FETRANSA)

Peso bruto de vagón: 80 t (fuente: FETRANSA)

4.3.1 Para una condición de carga de una locomotora – CASO N° 1.

Vehículo utilizado para el objeto de estudio es lo siguiente:

Vehículo	Cantidad	Peso Unitario (T)	Peso (T)	Carga total a considerar
Locomotora	1	120.00	120.00	½(Pt)
Peso Total (Pt)			120.00	60.00

Para el objeto de cálculo, de las 120 toneladas solo se considerará la mitad (60 toneladas),

ya que el cálculo se realizará en una sola viga de las dos vigas que conforman el puente Sumbay.

En la figura 4.23 se muestra la configuración del puente ferroviario Sumbay, para el objeto de cálculo,

Figura 4. 2 Puente ferroviario Sumbay sometido a una carga de una locomotora. (Fuente: Elaboración propia.)

De la figura 4.2, Las cargas puntuales de 10 t son fuerzas ejercidas por cada punto de apoyo de la locomotora, los cuales están representadas por la siguiente nomenclatura:

 $P_6, P_5, P_4, P_3, P_2, P_1$: Fuerzas que ejerce la primera locomotora

Figura 4. 3 Cargas puntuales que ejercen en la viga principal. (Fuente: Elaboración Propia)

De la figura 4.3 los momentos hiperestáticos son: M_A , M_B , M_C , M_D , M_E , M_F . Y por ser apoyos simples, los momentos en: $M_A = 0$ y $M_F = 0$.

Mediante el método de la ecuación de tres momentos se determinará los momentos hiperestáticos (M_B , M_C , M_D , M_E), para ello se utiliza la ecuación general de tres momentos del marco teórico y la Tabla 2.9.

Tramo ABC

Empleando la ecuación general de tres momentos del marco teórico y la Tabla 2.9.

$$\begin{split} M_{n-1}L_n + 2M_n(L_n + L_{n+1}) + M_{n+1}L_{n+1} &= -6(\alpha_d)_n - 6(\alpha_i)_{n+1} \\ M_AL_1 + 2M_B(L_1 + L_2) + M_CL_2 \\ &= -6[\frac{W_1L_1^3}{24} + \frac{P_6a_{6n}b_{6n}}{6L_1}(a_{6n} + L_1) + \frac{P_5a_{5n}b_{5n}}{6L_1}(a_{5n} + L_1) \\ &+ \frac{P_4a_{4n}b_{4n}}{6L_1}(a_{4n} + L_1) + \frac{P_3a_{3n}b_{3n}}{6L_2}(a_{3n} + L_1)] - 6[\frac{W_2L_2^3}{24} \\ &+ \frac{P_2a_{2(n+1)}b_{2(n+1)}}{6L_2}(b_{2(n+1)} + L_2) + \frac{P_1a_{1(n+1)}b_{1(n+1)}}{6L_2}(b_{1(n+1)} + L_2)] \end{split}$$

Para los valores de las cargas distribuidas W_1 , W_2 y las longitudes L_1 y L_2 , considerar los tramos 1 y 2 de la Figura 4.34.

$$M_{A} * 12.155 + 2M_{B}(12.155 + 19.886) + M_{C} * 19.886$$

$$= -6 \left(\frac{0.545 * 12.155^{3}}{24} + \frac{10 * 2.096 * 10.059}{6 * 12.155} (2.096 + 12.155) + \frac{10 * 4.192 * 7.963}{6 * 12.155} (4.192 + 12.155) + \frac{10 * 11.592 * 0.563}{6 * 12.155} (11.592 + 12.155) \right)$$

$$- 6 \left(\frac{0.675 * 19.886^{3}}{24} + \frac{10 * 1.533 * 18.353}{6 * 19.886} (18.353 + 19.886) + \frac{10 * 3.629 * 16.257}{6 * 19.886} (16.257 + 19.886) \right)$$

$$64.082M_{B} + 19.886M_{C} = -1068.31 - 2940.33$$

 $64.082M_B + 19.886M_C = -4008.64 \dots (1)$

Tramo BCD

Empleando la ecuación general de tres momentos del marco teórico y la Tabla 2.9.

 $M_{n-1}L_n + 2M_n(L_n + L_{n+1}) + M_{n+1}L_{n+1} = -6(\alpha_d)_n - 6(\alpha_i)_{n+1}$

$$M_{B}L_{2} + 2M_{C}(L_{2} + L_{3}) + M_{D}L_{3}$$

= $-6\left[\frac{W_{2}L_{2}^{3}}{24} + \frac{P_{2}a_{2n}b_{2n}}{6L_{2}}(a_{2n} + L_{2}) + \frac{P_{1}a_{1n}b_{1n}}{6L_{2}}(a_{1n} + L_{2})\right] - 6\left[\frac{W_{3}L_{3}^{3}}{24}\right]$

Para los valores de las cargas distribuidas W_2 , W_3 y las longitudes L_2 , L_3 , considerar los tramos 2 y 3 de la Figura 4.34.

$$\begin{split} M_B * 19.886 + 2M_C (19.886 + 9.144) + M_D * 9.144 \\ &= -6 \left(\frac{0.675 * 19.886^3}{24} + \frac{10 * 1.533 * 18.353}{6 * 19.886} (1.533 + 19.886) \right. \\ &+ \frac{10 * 3.629 * 16.257}{6 * 19.886} (3.629 + 19.886) \right) - 6 \left(\frac{0.535 * 9.144^3}{24} \right) \\ 19.886M_B + 58.06M_C + 9.144M_D = -2327.717 - 102.259 \\ 19.886M_B + 58.06M_C + 9.144M_D = -2429.976 \dots (2) \end{split}$$

Tramo CDE

Empleando la ecuación general de tres momentos (6) del marco teórico y la Tabla 2.9. Sección 2.

$$M_{n-1}L_n + 2M_n(L_n + L_{n+1}) + M_{n+1}L_{n+1} = -6(\alpha_d)_n - 6(\alpha_i)_{n+1}$$

$$M_{C}L_{3} + 2M_{D}(L_{3} + L_{4}) + M_{E}L_{4} = -6\left[\frac{W_{3}L_{3}^{3}}{24} - 6\left[\frac{W_{4}L_{4}^{3}}{24}\right]\right]$$

Para los valores de las cargas distribuidas W_3 , W_4 y las longitudes L_3 , L_4 , considerar los tramos 3 y 4 de la Figura 4.34.

$$M_C * 9.144 + 2M_D(9.144 + 19.881) + M_E * 19.881$$
$$= -6\left(\frac{0.535 * 9.144^3}{24}\right) - 6\left(\frac{0.675 * 19.881^3}{24}\right)$$

 $9.144M_C + 58.05M_D + 19.881M_E = -102.259 - 1326.046$

 $9.144M_C + 58.05M_D + 19.881M_E = -1428.305....(3)$

Tramo DEF

Empleando la ecuación general de tres momentos (6) del marco teórico y la Tabla 2.9. Sección 2.

$$M_{n-1}L_n + 2M_n(L_n + L_{n+1}) + M_{n+1}L_{n+1} = -6(\alpha_d)_n - 6(\alpha_i)_{n+1}$$
$$M_CL_4 + 2M_D(L_4 + L_5) + M_EL_5 = -6\left[\frac{W_4L_4^3}{24}\right] - 6\left[\frac{W_5L_5^3}{24}\right]$$

Para los valores de las cargas distribuidas W_4 , W_5 y las longitudes L_4 , L_5 , considerar los tramos 4 y 5 de la Figura 4.34.

$$M_{D} * 19.881 + 2M_{E}(19.881 + 12.160) + M_{F} * 12.16 = -6\left(\frac{0.675 * 19.881^{3}}{24}\right) - 6\left(\frac{0.545 * 12.16^{3}}{24}\right)$$

$$19.881M_{D} + 64.082M_{E} = -1326.046 - 244.984$$

$$19.881M_{D} + 64.082M_{E} = -1571.03....(4)$$

Con las ecuaciones 1, 2, 3, y 4, proceder a calcular los momentos flectores.

De la ecuación 4 despejar M_E .

$$M_E = \frac{-1571.03 - 19.881 M_D}{64.082}$$

La ecuación despejada M_E remplazar en la ecuación 3.

 $9.144M_C + 58.05M_D + 19.881M_E = -1428.305$

 $9.144M_{c} + 58.05M_{D} + 19.881(\frac{-1571.03 - 19.881M_{D}}{64.082}) = -1428.305$

 $9.144M_{C} + 51.882M_{D} = -940.904 \dots (5)$

De la ecuación 5 despejar M_D .

$$M_D = \frac{-940.904 - 9.144M_C}{51.882}$$

La ecuación despejada M_D remplazar en la ecuación 2.

$$19.886M_{B} + 58.06M_{C} + 9.144M_{D} = -2429.976$$

$$19.886M_{B} + 58.06M_{C} + 9.144(\frac{-940.904 - 9.144M_{C}}{51.882}) = -2429.976$$

$$19.886M_{B} + 56.448M_{C} = -2264.145 \dots (6)$$

Resolviendo las ecuaciones 1 y 6 por el método matricial se obtiene los valores de los momentos

$$M_B$$
 y M_C .

 $64.082M_B + 19.886M_C = -4008.64$

 $19.886M_B + 56.448M_C = -2264.145$

$$\begin{bmatrix} 64.082 & 19.886 \\ 19.886 & 56.448 \end{bmatrix} \begin{bmatrix} M_B \\ M_C \end{bmatrix} = \begin{bmatrix} -4008.64 \\ -2264.145 \end{bmatrix}$$

$$M_B = -56.258 t * m$$

$$M_c = -20.291 t * m$$

Los valores de M_B y M_C remplazar en la ecuación 2 para obtener el valor de M_D .

 $19.886M_B + 58.06M_C + 9.144M_D = -2429.976$

 $19.886(-56.258) + 58.06(-20.291) + 9.144M_D = -2429.976$

$M_D = -14.56 t * m$

El valor de M_D remplazar en la ecuación 4 para obtener el valor de M_E .

 $19.881M_D + 64.082M_E = -1571.03$ $19.881(-14.56) + 64.082M_E = -1571.03$

$M_E = -19.999 t * m$

Una vez calculado los momentos flectores, el siguiente paso es calcular las reacciones en cada punto de apoyo de la viga principal.

En la Figura 4.4 se muestra la discretización de la viga, esto con el fin de analizar como vigas simplemente apoyadas. Tal es así, que las reacciones de la viga simplemente apoyadas se determinaran usando el principio de la estática.

Figura 4. 4 Discretización de la viga – CASO N°1. (Fuente: Elaboración Propia)

Para la Figura del (tramo AB), R_A y R_{1B} son reacciones parciales de la viga.

$\sum M_A = 0$

 $-10(2.096 + 4.192 + 11.592) - 0.545 * 12.155(6.078) + R_{1B}(12.155) - 56.258 = 0$

 $R_{1B} = 22.651 t$

+ $\sum F_V = 0$ $R_A - 10 * 4 - 0.545 * 12.155 + 22.651 = 0$ $R_A = 23.973 t$

Para la figura del (tramo BC), R_{2B} y R_{1C} son reacciones parciales de la viga.

$$\sum M_B = 0$$

 $56.258 - 10(1.533 + 3.629) - 0.675 * 19.886(9.943) + R_{1C}(19.886) - 20.294 = 0$ $R_{1C} = 7.5t$ $\downarrow \uparrow \Sigma F_V = 0 \qquad R_{2B} - 10 * 2 - 0.675 * 19.886 + 7.5 = 0 \qquad R_{2B} = 25.923 t$

Para la figura del (tramo CD), R_{2C} y R_{1D} son reacciones parciales de la viga.

$$\sum M_c = 0 \qquad 20.291 - 0.535 * 9.144(4.572) + R_{1D}(9.144) - 14.56 = 0$$

$$R_{1D} = 1.82 t$$

$$F_V = 0 \qquad R_{2C} - 0.545 * 9.144 + 1.82 = 0 \qquad R_{2C} = 3.163 t$$

Para la figura del (tramo DE), R_{2D} y R_{1E} son reacciones parciales de la viga.

Para la figura del (tramo EF), R_{2E} y R_F son reacciones parciales de la viga.

+
$$\sum M_E = 0$$
 20 - 0.545 * 12.16(6.08) + $R_F(12.16) = 0$ $R_F = 1.67 t$
+ $\sum F_V = 0$ $R_{2E} - 0.545 * 12.16 + 1.67 = 0$ $R_{2E} = 4.957 t$

Calculado las reacciones parciales de las vigas simplemente apoyadas se suma las reacciones parciales para obtener una resultante en cada punto de apoyo de la viga principal.

$R_{A} = 24.232 t$ $R_{B} = R_{1B} + R_{2B} \longrightarrow R_{B} = 22.651 + 25.923 \longrightarrow R_{B} = 48.574 t$ $R_{C} = R_{1C} + R_{2C} \longrightarrow R_{C} = 7.5 + 3.163 \longrightarrow R_{C} = 10.663 t$ $R_{D} = R_{1D} + R_{2D} \longrightarrow R_{D} = 1.82 + 6.436 \longrightarrow R_{D} = 8.256 t$ $R_{E} = R_{1E} + R_{2E} \longrightarrow R_{E} = 6.984 + 4.957 \longrightarrow R_{E} = 11.941 t$ $R_{F} = 1.67 t$

Figura 4. 5 D.C.L. de la viga principal – CASO N°1. (Fuente: Elaboración Propia)

La figura 4.5. muestra las reacciones en cada punto de apoyo de la viga principal con respecto al pilar.

4.3.1.1 Diagrama de fuerzas cortantes, momento flector y deflexión.

El diagrama de fuerzas cortantes y el diagrama de momentos flectores, son fuerzas internas que se generan en el material de una viga para equilibrar las fuerzas aplicadas externamente y para garantizar el equilibrio en todas partes.

Conociendo las reacciones en cada punto de apoyo de la viga principal (Figura 4.5), se procede a graficar diagramas de fuerzas cortantes, momentos flectores, y deflexión, estos diagramas se realizan de acuerdo a las ecuaciones que corresponde.

Utilizando la ecuación de la elástica se obtiene las siguientes ecuaciones de fuerzas cortantes.

$V_1 = -0.545X + 13.974$	0 < X < 2.096
$V_2 = -0.545X - 3.974$	2.096 < <i>X</i> < 4.192
$V_3 = -0.5454X - 6.026$	4.192 <i>< X <</i> 11.592
$V_4 = -0.545X - 6.026$	11.592 < <i>X</i> < 12.155
$V_5 = -0.675X + 34.129$	12.155 < <i>X</i> < 13.688

"ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY- AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC"

 $V_{6} = -0.675X + 24.129$ $V_{7} = -0.675X + 14.129$ $V_{8} = -0.535X + 20.215$ $V_{9} = -0.675X + 34.236$ $V_{10} = -0.545X + 38.239$

13.688 < X < 15.78415.784 < X < 32.04132.041 < X < 41.18541.185 < X < 61.06661.066 < X < 73.226

Figura 4. 6 D.F.C. de la viga principal – CASO N°1. (Fuente: Elaboración Propia)

En la figura 4.6, se tiene una fuerza cortante máxima ($V_{max} = 25.92 t$) a una distancia de L= 12.155 m.

Utilizando la ecuación de la elástica se obtiene las siguientes ecuaciones de momentos flectores:

$M_1 = -0.2725X^2 + 13.974X$	0 < X < 2.096
$M_2 = -0.2725X^2 + 13.974X + 20.96$	2.096 < X < 4.192
$M_3 = -0.2725X^2 - 6.026X + 62.88$	4.192 < <i>X</i> < 11.592
$M_4 = -0.2725X^2 - 16.026X + 178.8$	11.592 < <i>X</i> < 12.155
$M_5 = -0.3375X^2 + 34.129X - 421.233$	12.155 < <i>X</i> < 13.688
$M_6 = -0.3375X^2 + 24.129X - 284.353$	13.688 < <i>X</i> < 15.784
$M_7 = -0.3375X^2 + 14.129X - 126.513$	15.784 <i>< X <</i> 32.041

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

"ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY- AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC"

 $M_8 = -0.2675X^2 + 20.215X - 393.371$ $M_9 = -0.3375X^2 + 34.236X - 852.104$ $M_{10} = -0.2725X^2 + 38.24X - 1338.948$

32.041 < *X* < 41.185 41.185 < *X* < 61.066 61.066 < *X* < 73.226 128

Figura 4. 7 D.M.F. de la viga principal – CASO N°1. (Fuente: Elaboración Propia)

En la figura 4.7, se tiene un momento flector máximo ($M_{max} = 56.26 t * m$) a una distancia de L=12.155 m.

Utilizando la ecuación de la elástica se obtiene las siguientes ecuaciones de deflexión:

 $\begin{array}{l} 0 < X < 2.096 \\ \delta_1 = -6.711*10^{-8}X^4 + 6.882*10^{-6}X^3 - 2.792*10^{-4}X \\ 2.096 < X < 4.192 \\ \delta_2 = -6.711*10^{-8}X^4 + 1.957*10^{-6}X^3 + 3.097*10^{-5}X^2 - 3.442*10^{-4}X + 4.535*10^{-5} \\ 4.192 < X < 11.592 \\ \delta_3 = -6.711*10^{-8}X^4 - 2.968*10^{-6}X^3 + 9.291*10^{-5}X^2 - 6.038*10^{-4}X + 4.082*10^{-4} \\ 11.592 < X < 12.155 \\ \delta_4 = -6.711*10^{-8}X^4 - 7.893*10^{-6}X^3 + 2.642*10^{-4}X^2 - 2.589*10^{-3}X + 8.08*10^{-3} \end{array}$

12.155 < *X* < 13.688

$$\begin{split} \delta_5 &= -8.311*10^{-8}X^4 + 1.681*10^{-5}X^3 - 6.224*10^{-4}X^2 + 8.129*10^{-3}X - 3.523*\\ 10^{-2}\\ 13.688 &< X &< 15.784\\ \delta_6 &= -8.311*10^{-8}X^4 + 1.188*10^{-5}X^3 - 4.202*10^{-4}X^2 + 5.361*10^{-2}X - 2.26*\\ 10^{-2}\\ 15.784 &< X &< 32.041\\ \delta_7 &= -8.311*10^{-8}X^4 + 6.958*10^{-6}X^3 - 1.87*10^{-4}X^2 + 1.68*10^{-3}X - 3.234*\\ 10^{-3}\\ 32.041 &< X &< 41.185\\ \delta_8 &= -6.587*10^{-8}X^4 + 9.956*10^{-6}X^3 - 5.812*10^{-4}X^2 + 1.545*10^{-2}X - 0.156\\ 41.185 &< X &< 61.066\\ \delta_9 &= -8.311*10^{-8}X^4 + 1.686*10^{-5}X^3 - 1.259*10^{-3}X^2 + 4.096*10^{-2}X - 0.489\\ 61.066 &< X &< 73.226\\ \delta_{10} &= -6.711*10^{-8}X^4 + 1.883*10^{-5}X^3 - 1.978*10^{-3}X^2 + 9.217*10^{-2}X - 1.607 \end{split}$$

Figura 4. 8 Diagrama de deflexión de la viga principal – CASO N°1. (Fuente: Elaboración Propia)

La deflexión de la viga principal del puente ferroviario Sumbay, es debido a la deformación vertical por flexión que sufren los puntos de la viga en el plano donde esta aplicada la carga combinada, es así que los tramos de mayor longitud, como es el tramo BC sufren mayor deflexión ($\delta_{max} = 2 \ mm$),como se muestra en la Figura 4.8.

4.3.1.2 Esfuerzo máximo.

El esfuerzo flexionante máximo ocurre en los puntos más alejados del eje neutro, es decir en la parte superior de la viga ocurre un esfuerzo máximo de compresión y en la parte inferior de la viga ocurre un esfuerzo máximo de tracción.

La ecuación para determinar el esfuerzo flexionante Máximo es. $\sigma_{max} = \frac{M*c}{l}$

Donde el momento flector máximo en la figura 4.7 es $M_{max} = 56.258 t * m$, el punto más alejado de la sección transversal con respecto al eje neutro es c = 0.921 m. (Figura 4.1). y el momento de inercia de $I = 17177.87 x 10^{-6} m^4$

Reemplazando en la ecuación se obtiene:

$$\sigma_{max} = \frac{56.258 \ t. \ m * 0.921 \ m}{17177.87 \ x \ 10^{-6} \ m^4} * \frac{1 \ N}{0.000102 \ t}$$

$\sigma_{max} = 29.6 MPa$

Este esfuerzo por flexión máxima ($\sigma_{máx} = 29.6 MPa$) en la parte superior de la viga ejerce un esfuerzo por compresión y en la parte inferior de la viga ejerce un esfuerzo por tracción, como se muestra en la figura 4.9.

Figura 4. 9 Diagrama de esfuerzo flexionante máximo de la viga principal – CASO N°1. (Fuente: Elaboración Propia)

4.3.1.3 Esfuerzo cortante máximo.

Según (Hibbeler, Mecánica de Materiales, 2017) cuando el alma y el ala son elementos rectangulares, la distribución del esfuerzo cortante es parabólica y debido a la simetría, es necesario determinar el esfuerzo cortante a la altura del eje neutro.

El esfuerzo cortante máximo en la viga va depender de la magnitud de Qc y t. Esto ocurre en el eje neutro, puesto que ahí Qc es un máximo y el espesor t es menor.

La ecuación para determinar el esfuerzo cortante máximo es, $\tau_{max} = \frac{V * Q_c}{I * t_c}$

Para ello se tiene:

Fuerza cortante es, $V_{max} = 25.924 t$ (Figura 4.37)

Momento de inercia es, $I = 17177.87 \times 10^{-6} m^4$ (figura 4.1)

En la sección transversal el espesor menor es en el eje neutro, $t_c = 0.01 m$ (figura 4.1)

$$Q_{c} = \sum \overline{Y'} * A'$$

$$Q_{c} = (914.5)(13 * 322) + (837)(36 * 155) + (383)(10 * 765)$$

$$Q_{c} = 11428507mm^{3}$$

$$Q_{c} = 0.0114 m^{3}$$

Remplazando en la ecuación de esfuerzo cortante máximo.

$\tau_{max} = \frac{25.924 \, t * 0.0114 \, m^3}{17177.87 \, x \, 10^{-6} \, m^4 * 0.01 \, m} * \frac{1 \, N}{0.000102 \, t}$

$\tau_{max} = 16.88 MPa$

Esfuerzo cortante máximo ($\tau_{max} = 16.88 MPa$) se produce en el alma y a la altura del eje

neutro (figura 4.41), puesto que allí el espesor es menor.

Figura 4. 10 Distribución de esfuerzo cortante máximo de la viga principal – CASO Nº1. (Fuente: Elaboración Propia)

Figura 4.10 Distribución de esfuerzo cortante máximo de la viga principal sometido a una carga de 60 t. (Fuente: Elaboración Propia)

4.3.2 Para una condición de carga de una locomotora y media – CASO N°2.

Los vehículos utilizados para el objeto de estudio son los siguientes:

Vehículo	Cantidad	Peso Unitario (T)	Peso (T)	Carga total a considerar
Locomotora	omotora 1 + 1/2		180.00	½(Pt)
Peso Total (Pt)			180.00	90.00

Para el objeto de cálculo, de las 120 toneladas solo se considerará la mitad (90 toneladas), ya

que el cálculo se realizará en una sola viga de las dos vigas que conforman el puente Sumbay.

Figura 4. 11 Puente ferroviario Sumbay sometido a una carga de una locomotora y media. (Fuente: Elaboración propia.)

Utilizando el método de la ecuación de tres momentos y siguiendo el procedimiento de cálculo de la estructura sometida a una carga de 180 toneladas, se obtiene las siguientes reacciones en los puntos de apoyo A, B, C, D, E, F.

 $R_A = 4.721 t$

 $R_B = 68.914 t$

 $R_{C} = 47.612 t$

$R_D = -0.506 t$

$R_F = 1.388 t$

Con las reacciones obtenidas, en la figura 4.12 se muestra el diagrama de cuerpo libre (D.C.L)

de la viga principal del puente ferroviario Sumbay.

Figura 4. 12 D.C.L. de la viga principal - CASO N°2. (Fuente: Elaboración Propia)

En la figura 4.13, se tiene una fuerza cortante máxima ($V_{max} = 37.011 t$) a una distancia de L= 12.155 m.

Figura 4. 14 D.M.F. de la viga principal - CASO N°2 (Fuente: Elaboración Propia)

En la figura 4.14, se tiene un momento flector máximo ($M_{max} = 109.644 t * m$) a una distancia de L=12.155 m

Figura 4. 15 Diagrama de deflexión de la viga principal - CASO N°2. (Fuente: Elaboración Propia)

En la figura 4.15, se tiene una deflexión máxima ($\delta_{max} = 6.57 \ mm$) a una distancia de

L= 22.4 m

4.3.2.2 Esfuerzo máximo.

La ecuación para determinar el esfuerzo flexionante Máximo es. $\sigma_{max} = \frac{M * c}{L}$

Donde el momento flector máximo en la figura 4.38 es $M_{max} = 109.644 \ t * m$, el punto más alejado de la sección transversal con respecto al eje neutro es $c = 0.921 \ m$. (Figura 4.1). y el momento de inercia de $I = 17177.87 \ x \ 10^{-6} \ m^4$

Reemplazando en la ecuación se obtiene:

 $\sigma_{max} = \frac{109.644 \ t. \ m * 0.921 \ m}{17177.87 \ x \ 10^{-6} \ m^4} * \frac{1 \ N}{0.000102 \ t}$

 $\sigma_{max} = 57.63 MPa$

Figura 4. 16 Distribución de esfuerzo flexionante máximo de la viga principal - CASO N°2. (Fuente: Elaboración Propia)

4.3.2.3 Esfuerzo cortante máximo.

La ecuación para determinar el esfuerzo cortante máximo es, $\tau_{max} = \frac{V * Q_c}{I * t_c}$

Para ello se tiene:

Fuerza cortante es, $V_{max} = 37.01 t$ (figura 4.37)

Momento de inercia es, $I = 17177.87 \times 10^{-6} m^4$ (figura 4.13)

En la sección transversal el espesor menor es en el eje neutro, $t_c = 0.01 m$ (figura 4.1)

$$Q_c = \sum \overline{Y'} * A'$$
 $Q_c = 0.0114 m^3$

Remplazando en la ecuación de esfuerzo cortante máximo.

 $\tau_{max} = 24.1 MPa$

Figura 4. 17 Distribución de esfuerzo cortante máximo de la viga principal - CASO N°2. (Fuente: Elaboración Propia.)

4.3.3 Para una condición de carga de dos locomotoras – CASO N°3.

Los vehículos utilizados para el objeto de estudio son los siguientes:

Vehículo	Cantidad	Peso Unitario (T)	Peso (T)	Carga total a considerar
Locomotora	2	120.00	240.00	½(Pt)
	Peso Tot	240.00	120.00	

Figura 4. 18 Puente ferroviario Sumbay sometido a la carga de dos locomotoras (Fuente: Elaboración Propia.)

Utilizando el método de la ecuación de tres momentos y siguiendo el procedimiento de cálculo de la estructura sometida a una carga de 240 t. (una locomotora), se obtiene las siguientes reacciones en los puntos de apoyo A, B, C, D, E, F.

 $R_A = 8.117 t$ $R_B = 65.74 t$ $R_C = 59.675 t$ $R_D = 17.753 t$ $R_E = 12.068 t$

$$R_F=1.634 t$$

Con las reacciones obtenidas, en la figura 4.36 se muestra el diagrama de cuerpo libre (D.C.L) de la viga principal del puente ferroviario Sumbay.

4.3.3.1 Diagrama de fuerzas cortantes, momento flector y deflexión.

Figura 4. 20 D.F.C. de la viga principal – CASO N°3. . (Fuente: Elaboración Propia)

En la figura 4.20, se tiene una fuerza cortante máxima ($V_{max} = 37.232 t$) a una distancia de L= 12.155 m.

Figura 4. 21 D.M.F. de la viga principal – CASO N°3. . (Fuente: Elaboración Propia)

En la figura 4.21, se tiene un momento flector máximo ($M_{max} = 121.891 t * m$) a una distancia de L=12.155 m

Figura 4. 22 Diagrama de deflexión de la viga principal – CASO N°3. (Fuente: Elaboración Propia)

En la figura 4.22, se tiene una deflexión máxima ($\delta_{max} = 8.18 \text{ mm}$) a una distancia de

L= 22.118 m

4.3.3.2 Esfuerzo máximo.

La ecuación para determinar el esfuerzo flexionante Máximo es. $\sigma_{max} = \frac{M * c}{L}$

Donde el momento flector máximo en la figura 4.38 es $M_{max} = 121.891 t * m$, el punto más alejado de la sección transversal con respecto al eje neutro es c = 0.921 m. (Figura 4.4111). y el momento de inercia de $I = 17177.87 x 10^{-6} m^4$

Reemplazando en la ecuación se obtiene:

 $\sigma_{max} = \frac{121.891 \, t. \, m * 0.921 \, m}{17177.87 \, x \, 10^{-6} \, m^4} * \frac{1 \, N}{0.000102 \, t}$

 $\sigma_{max} = 64 MPa$

Figura 4. 23 Diagrama de esfuerzo flexionante máximo de la viga principal – CASO N°3. (Fuente: Elaboración Propia)

4.3.3.3 Esfuerzo cortante máximo.

La ecuación para determinar el esfuerzo cortante máximo es, $\tau_{max} = \frac{V * Q_c}{I * t_c}$

Para ello se tiene:

Fuerza cortante es, $V_{max} = 37.232 t$ (figura 4.20)

Momento de inercia es, $I = 17177.87 \ x \ 10^{-6} \ m^4$ (figura 4.1)

En la sección transversal el espesor menor es en el eje neutro, $t_c = 0.01 m$ (figura 4.1)

$$Q_c = \sum \overline{Y'} * A'$$
 $Q_c = 0.0114 \ m^3$

Remplazando en la ecuación de esfuerzo cortante máximo.

$\tau_{max} = \frac{37.232 \ t * 0.0114 \ m^3}{17177.87 \ x \ 10^{-6} \ m^4 * 0.01 \ m} * \frac{1 \ N}{0.000102 \ t}$

$\tau_{max} = 24.24 MPa$

Figura 4. 24 Distribución de esfuerzo cortante máximo de la viga principal – CASO N°3. (Fuente: Elaboración Propia)

4.3.4 Para una condición de carga de dos locomotoras y dos vagones – CASO N°4.

Vehículo	Cantidad	Peso Unitario (T) Peso (T)		Carga total a
Locomotora	2	120.00	240.00	¹ / ₂ (Pt)
Vagón	2	80.00	140.00	
Peso Total (Pt)			380.00	190.00

Los vehículos utilizados para el objeto de estudio son los siguientes:

Figura 4. 25 Puente ferroviario Sumbay sometido a la carga de dos locomotoras y dos vagones. (Fuente: Elaboración Propia)

Utilizando el método de la ecuación de tres momentos y siguiendo el procedimiento de cálculo de la estructura sometida a una carga de 380 t. (una locomotora), se obtiene las siguientes reacciones en los puntos de apoyo A, B, C, D, E, F.

 $R_A = 7.05 t$ $R_B = 55.734 t$ $R_C = 45.438 t$ $R_D = 52.292 t$ $R_E = 66.58 t$ $R_F = 7.892 t$

Con las reacciones obtenidas, en la figura 4.26 se muestra el diagrama de cuerpo libre (D.C.L) de la viga principal del puente ferroviario Sumbay.

Figura 4. 26 D.C.L. de la viga principal – CASO N°4. (Fuente: Elaboración Propia)

4.3.4.1 Diagrama de fuerza cortante, momento flector y deflexión.

Figura 4. 27 D.F.C. de la viga principal – CASO N°4.. (Fuente: Elaboración Propia)

En la figura 4.27, se tiene una fuerza cortante máxima ($V_{max} = 37.844 t$) a una distancia de L= 61.07 m.

Figura 4. 28 D.M.F. de la viga principal – CASO N°4.. (Fuente: Elaboración Propia)

En la figura 4.47, se tiene un momento flector máximo ($M_{max} = 124.615 t * m$) a una distancia de L=61.07 m

Figura 4. 29 Diagrama de deflexión de la viga principal – CASO N°4.. (Fuente: Elaboración Propia)

En la figura 4.29, se tiene una deflexión máxima ($\delta_{max} = 8.64 \text{ mm}$) a una distancia de

L= 50.96 m

4.3.4.2 Esfuerzo máximo.

La ecuación para determinar el esfuerzo flexionante Máximo es. $\sigma_{max} = \frac{M * c}{I}$

Donde el momento flector máximo en la figura 4.38 es $M_{max} = 124.615 t * m$, el punto más alejado de la sección transversal con respecto al eje neutro es c = 0.921 m. (Figura 4.1). y el momento de inercia de $I = 17177.87 x 10^{-6} m^4$

Reemplazando en la ecuación se obtiene:

$$\sigma_{max} = \frac{124.615 \ t. \ m * 0.921 \ m}{17177.87 \ x \ 10^{-6} \ m^4} * \frac{1 \ N}{0.000102 \ t}$$

 $\sigma_{max} = 65.54 MPa$

Figura 4. 30 Diagrama de esfuerzo flexionante máximo de la viga principal – CASO N°4. (Fuente: Elaboración Propia)

Tratándose de un caso crítico se determina un factor de seguridad (F.S) del material. De acuerdo al libro de Mecánica de Materiales de (Ferdinand P. Beer, 2013 p.25) la ecuación del factor de seguridad es la siguiente:

$$F.S. = \frac{\sigma_{\acute{u}ltimo}}{\sigma_{Permisible}}$$

Reemplazando en la ecuación de F.S. se tiene para el caso crítico.

$$F.S. = \frac{\sigma_y}{\sigma_{adm}}$$
 $F.S. = \frac{205 MPa}{65.54 MPa}$ $F.S. = 3.13$

4.3.4.3 Esfuerzo cortante máximo.

La ecuación para determinar el esfuerzo cortante máximo es, $\tau_{max} = \frac{V * Q_c}{I * t_c}$

Para ello se tiene:

Fuerza cortante es, $V_{max} = 37.844 t$ (figura 4.27)

Momento de inercia es, $I = 17177.87 \times 10^{-6} m^4$ (figura 4.1)

En la sección transversal el espesor menor es en el eje neutro, $t_c = 0.01 m$ (figura 4.1)

 $Q_c = \sum \overline{Y'} * A'$ $Q_c = 0.0114 m^3$

Remplazando en la ecuación de esfuerzo cortante máximo.

 $\tau_{max} = \frac{37.844 \ t * 0.0114 \ m^3}{17177.87 \ x \ 10^{-6} \ m^4 * 0.01 \ m} * \frac{1 \ N}{0.000102 \ t}$

 $\tau_{max} = 24.64 MPa$

Figura 4. 31 Distribución de esfuerzo cortante máximo de la viga principal – CASO N°4. (Fuente: Elaboración Propia)

4.4 Cálculo de Esfuerzos y deformaciones con Combinación de Cargas, Mediante el

Método de Tres Momentos.

Para poder calcular la combinación es necesario determinar las cargas permanentes, sobrecargas vivas, cargas de viento, efecto sísmico.

4.4.1 Cargas permanentes (DC-DW).

Para determinar la carga muerta se realiza el cálculo por cada tramo, en el caso del puente

ferroviario Sumbay se considera 5 tramos.

Tabla 4. 3 Cargas permanentes DC

ELEMENTOS	TRAMO N°1	TRAMO N°2	TRAMO N°3	TRAMO N°4	TRAMO N°5
Ala 15.6x15.5x1.3 cm	2862.979	4683.933	2153.770	4682.755	2864.157
Plancha 1.04x184.2 cm	3403.206	5567.762	2560.174	5566.362	3404.605
Cruceta Horizontal 10x7.7x0.993 cm	151.301	201.735	100.868	201.735	151.301
Cruceta Transversal 10x7.5x0.993 cm	130.182	130.182	43.394	130.182	86.788
Rigidizador Primario 13x9.03x1.04 cm	298.629	298.629	238.903	298.629	298.629
Rigidizador Secundario 10x8.89x0.89 cm	262.984	525.969	219.154	525.969	262.984
Arriostre Superior 10x7.7x0.99 cm	204.257	312.059	136.171	317.733	211.822
Arriostre Inferior 10x7.7x0.99 cm		312.059	0.000	317.733	0.000
Remaches ø1"	435.528	661.909	210.714	661.126	435.528
Platabanda N°1 41x1.42 cm		2740.013		2654.832	
Platabanda N°2 41x1.46 cm		1814.333		1819.744	
Platabanda N°3 41x1.46 cm		715.859		727.898	
TOTAL, DC	7749.066	17964.441	5663.148	17904.696	7715.815

Fuente: Elaboración Propia.

DC = 56997.166 kg **DC** = 56.997 T

Tabla 4. 4	
Cargas permanentes DV	V

ELEMENTOS	TRAMO N°1	TRAMO N°2	TRAMO N°3	TRAMO N°4	TRAMO N°5
Tirafondos	67.580	109.000	50.140	109.000	67.580
Eclisa 115RE	45.260	74.040	34.050	74.020	45.270
Durmientes 0.21x0.20x 3.15 cm	2480.000	4000.000	1840.000	4000.000	2480.000
Rieles	2894.178	4734.976	2177.241	4733.785	2895.369
TOTAL, DW	5487.018	8918.016	4101.431	8916.805	5488.219

Fuente: Elaboración Propia.

DW = 32911.490 kg **DW** = 32.911 T

4.4.2 Sobrecargas vivas (LL).

Los vehículos utilizados para el objeto de estudio los siguientes son las locomotoras

GT42AC con sus respectivos vagones con carga minera:

	Ejes	Peso X Eje (Kg)	Peso (Kg)
Locomotora	12	20000.000	240000.000
Vagón	7	20000.000	140000.000

LL = 380000 kg LL = 380.000 T

4.4.3 Cargas de viento (WL – WS).

Velocidad del viento de diseño (V_{DZ}) :

$$V_{DZ} = 2.5 V_0 * \left(\frac{V_{10}}{V_B}\right) * \ln\left(\frac{Z}{Z_0}\right)$$

- Velocidad friccional: $V_0 = 13.2 \text{ km/h}$ (ANEXOS A B)
- Velocidad del viento a 10 metros sobre el terreno: $V_{10} = 85$ km/h (ANEXOS A C)
- Velocidad básica del viento a una altura de 10 m: VB = 160 km/h
- Altura de la estructura: Z = 32.42 m
- Longitud de fricción que trae el viento aguas arriba: $Z_0 = 0.07$ m (ANEXOS A B)

$$V_{DZ} = 2.5x13.2x \left(\frac{85}{160}\right) x ln \left(\frac{32.42}{0.07}\right) = 107.607 \ \frac{km}{h}$$

Presión del viento de diseño (P_D) :

$$P_D = P_B (\frac{V_{DZ}}{V_B})^2 = P_B (\frac{V_{DZ}^2}{160^2})$$

- Presión básica del viento: $P_B = 245 \text{ kg/m}^2 (ANEXOS B D)$
- Velocidad del viento de diseño: $V_{DZ} = 107.607 \text{ km/h}$

$$\boldsymbol{P_D} = 245 \left(\frac{107.607^2}{160^2}\right) = 110.817 \ \frac{kg}{m^2}$$

4.4.3.1 Carga del viento sobre la estructura:

Figura 4. 32 Área de incidencia del viento sobre la viga.

(Fuente: Elaboración Propia)

- Área de incidencia: $A = 1.842 \times 73.226 = 134.88 \text{ m}^2$
- Presión del viento de diseño: $PD = 110.817 \text{ kg/m}^2$

$$W_{S} = 110.817 \frac{kg}{m^{2}} * 134.88 m^{2} = 14947 kg = 14.947 T$$

4.4.3.2 Carga del viento sobre la sobrecarga:

Si hay vehículos presentes, la presión del viento de diseño se aplicará tanto a la estructura como a los vehículos, así como se muestra en la Figura 4.12.

Figura 4. 33 Presión del viento sobre los vehículos.

(Fuente: Elaboración Propia)

$W_L = PD x A$

• Área de diseño : $A = 4.244 m x 73.226 m = 310.77 m^2$

Presión del viento de diseño: $PD = 110.817 \text{ kg/m}^2$

$$W_L = 110.817 \frac{kg}{m^2} * 310.77 m^2 = 34438.6 kg = 34.438 T$$

4.4.4 Efecto sísmico (EQ).

- Coeficiente de aceleración: A = 0.38 (ANEXOS A E) •
- Zona de comportamiento sísmico: **ZONA 3** (ANEXOS A F) •
- Factor de zona: $\mathbf{Z} = 0.35$ (ANEXOS A G)
- Coeficiente de sitio: **S=1.2** (ANEXOS A H)
- Factor de modificación de respuesta: **R=2.0** (ANEXOS A I) •
- Factor de uso: U=1.0 (ANEXOS A J)
- Factor de amplificación sísmica: C=2.5

$$V = \frac{ZUCS}{R}P = \frac{ZUCS}{R}(DC + 0.25 LL)$$
$$V = \frac{0.35 * 1.00 * 2.50 * 1.2}{2.00}(32911.50 + 0.25 * 4000) = 69778.53 kg = 69.77 T$$

4.4.5 Análisis de combinación de carga.

Para determinar la combinación de cargas utilizamos como base el "MANUAL DE PUENTES AASHTO LRFD 2017" y la NORMA TÉCNICA PERUANA (NTP).

Para realizar la combinación de carga serán necesarias las cargas halladas anteriormente. En

la Tabla 4.5 se muestra un resumen de todas las cargas obtenidas.

Combinación de cargas.					
TIPO DE CARGA		kg	т		
Course Dormon onto	DC	56997.166	56.997		
Carga Permanente	DW	32911.490	32.911		
Sobrecargas vivas	LL	380000.000	380.000		
Cauraa da vianta	WS	14947.000	14.947		
Cargas de viento	WL	34438.600	34.439		
Efecto sísmico	EQ	69778.53	69.779		
Fuente: Eleboración Pronie					

Tabla 4.5

Tabla 4. 6 Combinación de cargas

COMI	BINACIÓN DE CARGA	Carga (kg)	Carga (T)
RESISTENCIA I	1.25DC+1.5DW+1.75LL	785613.693	785.614
RESISTENCIA II	1.25DC+1.5DW+1.35LL	633613.693	633.614
RESISTENCIA III	1.25DC+1.5DW+WS	135560.693	135.561
RESISTENCIA IV	1.5DC+1.5DW	134862.985	134.863
RESISTENCIA V	1.25DC+1.5DW+1.35LL+WS+WL	682999.293	682.999
EVENTO EXTREMO I	DC+DW+0.5LL+EQ	349687.186	349.687
EVENTO EXTREMO II	DC+DW+0.5LL	279908.656	279.909
SERVICIO I	DC+DW+LL+WS+WL	519294.256	519.294
SERVICIO II	DC+DW+1.3LL	583908.656	583.909
SERVICIO III	DC+DW+0.8LL	393908.656	393.909
SERVICIO IV	DC+DW+WS	104855.656	104.856
FATIGA I	1.75 LL	665000.000	665.000
FATIGA II	0.80 LL	304000.000	304.000

Fuente: Elaboración Propia

En la Tabla 4.6 se puede apreciar que la mayor carga se genera para la primera condición, donde interviene la carga permanente y la sobrecarga viva equivalente a 785.614 toneladas, con dicho valor se realiza los siguientes cálculos.

			Carga distribuida en ambos lados del puente	Carga distribuida en un solo lado del puente
COMBINACIÓN DE CARGA	Kg	Т	T/m	T/m
1.25 DC + 1.5DW+1.75 LL	785613.693	785.614	10.729	5.364

4.4.6 Para una condición de cargas combinadas – CASO N°5

Para el objeto de cálculo, de la carga 10.729 t/m solo se considerará la mitad (**5.364 t/m**), ya que el cálculo se realizará en una sola viga de las dos vigas que conforman el puente Sumbay.

La figura 4.34 muestra de manera general un esquema geométrico del puente ferroviario Sumbay.

Figura 4. 34 Puente ferroviario Sumbay sometido a cargas combinadas. (Fuente: Elaboración Propia)

Utilizando el método de la ecuación de tres momentos y siguiendo el procedimiento de cálculo de la estructura sometida a una combinación de cargas, se obtiene las siguientes reacciones en los puntos de apoyo A, B, C, D, E, F.

 $R_A = 19.13 t$ $R_B = 101.416 t$ $R_C = 75.89 t$ $R_D = 75.743 t$ $R_E = 101.51t$

$$R_F = 19.1 t$$

Con las reacciones obtenidas, en la figura 4.35 se muestra el diagrama de cuerpo libre (D.C.L) de la viga principal del puente ferroviario Sumbay.

4.4.6.1 Diagramas de fuerza cortante, momento flector y deflexión.

Figura 4. 36 D.F.C. de la viga principal – CASO N°5. (Fuente: Elaboración Propia)

En la figura 4.36, se tiene una fuerza cortante máxima ($V_{max} = 55.35 t$) a una distancia de L= 12.16 m.

154

Figura 4. 37 D.M.F. de la viga principal – CASO N°5. (Fuente: Elaboración Propia)

En la figura 4.37, se tiene un momento flector máximo ($M_{max} = 163.75 t * m$) a una distancia de L=12.16 m.

Figura 4. 38 Diagrama de deflexión de la viga principal – CASO N°5. (Fuente: Elaboración Propia)

En la figura 4.39, se tiene una deflexión máxima ($\delta_{max} = 11 \text{ mm}$), en el tramo BC a una distancia de L= 21.54 m.

155

4.4.6.2 Esfuerzo máximo.

La ecuación para determinar el esfuerzo flexionante Máximo es. $\sigma_{max} = \frac{M * c}{r}$

Donde el momento flector máximo en la figura 4.38 es $M_{max} = 163.75 t * m$, el punto más alejado de la sección transversal con respecto al eje neutro es c = 0.921 m. (Figura 4.1). y el momento de inercia de $I = 17177.87 x 10^{-6} m^4$

Reemplazando en la ecuación se obtiene:

 $\sigma_{max} = \frac{163.75 \ t. \ m * 0.921 \ m}{17177.87 \ x \ 10^{-6} \ m^4} * \frac{1 \ N}{0.000102 \ t}$

 $\sigma_{max} = 86.13 MPa$

Figura 4. 39 Distribución de esfuerzo flexionante de la viga principal – CASO N°5. (Fuente: Elaboración Propia)

4.4.6.3 Esfuerzo cortante máximo.

La ecuación para determinar el esfuerzo cortante máximo es, $\tau_{max} = \frac{V * Q_c}{I * t_c}$

Para ello se tiene:

Fuerza cortante es, $V_{max} = 25.924 t$ (Figura 4.37)

Momento de inercia es, $I = 17177.87 \times 10^{-6} m^4$ (figura 4.1)

En la sección transversal el espesor menor es en el eje neutro, $t_c = 0.01 m$ (figura 4.1)

 $Q_c = \sum \overline{Y'} * A'$

 $Q_c = (914.5)(13 * 322) + (837)(36 * 155) + (383)(10 * 765)$

$Q_c = 11428507mm^3$

$$Q_c = 0.0114 \ m^3$$

Remplazando en la ecuación de esfuerzo cortante máximo.

 $\tau_{max} = \frac{55.35 \ t * 0.0114 \ m^3}{17177.87 \ x \ 10^{-6} \ m^4 * 0.01 \ m} * \frac{1 \ N}{0.000102 \ t}$

$\tau_{max} = 36 MPa$

Figura 4. 40 Distribución de esfuerzo cortante máximo de la viga principal – CASO N°5.. (Fuente: Elaboración Propia)

4.4.7 Cuadro de Resumen de Resultados de los Cálculos Analíticos

Tabla 4. 7	
Resumen de resultados de cálculos analíticos en la viga principal del	puente

Tipos de carga	Distancia con respecto al	Esfuerzo por flexión máxima		Esfuerzo cortante máximo		Deflexión máxima	
(t/m, t)	apoyo "A" (m)	M _{máx} (t.m)	σ _{máx} (MPa)	V _{máx} (t)	τ _{max} (MPa)	Distancia con respecto apoyo "A" (m)	δ _{máx} (mm)
Una locomotora (120 t)	12.155	56.26	29.6	25.92	16.88	21.83	2
Una locomotora + 1/2 locomotora (180 t)	12.155	109.644	57.63	37.011	24.1	22.4	6.57
Dos locomotoras (240 t)	12.155	121.891	64	37.232	24.24	22.118	8.18
Dos locomotoras + dos vagones (380 t)	61.07	124.615	65.54	37.844	24.64	50.96	8.64
Combinación de carga (10.729 t/m)	12.16	163.75	86.13	55.35	36	22.54	11

Fuente: Elaboración propia

En tabla 4.7. Se muestra un resumen de resultados de los cálculos analíticos realizados para los diferentes casos de carga, la condición de carga que resalta de esta tabla 4.7. Es la de

combinación de cargas, ya que para esa condición presenta un esfuerzo mayor ($\sigma_{max} = 86.13 MPa$), sin embargo, este valor de esfuerzo llega a un 42% del límite de fluencia del hierro forjado (205 MPa).

4.5 Selección de Una Viga Principal Para el Puente Sumbay

La selección de viga se realiza con el fin de obtener una viga de sección continua, ya que esta estructura del puente ferroviario Sumbay, cuenta con elementos estructurales muy antiguas de secciones no continuas, como es unión de planchas de hierro forjado, elementos de unión remachados, etc.

4.5.1 Cálculo de cargas permanentes para la selección de viga (DC).

DC = Se considera el peso propio de los componentes estructurales y de los accesorios no estructurales.

La carga permanente o también conocida como carga muerta se determina a partir de los componentes existentes en la estructura del puente ferroviario Sumbay (no se considera la viga principal del puente Sumbay).

Para determinar la carga muerta se realiza el cálculo por cada tramo, en el caso del puente ferroviario Sumbay se considera 5 tramos.

Tabla 4. 8

Cargas permanentes para	la selección de viga

	MA	TERIALES	Peso)	Longitud por Tramo (m)	Cantidad	Peso x Cantidad (kg)	Peso Total (kg)
TRANCO	Rieles	Perfil U.I.C. 60	119.053	kg/m		2 x 12.155	2894.178	
N°1	Durmientes	0.21x0.20x3.15 cm	80.000	kg	12.155	31	2480	5441.758
	Tirafondo	Ss5-150	0.545	kg		124	67.58	
TRANCO	Rieles	Perfil U.I.C. 60	119.053	kg/m		2 x 19.886	4734.976	
N°2	Durmientes	0.21x0.20x3.15 cm	80.000	kg	19.886	50	4000	8843.976
N 2	Tirafondo	Ss5-150	0.545	kg		200	109	
TDANAO	Rieles	Perfil U.I.C. 60	119.053	kg/m		2 x 9.144	2177.241	
N°3	Durmientes	0.21x0.20x3.15 cm	80.000	kg	9.144	23	1840	4067.381
	Tirafondo	Ss5-150	0.545	kg		92	50.14	
TDANAO	Rieles	Perfil U.I.C. 60	119.053	kg/m		5 x 19.881	4733.785	
	Durmientes	0.21x0.20x3.15 cm	80.000	kg	19.881	50	4000	8842.785
N T	Tirafondo	Ss5-150	0.545	kg		200	109	
TDANAO	Rieles	Perfil U.I.C. 60	119.053	kg/m		2 x 12.160	2895.369	
I KAIVIO N°5	Durmientes	0.21x0.20x3.15 cm	80.000	kg	12.160	31	2480	5442.949
	Tirafondo	Ss5-150	0.545	kg		124	67.58	

Fuente: Elaboración Propia

En la Tabla 4.3 se muestra el peso total por tramo en kilógramos los cuales fueron hallados

anteriormente para cada tramo con los componentes estructurales existentes (no se considera la

viga principal del puente Sumbay).

Tabla 4. 9 Peso por tramo pi	iente ferrovia	ario Sumbay.
TRAMO	PESO	UNIDAD
TRAMO N°1	5441.758	Kg
TRAMO N°2	8843.976	Kg
TRAMO N°3	4067.381	Kg
TRAMO N°4	8842.785	Kg
TRAMO N°5	5442.949	Kg
Eclisa 115RE	272.64	Kg

(Fuente: Elaboración Propia)

CARGAS PERMANENTES "DC"	32911.489	Kg
	32.911	Т

Para la distribución de carga de manera uniforme se divide la suma total de carga con respecto a la longitud de viga.

$$W = \frac{32.911 t}{73.226 m} \qquad \qquad W = 0.449 t/m$$

4.5.2 Cálculo de fuerza cortante máxima y Momento flector máximo

Para el objeto de cálculo, de la carga 0.449 t/m solo se considerará la mitad (0.225 t/m), ya

que el cálculo se realizará en una sola viga de las dos vigas que conformará el puente Sumbay.

Figura 4. 41 Fuerzas que ejercen para la selección de viga (Fuente: Elaboración Propia).

Utilizando el método de la ecuación de tres momentos y siguiendo el procedimiento de cálculo, se obtiene las siguientes reacciones en los puntos de apoyo A, B, C, D, E, F.

 $R_A = 6.167 t$ $R_B = 48.128 t$ $R_C = 39.655 t$ $R_D = 46.555 t$

$R_E = 58.968 t$

$R_F = 7.004 t$

Con las reacciones obtenidas, en la figura 4.43 se muestra el diagrama de cuerpo libre (D.C.L)

de la viga principal del puente ferroviario Sumbay.

Figura 4. 42 D.C.L. de las cargas - selección de viga. (Fuente: Elaboración Propia)

Figura 4. 43 D.F.C para la selección de viga. (Fuente: Elaboración Propia)

En la figura 4.43, se tiene una fuerza cortante máxima ($V_{max} = 33.24 t$) a una distancia de L= 61.07 m.

Figura 4. 44 D.M.F. para la selección de viga (Fuente: Elaboración Propia)

En la figura 4.44, se tiene un momento flector máximo ($M_{max} = 111.8 t * m$) a una distancia de L=61.07 m

4.5.3 Análisis y cálculo para la selección de viga.

Para seleccionar una viga se tomará en cuenta que la viga que se desea seleccionar sea de perfil I de ala ancha (perfil H o W) el cual tendrá que resistir a las cargas sometidas al igual que la viga principal del puente ferroviario Sumbay.

La selección de viga se realizará siguiendo el procedimiento de diseño por flexión del método de esfuerzos permisibles (ASD).

En este método, una viga seleccionada debe tener propiedades transversales como área y momento de inercia suficientemente grandes, esto con el fin de que el esfuerzo máximo no exceda al esfuerzo permisible. Este esfuerzo permisible estará en el rango elástico del material y será menor que el esfuerzo de fluencia σ_y . Asi, un mienbro adecuadamente diseñado bajo este criterio, quedará sometido a esfuerzos no mayores que el esfuerzo permisible bajo cargas de trabajo.

162

Un diseño por flexión requiere la determinación del módulo de sección de la viga, una propiedad geométrica que es cociente de I sobre c, es decir $S = \frac{I}{c}$. si se usa la fórmula de la flexión ($\sigma = \frac{M*c}{L}$) se tiene:

 $S_{req} = \frac{M_{máx}}{\sigma_{perm}}$ (I)

Donde:

I= Momento de inercia del área de la sección transversal alrededor del eje neutro.

c= La distancia perpendicular desde el eje neutro hasta el punto más alejado del eje neutro.

 S_{reg} = Módulo de sección requerida.

 $M_{m \pm x}$ = Momento flector máximo.

Para determinar el esfuerzo permisible (σ_{perm}) se recurre al reglamento nacional de edificaciones (Norma E 90 - Estructuras metálicas - método ASD).

Esta normativa clasifica las secciones transversales de los perfiles como compactas, no compactas, dependiendo de los valores de las razones ancho-espesor.

Debido a que no se conoce la razón de ancho – espesor de la sección, se asume "perfil I de ala ancha, con secciones compactas".

Para este tipo de perfiles I de ala ancha con secciones compactas, el esfuerzo permisible es:

De acuerdo a la empresa Brasileña **Gerdau**, líder en la producción de aceros en Latinoamérica y Norteamérica, el acero que se utiliza para perfiles estructurales en sección I de ala ancha es **ASTM A572 Grado 50**. Este tipo de elementos estructurales son de acero al carbono de alta resistencia, laminados en caliente, y tiene la capacidad de resistir simultáneamente fuerzas axiales y momentos flectores.

Las aplicaciones y usos de este material están en la construcción civil e infraestructura industrial (puentes, viaductos, hospitales, colegios, soporte de máquinas y equipos, industria naval y plataformas marinas, puentes grúa, chasis de vehículos, pórticos, etc.).

Tabla 4. 10 Tabla de propiedades mecánicas del material ASTM A-572 Gr50								
Límite de fluencia Esfuerzo de tracción								
	mínimo, Fy	mínimo, Fu						
CALIDAD	[MPa]	[MPa]						
ASTM A-572 Gr50	345	450						

(Fuente: Francisco Petricio, s.f.)

Teniendo las propiedades mecánicas del material se procede a remplazar en la ecuación (II) de esfuerzo permisible.

 $\sigma_{perm} = 0.66 * \sigma_y$

 $\sigma_{perm} = 0.66 * 345 MPa$

 $\sigma_{perm} = 227.7 MPa$

Y de acuerdo al diagrama de momento flector (Figura 4.44) se tiene $M_{max} = 111.86 t_m$, el cuál se remplaza en la ecuación (I) del módulo de sección requerida.

$$S_{req} = \frac{M_{m\dot{a}x}}{\sigma_{perm}}$$

$$S_{req} = \frac{111.8 \ t * m}{227.7 * 10^6 \ Pa} * \frac{1000 \ Kg}{1 \ t} * \frac{9.8N}{1 \ Kg}$$

$$S_{req} = 4.81177 * 10^{-3} \ m^3$$

 $S_{req} = 4811.77 * 10^3 mm^3$

Una vez calculado el módulo de sección requerida se recurre a la tabla 4.15.

Tabla 4. 11

Pe (Pe	r <mark>files W</mark> rfiles de	/ aleta and	cha)	(Unido	ides SI)				1	X	
			Ale	ta	Espe-		Eje X-X		8	Eje Y-Y	
Designación mm x kg/m	Área A, mm²	Altura d, mm	Ancho b _F mm	Espe- sor Ip mm	sor del alma L, mm	l <u>,</u> 10 ⁶ mm ⁴	S _x 10 ³ mm ³	r _x mm	L 10 ⁶ mm ⁴	S _y 10 ³ mm ³	r, mm
W920 \times 449	57 300	947	424	42.7	24.0	8 780	18 500	391	541	2560	97.0
201	25 600	904	305	20.1	15.2	3 250	7 190	356	93.7	618	60.5
$\frac{W840 \times 299}{176}$	38 200 22 400	856 836	399 292	29.2 18.8	18.2 14.0	4 830 2 460	11 200 5 880	356 330	312 77.8	1560 534	90.4 58.9
W760 × 257	32 900	772	381	27.2	16.6	3 430	8.870	323	249	1310	56.9
W600 × 217	27 800	696	356	94.8	15.4	2 360	6 780	000	184	1040	81.3
125	16 000	678	254	16.3	11.7	1 190	3 490	272	44.1	347	52.6
W610 × 155 101	19 700 13 000	612 602	325 228	19.1 14.9	12.7 10.5	1 290 762	4 230 2 520	257 243	108 29.3	667 257	73.9 47.5
W530 × 150 92 66	19 200 11 800 8 390	544 533 526	312 209 165	20.3 15.6 11.4	12.7 10.2 8.59	1 010 554 351	3 720 2 080 1 340	229 217 205	103 23.9 8.62	660 229 104	73.4 45.0 32.0
W460 × 158 113 74 52	20 100 14 400 9 480 6 650	475 462 457 450	284 279 191 152	23.9 17.3 14.5 10.8	15.0 10.8 9.02 7.62	795 554 333 212	3 340 2 390 1 460 944	199 196 187 179	91.6 63.3 16.7 6.37	646 452 175 83.9	67.6 66.3 41.9 31.0
W410 × 114 85 60 46.1	14 600 10 800 7 610 5 890	419 417 406 404	262 181 178 140	19.3 18.2 12.8 11.2	11.6 10.9 7.75 6.99	462 316 216 156	2 200 1 510 1 060 773	178 171 168 163	57.4 17.9 12.0 5.16	441 198 135 73.6	62.7 40.6 39.9 29.7

(Fuente: Ferdinand P. Beer, 2013)

De la Tabla 4.11 se eligen perfiles de vigas que tienen un módulo de sección mayores que la sección requerida ($S > S_{req}$). W 840 x 176 $S = 5880 * 10^3 mm^3$

W 690 x 217	S = 6780	* 10 ³	mm^3

W 920 x 201	$S = 7190 * 10^3$	mm^3
$11 \ 120 \ A \ 201$	J = 7170 + 10	mm

W 760 x 257 $S = 8870 * 10^3 mm^3$

Una vez seleccionada los posibles perfiles de viga, se procede a verificar cuál de los perfiles cumple con lo solicitado con la normativa E 90 de estructuras metálicas.

4.5.3.1 Primera verificación – estructura compacta o no compacta.

Se verificará si los perfiles seleccionados líneas arriba tienen secciones compactas o no, de

acuerdo a la normativa E 90 de estructuras metálicas (Tabla 4.16).

Tabla 4. 12 Valores límites de la relación Ancho/espesor para elementos a compresión en miembros a flexión.

	20	Descripción del	Razón	Razones Ancho-Espesor Limite		Elempion	
-	ŝ	elemento	Espesor	λ ₂ (compacta- no compacta)	λ. -ottedee) (oftedee on	clauding.	
	10	Flexión en alas de perties i laminados, canales y tes.	bit	$0.38\sqrt{\frac{E}{F_y}}$	$1.0\sqrt{\frac{E}{F_{\gamma}}}$		
Abesados	11	Alas de secciones I soldadas con doble y simple simetría.	ьл	$0.38 \sqrt{\frac{E}{F_y}}$	$0.95\sqrt{\frac{k_{s}E}{F_{L}}}$		
ientos No-4	12	Alas de ángulos simples	b/t	$0.54\sqrt{\frac{E}{F_r}}$	$0.91\sqrt{\frac{E}{F_{g}}}$		
Bem	13	Alas de toda doble t y canal en tomo a su eje más débli.	b/t	$0.38\sqrt{\frac{E}{F_{\gamma}}}$	$1.0\sqrt{\frac{E}{F_Y}}$		
E E	14	Almas de tes	dл	$0.84\sqrt{\frac{E}{F_{\gamma}}}$	$1.03\sqrt{\frac{E}{F_{y}}}$	<u>latin</u> d	
	15	Almas de doble T simétricas y canales.	h/t _e	$3.76\sqrt{\frac{E}{F_{\gamma}}}$	$5.70\sqrt{\frac{E}{F_{\rm V}}}$		
	16	Almas de secciones doble T con un solo eje de simetría.	h _u t,	$\frac{\frac{h_{c}}{F_{c}}\left(\frac{E}{F_{c}}\right)}{\left(0.54\frac{M_{c}}{M_{f}}-0.09\right)^{1}} \leq \lambda_{c}$	$5.70\sqrt{\frac{E}{F_{y}}}$		
tos Atiesados	17	Alas de secciones tubulares y secciones cajón de espesor uniforme.	b/t	$1.12\sqrt{\frac{E}{F_y}}$	$1.40\sqrt{\frac{E}{F_{j}}}$		
Bernen	18	Alas de sobre planchas y planchas diafragma entre líneas de conectores y soldadura.	ьл	$1.12\sqrt{\frac{E}{F_y}}$	$1.40\sqrt{\frac{E}{F_y}}$		
	19	Almas de tubos rectangulares y secciones cajón.	h/t	$2.42\sqrt{\frac{E}{F_{\gamma}}}$	$5.70\sqrt{\frac{E}{F_{\rm V}}}$	- <u>[1-]</u> h	
8	20	Tubos redondos.	D/t	$0.07 \frac{E}{F_y}$	0.31 <u></u> <i>E</i>	-Q-•	

(Fuente: Reglamento nacional de edificaciones, 2006)

La nomenclatura de la tabla 4.16 es lo siguiente:

 $\lambda = razón de ancho - espesor.$

 $\lambda p = l$ ímite superior para la categoría de compactas.

 $\lambda r = l$ ímite superior para la categoría de no compactas.

Tabla 4. 13

Módulo de elasticidad para acero ($E = 200 * 10^9 Pa$)

Esfuerzo de fluencia para ASTM A572 Grado 50 ($\sigma_y = 345 * 10^6 Pa$)

Verificación de sección compacta en el Patín del perfil.

Verificación de sección compacta en el Patín del perfil.						
Perfiles seleccionados	Razón de ancho- espesor $\lambda = \frac{b}{t}$	Compacta - no compacta λ_{p} = 0.38 * $\sqrt{\frac{E}{\sigma_{y}}}$	Esbelta - no esbelto $\lambda_{\rm r}$ = 1.0 * $\sqrt{\frac{\rm E}{\sigma_{\rm y}}}$	Si λ < λp la sección es compacta	Si $\lambda p \le \lambda \le \lambda r$ la sección es no compacta	Si λr < λ la sección es esbelta
W 840 x 176	7.77	9.15	24.07	sí cumple	no cumple	no cumple
W 690 x 217	7.18	9.15	24.07	sí cumple	no cumple	no cumple
W 920 x 201	7.58	9.15	24.07	sí cumple	no cumple	no cumple
W 760 x 257	7	9.15	24.07	sí cumple	no cumple	no cumple

Fuente: Elaboración Propia

Verificación de sección compacta en el alma del perfil.

Verificación de sección compacta en el alma del perfil.						
Perfiles seleccionados	Razón de ancho- espesor $\lambda = \frac{h}{t_w}$	Compacto – no compacto $\lambda_p = 3.76 * \sqrt{\frac{E}{\sigma_y}}$	Esbelta - no esbelto $\lambda_r = 5.7 * \sqrt{\frac{E}{\sigma_y}}$	Si λ < λp la sección es compacta	Si λp ≤ λ ≤ λr la sección es no compacta	Si λr < λ la sección es esbelta
W 840 x 176	57.03	90.53	137.24	sí cumple	no cumple	no cumple
W 690 x 217	42	90.53	137.24	sí cumple	no cumple	no cumple
W 920 x 201	56.83	90.53	137.24	sí cumple	no cumple	no cumple
W 760 x 257	43.3	90.53	137.24	sí cumple	no cumple	no cumple

Tabla 4. 14 Verificación de sección compacta en el alma del perfil.

Fuente: Elaboración Propia

Efectivamente la relación de ancho/espesor (λ) del patín, como también del alma (tabla 4.13 y tabla 4.14) son menores que el límite superior (λ p); por ende, todos los perfiles seleccionados cumplen con tener sección compacta.

4.5.3.2 Segunda verificación – esfuerzos cortantes.

Si la sección transversal es I de ala ancha, por lo general, es adecuado suponer que el esfuerzo cortante es constante en toda el área de la sección transversal del alma de la viga, de modo que

 $\tau_{perm} \ge V_{max}/A_{alma}$, donde A_{alma} se determina mediante el producto del peralte de la viga por el espesor del alma. (R.C. Hibbeler, novena edición 2017, pág. 551)

4.5.3.2.1 Esfuerzo cortante permisible (τ_{perm}).

Para determinar el esfuerzo cortante permisible (τ_{perm}) se recurre al reglamento nacional de

edificaciones (Norma E 90 - Estructuras metálicas - método ASD).

La normativa menciona que, en caso de que el perfil de viga seleccionada cumpla con la

siguiente relación $\frac{h}{t_w} \le \frac{1000}{\sqrt{\sigma_y}}$, el esfuerzo cortante permisible es la siguiente.

Donde:

h = Distancia libre entre alas en la sección

 t_w = Espesor del alma

Para verificar si la relación cumple con todos los perfiles seleccionados, se elabora la siguiente

tabla 4.15.

Tabla 4. 15 Verificación de perfiles seleccionados

Perfiles	Razón de ancho-espesor $\frac{h}{t_w}$	$\frac{1000}{\sqrt{\sigma_y}}$	$\frac{h}{t_w} \leq \frac{1000}{\sqrt{\sigma_y}}$
W 840 x 176	57.03	53.84	No cumple
W 690 x 217	42	53.84	Si cumple
W 920 x 201	56.83	53.84	No cumple
W 760 x 257	43.3	53.84	Si cumple

De la tabla 4.15 se tiene dos posibilidades de perfiles de viga para seleccionar, ya que estos dos perfiles cumplen con la relación que el esfuerzo cortante permisible requiere y los demás perfiles quedan descartados ya que no cumplen con la relación.

De los dos perfiles que cumplen con la relación (tabla 4.15), se seleccionara el perfil con mayor peralte, ya que este tipo de perfiles trabaja mucho mejor con las cargas verticales, por ende, se selecciona el perfil (**W 760 x 257**).

Remplazando el esfuerzo de fluencia del material ASTM A572 Grado50, en la ecuación (III),

se obtiene:

 $\tau_{perm} = 0.40 * 345 MPa$

 $\tau_{perm} = 138 MPa$

4.5.3.2.2 *Esfuerzo cortante promedio* (τ_{prom}).

Para determinar el esfuerzo cortante promedio se necesita fuerza cortante máxima y de acuerdo al diagrama de fuerzas cortantes (Figura 4,43), se tiene $V_{máx} = 33.24 t$, y de la tabla del apéndice C, para una W 760 x 257, se tiene d = 772 mm, $t_w = 16.6 mm$.

 $\tau_{prom} = \frac{V_{máx}}{A_{alma}}$ $\tau_{prom} = \frac{33.24 t}{16.6 mm x 772 mm}$ $\tau_{prom} = \frac{33.24 t}{16.6 mm x 772 mm} * \frac{1 N}{0.000102 t}$ $\tau_{prom} = 25.45 MPa$

Realizando la comprobación, efectivamente el esfuerzo cortante permisible (τ_{perm}) es mayor que el esfuerzo cortante promedio (τ_{prom}).

 $\tau_{prom} \leq \tau_{perm}$

En conclusión, la viga de perfil **W 760 x 257** es correctamente seleccionada, ya que cumple con las condiciones que pide el método de diseño por esfuerzos permisible (ASD).

CAPITULO V

CÁLCULO COMPUTACIONAL

5.1 Análisis FEM Con Programa Computacional.

La simulación computacional se utiliza ampliamente en las empresas para hacer el análisis y mejorar la calidad de los productos y proyectos. La mayoría de estos análisis se llevan a cabo mediante el uso de softwares que utilizan el Método de Elementos Finitos, lo cual permite obtener respuestas para diferentes problemas de ingeniería.

5.1.1 Software de simulación ANSYS.

ANSYS es el Software líder de simulación a partir de un modelo CAD en 3D, para realizar análisis y simulación por elementos finitos (FEA). Incluye las fases de pre-procesamiento, resolución y post-procesamiento en una única plataforma de trabajo.

Ansys Workbench es el módulo principal de ANSYS, permite seleccionar la herramienta de análisis a utilizar, tal como: análisis eléctrico, modal, transitorio estructural, estático estructural, vibración aleatoria, etc.

El uso de Ansys Workbench es el adecuado para el cálculo con el método de los elementos finitos debido a que es un software que permite realizar pruebas sin la necesidad de realizar ensayos físicos sobre la estructura real, para así poder obtener su comportamiento en situaciones límite.

5.1.1.1 Creación de modelo en ANSYS.

El modelo del presente estudio consiste en un puente ferroviario de 73.226 m de longitud y de 32.420 m de altura máxima. El modelador de diseño de ANSYS nos permite crear los perfiles adecuados para representar el modelo correcto para el análisis. El modelo es acorde a los planos adjuntos en los anexos del presente proyecto.

Figura 5. 1 Modelo de Puente Ferroviario Sumbay en 3D. (Fuente: Ansys Workbench.)

5.1.1.2 Cargas y condiciones de frontera.

Se analizan los casos más severos en los cuales la estructura está sometido a fuerzas generadas por las locomotoras y los vagones.

Para el análisis del caso estático se consideran cargas puntuales de 20.00 toneladas por cada eje de las locomotora y vagones, así como se muestra en la Figura 5.2. La configuración de la carga estática será variable para 4 casos de carga.

Para el análisis de caso dinámico la carga es variable en el tiempo a 15km/h y con la configuración de 2 locomotoras y 2 vagones cargados de mineral, así como se muestra en la Figura 5.3.

Las condiciones de frontera que se consideran son con los pilares restringidos en todas las direcciones (cero grados de libertad) y los apoyos en los extremos de la viga principal se considera como apoyos simples.

Figura 5. 2 Puente ferroviario Sumbay con carga estática. (Fuente: Ansys Workbench.)

Figura 5. 3 Puente ferroviario Sumbay con carga dinámica. (Fuente: Ansys Workbench.)

5.1.1.3 Mallado de modelo en ANSYS.

En este modelo la geometría se malla con un total de 74357 nodos y 58651 elementos.

Para una correcta simulación lo ideal es tener cubos con ángulos rectos en el mallado; en nuestro caso de estudio como los elementos utilizados en el modelado son de tipo viga y tipo placa, la malla que se genera son considerados de buena calidad con las condiciones mostradas en la Figura 5.4 y ello es ratificado con el diagrama de calidad que se muestra en la Figura 5.5,

donde se tiene una calidad de 0.951 cercano a 1.00, la más alta calidad para una condición de

mallado Ortogonal Quality.

	Display			Inflation	
	Display Style	Use Geometry Setting		Use Automatic Infl	None
Ξ	Defaults			Inflation Option	Smooth Transition
10000	Physics Preference	Mechanical		Transition Ratio	0.272
- A	Element Order	Program Controlled	1	Maximum Layers	2
	Element Size	Default (134.54 mm)		Growth Rate	1.2
Ŧ	Sizing			Inflation Algorithm	Pre
Ξ	Quality			View Advanced Op	No
	Check Mesh Quality Yes, Errors			Batch Connections	
	Error Limits	Aggressive Mechanical		Mesh Based Conn	No
	Target Quality	Default (0.050000)	Ξ	Advanced	
1	Smoothing	Medium	5623	Number of CPUs f	Program Controlled
ĥ	Mesh Metric	Orthogonal Quality	9	Straight Sided Ele	No
	🗌 Min	2.3289e-002		Rigid Body Behavior	Dimensionally Reduced
	Max 🗌	1.		Triangle Surface M	Program Controlled
	Average	0.97469		Topology Checking	Yes
- 8	Standard Devia	8.0888e-002		Use Sheet Thickne	No
Ξ	Statistics			Pinch Tolerance	Default (1.2109 mm)
	Nodes	Nodes 74357		Generate Pinch on	No
	Elements	58651		Sheet Loop Removal	No

Figura 5. 4 Condiciones para el mallado del modelo 3D. (Fuente: Ansys Workbench.)

Figura 5. 5 Diagrama de calidad de mallado para el modelo 3D. (Fuente: Ansys Workbench.)

La Figura 5.6 y la Figura 5.7 nos muestra el mallado de los pilares y la viga principal del puente ferroviario Sumbay.

174

Cabe señalar que el modelo es igual para todos los casos de estudio; análisis estático, análisis

dinámico y análisis modal.

Figura 5. 6 Mallado de pilares del puente ferroviario Sumbay. (Fuente: Ansys Workbench.)

175

Figura 5. 7 Mallado de viga principal del puente ferroviario Sumbay. (Fuente: Ansys Workbench.)

5.1.2 Análisis FEM para una condición estática.

Para el caso del análisis estático se realiza el análisis FEM haciendo uso del software ANSYS y así poder validar los resultados obtenidos experimental y analíticamente. Para el análisis estático se consideran 4 casos de carga:

CASO N°1: Análisis estático con carga de 120 t.

CASO N°2: Análisis estático con carga de 180 t.

CASO N°3: Análisis estático con carga de 240 t.

CASO N°4: Análisis estático con carga de 380 t.

5.1.2.1 Análisis estático con carga de una locomotora – CASO Nº1.

En este análisis se considera una carga externa sobre la viga principal del puente ferroviario. La carga externa corresponde al peso total de una locomotora (120 toneladas), que se distribuye entre las 12 ruedas de la locomotora; para el análisis en ANSYS se considera la carga en los puntos de contacto entre rueda y riel. Para este caso de análisis la locomotora se ubica en los primeros tramos del puente; dicha condición de carga se muestra en la Figura 5.8.

Para este análisis en particular se verificará las deformaciones en los puntos D y E como muestra la Figura 5.8, para poder realizar un comparativo con la toma de datos en campo con strain gages.

Figura 5. 8 Estructura del puente ferroviario sometida a carga estática CASO N°1. (Fuente: Elaboración Propia)

Para el caso N°1 la mayor deflexión se produce en el tramo N°2, llegando a un valor máximo de 3.1487 mm; esto debido a que parte de la carga externa de 120 toneladas está ubicado en parte del tramo N°2. La Figura 5.9 nos muestra de manera gráfica donde se produce la mayor deflexión debida a la carga externa que es generada por la locomotora detenida al ingresar al puente ferroviario.

"ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY- AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC"

Figura 5. 9 Deformación de la estructura del puente ferroviario sometida a carga estática CASON°1. (Fuente: Ansys Workbench.)

Así también se puede apreciar que en los tramos 1,3, 4 y 5 las deflexiones son mínimas llegando a valores de 0.4130 mm, 0.5742 mm, 1.253 mm y 0.0305 mm respectivamente, esto debido a que no existe una carga externa actuando sobre los tramos anteriormente mencionados.

Para el caso N°1 de condición estática, se verifica la deformación en el punto D del pilar N°1 en la dirección del eje Z, llegando a un valor de -1.4819e-004 (-148.19 μ E) a compresión; así como se muestra en la Figura 5.10.

Figura 5. 10 Deformación en eje Z en punto D en pilar N°1. (Fuente: Ansys Workbench.)

Para el caso N°1 de condición estática, se verifica la deformación en el punto D del pilar N°1 en la dirección del eje X, llegando a un valor de 4.5224e-005 (45.224 $\mu\epsilon$) a tracción; así como se muestra en la Figura 5.11.

Figura 5. 11 Deformación en eje X en punto D en pilar N°1. (Fuente: Ansys Workbench.)

Para el caso N°1 de condición estática, se verifica la deformación en el punto E de la viga principal del puente ferroviario en la dirección del eje Z; llegando a un valor de -2.1522e-006 (-2.15 μ E) a compresión; así como se muestra en la Figura 5.12.

Figura 5. 12 Deformación en eje Z en punto E tramo N°2 viga principal de puente ferroviario Sumbay. (Fuente: Ansys Workbench.)

Para el caso N°1 de condición estática, se verifica la deformación en el punto E de la viga principal del puente ferroviario en la dirección del eje X; llegando a un valor de -1.2828e-005 (-12.82 μ ε) a compresión; así como se muestra en la Figura 5.13.

Figura 5. 13 Deformación en eje X en punto E tramo N°2 viga principal de puente ferroviario Sumbay. (Fuente: Ansys Workbench.)

Los valores en $\mu\epsilon$ (micro strain) hallados anteriormente mediante el software nos permitirá realizar una comparación con las tomas obtenidas en campo.

5.1.2.2 Análisis estático con carga de una locomotora y media - CASO N°2.

En este análisis se considera una carga externa sobre la viga principal del puente ferroviario. La carga externa corresponde al peso total de una locomotora y media (180 toneladas), que se distribuye entre las 18 ruedas de las locomotoras; para el análisis en ANSYS se considera la carga en los puntos de contacto entre rueda y riel.

Para este caso de análisis la primera locomotora se ubica completamente en el tramo N°2, la mitad de la segunda locomotora se ubica en el tramo N°1, dicha condición de carga se muestra en la Figura 5.14.

Figura 5. 14 Estructura del puente ferroviario Sumbay sometida a carga estática CASO N°2. (Fuente: Elaboración Propia)

Para este caso la mayor deflexión se produce en el tramo N°2, esto debido a que la carga externa aplicada sobre la viga principal del puente ferroviario incide más sobre el tramo mencionado, llegando a un valor máximo de 9.0161 mm; así como se muestra en la Figura 5.15.

En los tramos 1, 3, 4 y 5 las deflexiones son mínimas llegando a valores de 0.7699 mm, 1.0238 mm, 1.3053 mm y 0.04792 mm respectivamente; son pequeñas debido a que no existe una carga externa en los tramos mencionadas.

Figura 5. 15 Deformación de la estructura del puente ferroviario Sumbay sometida a carga estática CASO N°2. (Fuente: Ansys Workbench.)

5.1.2.3 Análisis estático con carga de dos locomotoras - CASO Nº3.

En este análisis se considera una carga externa sobre la viga principal del puente ferroviario. La carga externa corresponde al peso total de dos locomotoras (240 toneladas), que se distribuye entre las 24 ruedas de las locomotoras; para el análisis en ANSYS se considera la carga en los puntos de contacto entre rueda y riel. Para este caso de análisis la unión entre las dos locomotoras se encuentra en el tramo N°2; dicha condición de carga se muestra en la Figura 5.16.

Figura 5. 16 Estructura del puente ferroviario Sumbay sometida a carga estática CASO N°3. (Fuente: Ansys Workbench.)

Para este caso la mayor deflexión se produce en el tramo N°2, esto debido a que la carga externa aplicada sobre la viga principal del puente ferroviario incide más sobre el tramo mencionado, llegando a un valor máximo de 11.062 mm; así como se muestra en la Figura 5.17.

Precisamente en el tramo N°2 de la viga principal del puente ferroviario se encuentra ubicado la unión de las 2 locomotoras y las fuerzas ejercidas por los ejes de las 2 locomotoras se encuentran ubicadas en la parte media del tramo N°2.

En la Figura 5.17 también se presenta la deflexión que se produce en el puente ferroviario debido al ingreso de dos locomotoras al puente, obteniéndose una deflexión en los tramos N°1,N°3,N°4 y N°5 de 0.1737 mm, 2.9497 mm, 1.5221 mm y 0.0314mm respectivamente.

Figura 5. 17 Deformación de la estructura del puente ferroviario Sumbay sometida a carga estática CASO N°3 (Fuente: Ansys Workbench.)

5.1.2.4 Análisis estático con carga de dos locomotoras y dos vagones – CASO Nº4.

En este análisis se considera una carga externa sobre la viga principal del puente ferroviario. La carga externa corresponde al peso total de dos locomotoras y dos vagones (380 toneladas), que se distribuye entre las 38 ruedas de las locomotoras y vagones; para el análisis en ANSYS se considera la carga en los puntos de contacto entre rueda y riel. Para este caso de análisis la unión entre las dos locomotoras se encuentra en el tramo N°4 y en los tramos N°1 y N°2 se encuentran los vagones de carga; la condición de carga se muestra en la Figura 5.18.

Figura 5. 18 Estructura del puente ferroviario Sumbay sometida a carga estática CASO N°3. (Fuente: Elaboración Propia)

En la Figura 5.19 se tiene la deformación en el puente ferroviario Sumbay, lo cual nos indica que la mayor deformación se produce debido a la carga que generan las dos locomotoras y en menor magnitud las carga que generan los vagones (vagones cargados de mineral) ; en el tramo N°4 donde está la unión de las dos locomotoras se obtiene una deflexión máxima de 10.759 mm y en el tramo N°2 donde se ubican los vagones de carga minera se tiene un deflexión máxima de 7.3841 mm; en los tramos N°1,N°3 y N°5 se tiene una deflexión de 0.0625 mm, 3.1844 mm y 0.5611 mm respectivamente.

185

Figura 5. 19 Deformación de la estructura del puente ferroviario Sumbay sometida a carga estática CASO N°4. (Fuente: Ansys Workbench.)

Para el caso N°4 de condición estática, se verifica la deformación en el punto B de la viga principal del puente ferroviario en la dirección del eje X; llegando a un valor de -1.3016e-004 $(-130.16\mu\epsilon)$ a compresión; así como se muestra en la Figura 5.20.

Figura 5. 20 Deformación en eje X en punto B tramo N°3 viga principal de puente ferroviario Sumbay. (Fuente: Ansys Workbench.)

Para el caso N°4 de condición estática, se verifica la deformación en el punto B de la viga principal del puente ferroviario en la dirección del eje Y; llegando a un valor de 3.4428e-005 (34.428με) a tracción; así como se muestra en la Figura 5.21.

Figura 5. 21 Deformación en eje Y en punto B tramo N°3 viga principal de puente ferroviario Sumbay. (Fuente: Ansys Workbench.)

5.1.3 Análisis FEM para una condición dinámica.

Para el caso del análisis dinámico se hace uso del software ANSYS para así poder validar

los resultados obtenidos experimental y analíticamente.

Para el FEM para una condición dinámica se considera una velocidad de 15km/h debido a que es una velocidad de tránsito de las locomotoras sobre el puente ferroviario; también se considera la carga de 2 locomotoras (240.00 toneladas) y 2 vagones (180.00 toneladas).

Para el análisis dinámico en ANSYS se hace uso de un análisis transitorio, pero para nuestro caso de estudio se considera 4 condiciones de carga, así como se muestra a continuación:

CASO N°1: Análisis estático con carga de 120 t.

CASO N°2: Análisis estático con carga de 180 t.

CASO N°3: Análisis estático con carga de 240 t.

CASO N°4: Análisis estático con carga de 380 t.

Para obtener resultados en los diferentes casos mencionados se detiene la simulación en un determinado tiempo donde cumpla la condición señalada en los 4 casos de carga.

5.1.3.1 Análisis dinámico con carga de una locomotora – CASO Nº1.

En este análisis se considera una carga externa sobre la viga principal del puente ferroviario. La carga externa corresponde al peso total de una locomotora (120 toneladas), que se distribuye entre las 12 ruedas de la locomotora; para el análisis en ANSYS se considera la carga en los puntos de contacto entre rueda y riel.

Para este caso de análisis la locomotora se ubica en los primeros tramos del puente ferroviario; dicha condición de carga se muestra en la Figura 5.22.

Figura 5. 22 Deformación de la estructura del puente ferroviario Sumbay sometida a carga dinámica CASO N°1. (Fuente: Elaboración Propia)

Para este caso la mayor deflexión se produce en el tramo N°2, llegando a un valor máximo de 3.8956 mm; esto debido a que parte de la carga externa de 120 toneladas está ubicado en parte del tramo N°2. En la Figura 5.23 se muestra gráficamente la deflexión máxima.

Posterior a revisar la deflexión producida para esta condición se procede a verificar los diagramas de fuerza cortante, momento flector y desplazamiento, obteniéndose los valores máximos y mínimos en los diferentes diagramas; ver Figura 5.23.

Figura 5. 23 Diagrama de fuerza cortante, momento flector y desplazamiento CASO Nº1. (Fuente: Ansys Workbench.)

La tabla 5.1 nos indica los valores máximos y mínimos de fuerza cortante, momento flector y desplazamiento con una conversión de unidades.

DIAGRAMAS	5		UNID		UNID	Distancia (m)
	Máximo	2.7559x10 ⁵	Ν	28.102	t	12.155
Fuerza Cortante	Mínimo	-2.059x10 ⁵	Ν	-20.996	t	12.155
	Máximo	3.4057x10 ⁸	N-mm	34.728	t-m	4.000
Momento Flector	Mínimo	-6.0272x10 ⁸	N-mm	-61.460	-20.996 t 12 34.728 t-m 4. -61.460 t-m 12	12.155
Decologomiento	Máximo	0	mm	0	m	0
Despiazamiento	Mínimo	-3.8956	mm	-0.00389	m	20.000

Tabla 5.1

Fuente: Elaboración Propia.

Una vez obtenido el momento flector máximo se determina el esfuerzo flexionante máximo

con la siguiente ecuación; $\sigma_{max} = \frac{M * c}{I}$.

Reemplazando en la ecuación se obtiene:

$$\sigma_{max} = \frac{61.46 \ t. \ m * 0.921 \ m}{17177.87 \ x \ 10^{-6} \ m^4} * \frac{1 \ N}{0.000102 \ t}$$

$\sigma_{max} = 32 MPa$

Posteriormente se determinar el esfuerzo cortante máximo con la siguiente ecuación: $\tau_{max} = \frac{V * Q_c}{I * t_c}$

Reemplazando en la ecuación se obtiene:

 $\tau_{max} = \frac{28.1 \ t * 0.0114 \ m^3}{17177.87 \ x \ 10^{-6} \ m^4 * 0.01 \ m} * \frac{1 \ N}{0.000102 \ t}$

$\tau_{max} = 18.2 MPa$

En la Figura 5.24 se muestra los resultados del análisis FEM para una condición dinámica, para poder obtener la deformación producida en la dirección del eje X debido a la carga ejercida por una locomotora.

Los valores mostrados son los puntos donde se colocaron los strain gages lineales en la prueba en campo.

Figura 5. 24 Deformación en eje X puente ferroviario Sumbay – CASO N°1 (Fuente: Elaboración Propia)

5.1.3.2 Análisis dinámico con carga de una locomotora y media – CASO N°2.

En este análisis se considera una carga externa sobre la viga principal del puente ferroviario.

La carga externa corresponde al peso total de una locomotora y media (180 toneladas), que se

distribuye entre las 18 ruedas de las locomotoras; para el análisis en ANSYS se considera la carga en los puntos de contacto entre rueda y riel.

Para este caso de análisis la primera locomotora se ubica completamente en el tramo N°2, la mitad de la segunda locomotora se ubica en el tramo N°1; dicha condición de carga se muestra en la Figura 5.25.

Figura 5. 25 Deformación de la estructura del puente ferroviario Sumbay sometida a carga dinámica CASO N°2. (Fuente: Elaboración Propia)

Para este caso la mayor deflexión se produce en el tramo N°2, llegando a un valor máximo de 6.3069 mm; esto debido a que la carga externa de 180 toneladas aplicada sobre la viga principal del puente ferroviario incide más sobre el tramo N°2. En la Figura 5.25 se muestra gráficamente la deflexión máxima.

Posterior a revisar la deflexión producida para esta condición se procede a verificar los diagramas de fuerza cortante, momento flector y desplazamiento, obteniéndose los valores máximos y mínimos en los diferentes diagramas; ver Figura 5.26.

192

Figura 5. 26 Diagrama de fuerza cortante, momento flector y desplazamiento CASO N°2. (Fuente: Ansys Workbench.)

La Tabla 5.2 nos indica los valores máximos y mínimos de fuerza cortante, momento flector

y desplazamiento con una conversión de unidades.

Tabla 5. 2								
Fuerza cortante, momento flector y desplazamiento CASO N°2								
DIAGRAMAS			UNID		UNID	Distancia (m)		
	Máximo	3.2361x10 ⁵	Ν	32.999	t	12.155		
Fuerza Cortante								
	Mínimo	-2.9419x10 ⁵	Ν	-30.00	t	12.155		
	Máximo	5.7858x10 ⁸	N-mm	58.998	t-m	21.091		
Momento Flector								
	Mínimo	-9.8066x10 ⁸	N-mm	-100.00	t-m	12.155		
	Máximo	0	mm	0	m	0		
Desplazamiento								
-	Mínimo	-6.3069	mm	-0.0063	m	21.091		

Fuente: Elaboración Propia.

Una vez obtenido el momento flector máximo se determina el esfuerzo flexionante máximo

con la siguiente ecuación;
$$\sigma_{max} = \frac{M*c}{I}$$
.

Reemplazando en la ecuación se obtiene:

$$\sigma_{max} = \frac{100.0 \ t. \ m * 0.921 \ m}{17177.87 \ x \ 10^{-6} \ m^4} * \frac{1 \ N}{0.000102 \ t}$$

$\sigma_{max} = 53 MPa$

Posteriormente se determinar el esfuerzo cortante máximo con la siguiente ecuación:

$$\tau_{max} = \frac{V * Q_c}{I * t_c}$$

Reemplazando en la ecuación se obtiene:

$$\tau_{max} = \frac{32.9 \ t * 0.0114 \ m^3}{17177.87 \ x \ 10^{-6} \ m^4 * 0.01 \ m} * \frac{1 \ N}{0.000102 \ t}$$

$\tau_{max} = 21.4 MPa$

En la Figura 5.27 se muestra los resultados del análisis FEM para una condición dinámica, para poder obtener la deformación producida en la dirección del eje X debido a la carga ejercida por una locomotora y media.

Los valores mostrados son los puntos donde se colocaron los strain gages lineales en la prueba en campo.

Figura 5. 27 Deformación de la estructura del puente ferroviario Sumbay sometida a carga dinámica CASO N°3. (Fuente: Elaboración Propia)

5.1.3.3 Análisis dinámico con carga de dos locomotoras – CASO N•3.

En este análisis se considera una carga externa sobre la viga principal del puente ferroviario.

La carga externa corresponde al peso total de dos locomotoras (240 toneladas), que se distribuye entre las 24 ruedas de las locomotoras; para el análisis en ANSYS se considera la carga en los puntos de contacto entre rueda y riel.

Para este caso de análisis las dos locomotoras se ubican completamente dentro del puente ferroviario, la unión entre las 2 locomotoras se ubica en la mitad del tramo N°2, dicha condición de carga se muestra en la Figura 5.28.

Figura 5. 28 Deformación de la estructura del puente ferroviario Sumbay sometida a carga dinámica CASO N°3. (Fuente: Elaboración Propia)

Para este caso la mayor deflexión se produce en el tramo N°2, llegando a un valor máximo de 8.8574 mm; esto debido a que la mayor carga del total de 240 toneladas está ubicada en el medio del tramo N°2. En la Figura 5.28 se muestra gráficamente la deflexión máxima. Posterior a revisar la deflexión producida para esta condición se procede a verificar los diagramas de

fuerza cortante, momento flector y desplazamiento obteniéndose los valores máximos y

mínimos en los diferentes diagramas; ver Figura 5.29.

Figura 5. 29 Diagrama de fuerza cortante, momento flector y desplazamiento CASO Nº3. (Fuente: Ansys Workbench.)

La Tabla 5.3 nos indica los valores máximos y mínimos de fuerza cortante, momento flector y desplazamiento con una conversión de unidades.

Fuerza cortante, momento flector y desplazamiento CASO N°3						
DIAGRAMAS			UNID			Distancia (m)
	Máximo	3.428×10^{5}	Ν	39.955	t	12.155
Fuerza Cortante						
	Mínimo	-2.9419×10^{5}	Ν	-30.00	t	32.000
			NT	70.00		24.000
	Maximo	$7.7472 x 10^{\circ}$	N-mm	/9.00	t-m	24.000
Momento Flector	Mínimo	1 1275 v 109	N mm	116 271	t m	12 155
	IVIIIIII0	$-1.13/5x10^{\circ}$	IN-111111	-110.271	t-111	12.133
	Máximo	0	mm	0	m	0
Desplazamiento	101u/mmo	Ū		0		0
	Mínimo	-8.8574	mm	-0.0088	m	22.455

	_	
Tabla	5.	3

<i>Tubiu 3. 3</i>						
Fuerza cortante	, momento	flector y	desplazan	niento C	<i>CASO</i>	N°3

Fuente: Elaboración Propia.

Una vez obtenido el momento flector máximo se determina el esfuerzo flexionante máximo

con la siguiente ecuación;
$$\sigma_{max} = \frac{M*c}{I}$$
.

Reemplazando en la ecuación se obtiene:

$$\sigma_{max} = \frac{116.0 \ t. \ m * 0.921 \ m}{17177.87 \ x \ 10^{-6} \ m^4} * \frac{1 \ N}{0.000102 \ t}$$

$\sigma_{max} = 61 MPa$

Posteriormente se determinar el esfuerzo cortante máximo con la siguiente ecuación: $\tau_{max} = \frac{V * Q_c}{I * t_c}$

Reemplazando en la ecuación se obtiene:

$$\tau_{max} = \frac{39.96 \ t * 0.0114 \ m^3}{17177.87 \ x \ 10^{-6} \ m^4 * 0.01 \ m} * \frac{1 \ N}{0.000102 \ t}$$

$\tau_{max} = 25.9 MPa$

En la Figura 5.30 se muestra los resultados del análisis FEM para una condición dinámica, para poder obtener la deformación producida en la dirección del eje X debido a la carga ejercida

por 2 locomotoras.

Los valores mostrados son los puntos donde se colocaron los strain gages lineales en la prueba en campo.

Tresters Stream I Incontinue Description (Control Technics The University Control Control Technics The University Control Control Control Control Control Control Control Control Control Control Control Co	

Figura 5. 30 Deformación en eje X puente ferroviario Sumbay – CASO N°3 . (Fuente: Elaboración Propia)

5.1.3.4 Análisis dinámico con carga de una locomotora y media – CASO N[•]4.

En este análisis se considera una carga externa sobre la viga principal del puente ferroviario. La carga externa corresponde al peso total de dos locomotoras y dos vagones (380 toneladas), que se distribuye entre las 38 ruedas de las locomotoras y vagones; para el análisis en ANSYS se considera la carga en los puntos de contacto entre rueda y riel.

Para este caso de análisis la unión entre las dos locomotoras se encuentra en el tramo N°4 y en los tramos N°1 y N°2 se encuentran los vagones de carga; dicha condición de carga se muestra en la Figura 5.31.

Figura 5. 31 Deformación de la estructura del puente ferroviario Sumbay sometida a carga dinámica CASO N°4. (Fuente: Elaboración Propia)

Para este caso la mayor deflexión se produce en el tramo N°4, llegando a un valor máximo de 8.41 mm; esto debido a que la carga externa de 380 toneladas aplicada sobre la viga principal del puente ferroviario incide más sobre el tramo N°4, donde se ubica la unión de las dos locomotoras. La deflexión de 4.7842 mm es debido a la carga de las locomotoras en el tramo N°2. En la Figura 5.31 se muestra gráficamente la deflexión máxima.

Posterior a revisar la deflexión producida para esta condición se procede a verificar los diagramas de fuerza cortante, momento flector y desplazamiento, obteniéndose los valores máximos y mínimos en los diferentes diagramas; ver Figura 5.32.

Figura 5. 32 Diagrama de fuerza cortante, momento flector y desplazamiento CASO N°4. (Fuente: Ansys Workbench.)

La Tabla 5.4 nos indica los valores máximos y mínimos de fuerza cortante, momento flector

y desplazamiento con una conversión de unidades.

Tabla 5.4

DIAGRAMAS		¥ 4	UNID		UNID	Distancia (m)
Euorzo Cortonto	Máximo	2.9463x10 ⁵	N	30.043	t	41.118
Fuerza Containte	Mínimo	-3.59x10 ⁵	Ν	-36.607	t	61.066
	Máximo	8.335x10 ⁸	N-mm	84.993	t-m	50.000
Momento Fiector	Mínimo	-1.0983x10 ⁹	N-mm	-112.00	t-m	61.066
Decologomiento	Máximo	0	mm	0	m	0
Despiazamiento	Mínimo	-8.4109	mm	-0.0084	m	50.636

Fuente: Elaboración Propia.

Una vez obtenido el momento flector máximo se determina el esfuerzo flexionante máximo

con la siguiente ecuación; $\sigma_{max} = \frac{M*c}{I}$.

Reemplazando en la ecuación se obtiene:

$$\sigma_{max} = \frac{112.0 \ t. \ m * 0.921 \ m}{17177.87 \ x \ 10^{-6} \ m^4} * \frac{1 \ N}{0.000102 \ t}$$

$\sigma_{max} = 60 MPa$

Tratándose de un caso crítico se determina un factor de seguridad (F.S) del material. De acuerdo al libro de Mecánica de Materiales de (Ferdinand P. Beer, 2013 p.25) la ecuación del factor de seguridad es la siguiente:

$$F.S. = \frac{\sigma_{\acute{u}ltimo}}{\sigma_{Permisible}}$$

Reemplazando en la ecuación de F.S. se tiene para el caso crítico.

$$F.S. = \frac{\sigma_y}{\sigma_{adm}}$$
 $F.S. = \frac{205 MPa}{65.54 MPa}$ $F.S. = 3.13$

Posteriormente se determinar el esfuerzo cortante máximo con la siguiente ecuación:

$$\tau_{max} = \frac{V * Q_c}{I * t_c}$$

Reemplazando en la ecuación se obtiene:

$$\tau_{max} = \frac{36.6 \ t * 0.0114 \ m^3}{17177.87 \ x \ 10^{-6} \ m^4 * 0.01 \ m} * \frac{1 \ N}{0.000102 \ t}$$

$\tau_{max} = 23.8 MPa$

En la Figura 5.33 se muestra los resultados del análisis FEM para una condición dinámica, para poder obtener la deformación producida en la dirección del eje X debido a la carga ejercida por 2 locomotoras y 2 vagones.

Los valores mostrados son los puntos donde se colocaron los strain gages lineales en la prueba en campo.

Figura 5. 33 Deformación en eje X puente ferroviario Sumbay – CASO N°4 . (Fuente: Elaboración Propia)

5.1.4 Verificación de esfuerzos en arriostres de estructura de puente ferroviario.

Mediante un análisis FEM en ANSYS se realiza la verificación de los esfuerzos en todos los arriostres de los pilares y de la estructura de la viga principal del puente ferroviario Sumbay.

La verificación de esfuerzos se realiza para una condición crítica, cuando 2 locomotoras y 2 vagones se encuentran sobre la estructura del puente ferroviario.

En la Figura 5.34 y Figura 5.35 se muestran los valores de los esfuerzos generados en los arriostres de los pilares y en los arriostres de la estructura de la viga principal del puente ferroviario respectivamente.

Figura 5. 34 Esfuerzos en arriostres de pilares de puente ferroviario . (Fuente: Ansys Workbench.)

Figura 5. 35 Esfuerzos en arriostres de estructura de viga principal de puente ferroviario. (Fuente: Ansys Workbench.)

La Tabla 5.5 nos muestra los esfuerzos que se tiene para el caso de 2 locomotoras y 2 vagones

sobre la estructura del puente ferroviario.

Los esfuerzos máximos en el pilar N°1 llegan a -10.543 MPa a compresión y 7.6157 MPa a tracción; los esfuerzos máximos en el pilar N°2 llegan a -11.135 MPa a compresión y 11.346 MPa a tracción; los esfuerzos máximos en el pilar N°3 llegan a -12.683 MPa a compresión y 9.171 MPa a tracción y los esfuerzos máximos en los arriostres de la viga principal llegan a - 2.804 MPa a compresión y 2.482 MPa a tracción

Tabla	5.	5

Esfuerzo arriostres de estructura del puente ferroviario Sumbay.

PILAR					PILAR	VI	GA
N°1		PILA	K N ⁻ Z		N°3	PRINO	CIPAL
1.217	0.87282	-10.767	0.96124	-11.321	3.6619	-0.352	-0.151
-10.543	-10.28	-11.135	-10.831	-11.028	-12.683	0.675	1.826
-10.429	-10.548	11.303	-10.859	11.346	-12.488	-0.217	0.892
7.6157	7.2005	-6.242	7.5219	-7.1323	9.171	0.242	0.244
-5.5407	-5.1304	-6.423	-5.4691	-6.811	-5.8672	-0.110	-2.804
-5.8392	-5.5262	10.147	-5.7531	10.173	-6.0362	-0.071	-2.529
2.9866	6.1762	-8.2332	6.3808	-8.9889	3.7647	1.173	0.074
	-3.9085	-8.884	-3.9769	-8.6291		0.872	-1.572
	-4.4061	1.5843	-4.433	1.5794		0.031	-2.196
	3.9673		4.0784			-1.035	0.143
	-1.6179		-1.7471			-1.074	1.203
	-2.3005		-2.3511			0.101	2.482
	6.6476		6.7413			-1.493	-0.707
	-6.4945		-6.5018			-1.405	1.097
	-7.2911		-7.2378			-0.141	-0.348
	2.5485		2.5288			0.473	0.548
						-0.063	-0.471
						0.133	
Fuente: Elabor	ación Propia					Ur	idad: MPa

5.1.5 Modos de vibración mediante el software ANSYS.

Los modos de vibración para la estructura del puente ferroviario se obtienen por medio del análisis por elementos finitos FEM en el software ANSYS, para ello se utiliza el módulo "MODAL" de Ansys Workbench, este nos permite conocer las frecuencias naturales y los modos pertenecientes a esas frecuencias. Entonces, antes de iniciar con el análisis modal en ANSYS se ingresan todos los datos como restricciones, propiedades del material y características de la malla que son iguales a los que se utilizaron para el análisis FEM para caso estático y caso dinámico.

El análisis modal nos permitirá conocer el comportamiento dinámico de la estructura del puente ferroviario Sumbay. Los modos de vibración son indicadores de la respuesta estructural y es importante conocer sus valores, para posteriormente establecer una diferencia numérica

entre todos los modos para comprobar que el primero puede ser el más influyente al momento

de puntualizarse un adecuado comportamiento estructural bajo la acción de un sismo.

El análisis modal se hizo hasta una frecuencia de 20.6 Hz, los resultados de todos los modos

y las masas efectivas se muestran en ANEXOS FF.

La Tabla 5.6 nos muestra el porcentaje de masas efectivas en los diferentes ejes, en esta tabla

solo se muestran los modos que tiene un porcentaje de masa efectiva mayor a 1%.

MODE	FREQUENCY	MODAL	RATIO%	RATIO%	RATIO%
2	<u>(HZ)</u> 3.06	1.02		<u>EJE 1</u> 5 77	
3	3.08	1.02	0.00	1 34	0.01
11	5.60	17.16	0.00	51.15	0.00
18	6.75	0.45	0.00	0.00	1.03
42	8.14	4.49	0.00	0.00	0.00
51	9.35	2.43	4.77	0.00	0.00
54	9.68	2.25	5.23	0.00	0.00
59	10.22	11.21	1.07	0.00	0.00
81	10.45	2.29	0.01	1.77	0.00
82	10.90	7.22	7.06	0.00	0.00
86	11.00	1.23	0.00	2.82	0.00
100	12.57	3.29	4.16	0.00	0.00
105	12.89	8.83	7.95	0.01	0.00
112	13.49	6.23	0.00	17.35	0.00
122	15.06	2.11	4.78	0.00	2.51
151	16.33	2.69	0.35	0.00	19.67
152	16.34	3.95	0.23	0.00	13.46
153	16.43	11.44	0.02	0.00	1.91
160	17.08	0.14	0.04	0.00	2.04
163	17.68	3.27	3.91	0.00	0.00

Tabla 5. 6 Porcentaje de masa efectiva para los modos de vibración en eje X, Y, Z.

Fuente: Elaboración Propia

A continuación, se tienen gráficamente los modos representativos de los pilares y de la viga principal del puente ferroviario Sumbay.

Modo @ 3.06 Hz.

ReMark Ten DeScaward Spe Test/Deleveration Request of the state of the state of 300 of the senter of the senter of 300 of the s	
	T.

Figura 5. 36 Modo a 3.06 Hz. (Fuente: Ansys Workbench.)

En la Figura 5.36 se tiene desplazamiento de los arriostres en dirección del eje Y en el pilar

ubicada al centro de la viga principal del puente ferroviario.

Modo @ 3.08 Hz.

Figura 5. 37 Modo a 3.08 Hz. (Fuente: Ansys Workbench.)

En la Figura 5.37 se tiene desplazamiento de los arriostres en dirección del eje Y en el pilar ubicado al centro de la viga principal del puente ferroviario; el desplazamiento entre los arriostres del primer nivel y el tercer nivel existe un desfase de 180°.

Modo @ 5.62 Hz.

Figura 5. 38 Modo a 5.62 Hz. (Fuente: Ansys Workbench.)

En la Figura 5.38 se tiene desplazamiento de la viga principal en dirección del eje Y; se

representa como la primera flexión horizontal representada con la línea blanca discontinua.

El Manuel Total Deliver attain 18 Syst. Strab Latermatics : Programs 5:3458 Pt. Unit research and Factors (100).		
	A	
0.3008 0.4154 0.4818 Date by Fitter		
		1.

Modo @ 6.75 Hz.

Figura 5. 39 Modo a 6.75 Hz (Fuente: Ansys Workbench.)

En la Figura 5.39 se tiene desplazamiento de los arriostres horizontales en la dirección del

eje Z en el pilar ubicada al centro de la viga principal del puente ferroviario.

Modo @ 8.14 Hz.

Figura 5. 40 Modo a 8.14 Hz. (Fuente: Ansys Workbench.)

En la Figura 5.40 se tiene desplazamiento de la viga principal en la dirección del eje Y; se

presenta como la segunda flexión horizontal representada con la línea blanca discontinua.

Honoral Total Deformation III Serie Total Universities Internances 12.65276 Linkiwan Deformation Scale Factor 1080		-
0000591 Mar. 401 G 557 AU 551 AU 248 AU 248 AU 258 AU 2	A A	
2.3845 92056 92057 81922 81922 81922 81922 81922 81922 81922 81925 92060 9100 9100 9100 9100 9100 9100 9100 9		
	3 - 40 - 32 - 64 (rm)	1×

Modo @ 10.45 Hz.

Figura 5. 41 Modo a 10.45 Hz. (Fuente: Ansys Workbench.)

En la Figura 5.41 se tiene desplazamiento de la viga principal en la dirección del eje Y; se presenta como la tercera flexión horizontal representada con la línea blanca discontinua.

Modo @ 12.89 Hz.

B Could See 3 Second and 10 Systematics December Frequency (1980 et URINS) De Longer Sude Former (200	14
A TREPME LINE	
1 1 2017 1 1 2017 1 1 2010 1	
3 19672 3.000001 3.000002 3.000161 3.000161 3.000170 9.50m	×
	1

Figura 5. 42 Modo a 12.89 Hz. (Fuente: Ansys Workbench.)

En la Figura 5.42 se tiene desplazamiento del pilar ubicado al centro de la viga principal; el desplazamiento se genera en dirección del eje X, con mayor amplitud en la parte superior del

pilar.

Modo @ 15.06 Hz.

Dr. Meddel Data Tola essays 110 Type Tota Defave dian for party 15061-0 Wortney Defavorabe Scia Tycke 2000			•
2000 24 Max 2000 2 2000 2000 2000 2000 2000 2000 2	A	R	
83087 830877 830877 83775 83775 83775 83775 83775 83787 83787 83787	RI L		
23052 2009004 2004007 0MGs		-trans	F

Figura 5. 43 Modo a 15.06 Hz. (Fuente: Ansys Workbench.)

En la Figura 5.43 se tiene desplazamiento del primer pilar en dirección del eje X; se presenta como la primera flexión del pilar en la dirección del eje X.

Modo @ 16.34 Hz.

Figura 5. 44 Modo a 16.34 Hz. (Fuente: Ansys Workbench.)

En la Figura 5.44 se tiene desplazamiento de la viga principal en la dirección del eje Z así también desplazamiento del pilar en la dirección X. Se representada con la línea blanca discontinua.

A	
	e e e

Figura 5. 45 Modo a 17.68 Hz (Fuente: Ansys Workbench.)

En la Figura 5.45 se tiene desplazamiento de la viga principal en la dirección del eje Z así también desplazamiento del pilar en la dirección X. Se representada con la línea blanca discontinua.

CAPITULO VI

ANÁLISIS POR FATIGA

6.1 Fatiga.

La fatiga es un fenómeno que afecta la resistencia de una pieza que se encuentra sometida a ciclos repetidos de carga o deformación de una determinada amplitud.

Según el docente del departamento de aeronáutica de la facultad de ingeniería de la Universidad Nacional de la Plata Ing. Claudio M. Rinaldi; en su presentación de materiales aeronáuticos indica, cuando un elemento es sometido a un estado de carga o de deformación que varía en el tiempo, sea de manera aleatoria o siguiendo una determinada ley, se dice que está sometido a un estado de carga cíclica.

Por todo expuesto anteriormente se concluye que es necesario realizar el análisis por fatiga en el puente ferroviario Sumbay. Para nuestro cálculo de análisis por fatiga se hace uso de texto concerniente al análisis de Fatiga que fuera elaborado por el Dr. Jorge Rodríguez Hernández.

6.2 Ubicación de Strain Gages en Puente Ferroviario Sumbay - Arequipa.

En la Figura 6.1 se tiene una vista del puente ferroviario Sumbay-Arequipa, en esta se detalla la dirección a Juliaca y Arequipa; también se puede ver el sentido de flujo del rio para posteriormente denominarse como "Aguas Arriba" y "Aguas Abajo".

Figura 6. 1 Puente ferroviario Sumbay – Arequipa (Fuente: Fotografía Propia)

Los Strain gages colocados en el puente ferroviario Sumbay se muestran en la Figura 6.2; la

nomenclatura que será utilizada para identificar la posición de los strain gages son:

CAS: Punto C – Aguas Arriba Superior. (Strain Gages tipo Lineal)

CBS: Punto C – Aguas Abajo Superior. (Strain Gages tipo Lineal)

CAI: Punto C – Aguas Arriba Inferior. (Strain Gages tipo Lineal)

En la Figura 6.2 se muestran el punto C; son los puntos donde se encuentran ubicados los

strain gages lineales para los cálculos posteriores.

Figura 6. 2 Puntos de colocación de Strain Gages en puente ferroviario Sumbay- Arequipa. (Fuente: Elaboración Propia)

Los tipos de Strain Gages usados y la posición en la cual se colocaron se muestran en la Figura 6.3 y Figura 6.4; se consideran los puntos A y C para colocar los Strain Gages debido a que son los tramos más largos.

Figura 6. 3 Instalación de 06 Strain Gages tipo lineal para análisis por Fatiga. (Fuente: Elaboración Propia)

Figura 6. 4 Posición de los strain gages lineales en la viga superior e inferior aguas arriba y aguas abajo. (Fuente: Elaboración Propia)

Para el análisis consideramos la estructura cargada con 02 locomotoras y 18 vagones con carga de mineral.

6.3 Deformaciones y esfuerzos para trenes con carga minera.

Para objeto del análisis por fatiga se considera las deformaciones que producen las 02 locomotoras y los 18 vagones con carga de mineral debido a que se produce deformaciones cíclicas en un tiempo considerable y por ende esfuerzos cíclicos; en la Figura 6.5 se muestra las

deformaciones captadas por los strain gages lineales en el punto C, al paso del tren por el puente

ferroviario Sumbay en dirección Juliaca a Arequipa a 5 km/h.

paso de 02 locomotoras y 18 vagones en un tiempo de 255 segundos.

Tabla 6. 1 Deformaciones producidas por 02 locomotoras y 18 vagones con carga mineral.

Prueba	Prueba con carga de mineral - Deformaciones			
Posicio	ón	CAS	CBS	CAI
	Max	-158.00	-142.00	152.00
με	Min	-74.00	-60.00	75.00

Fuente: Elaboración propia.

Según la Tabla 6.1 la compresión llega hasta -158.00 με (micro strain) y la tracción hasta 152.00 με (micro strain)

Para determinar los esfuerzos se hace uso de la ley de Hooke donde el esfuerzo es directamente proporcional a la deformación como se muestra en la siguiente ecuación:

$$\sigma = E * \varepsilon$$

Para este caso se utiliza Modulo de Young del hierro forjado; $\mathbf{E} = 193.053$ GPa y la

deformación utilizada será las obtenidas con los strain gages, mostrados en la Tabla 6.1.

Cálculo de los esfuerzos máximos y mínimos en el punto CAS:

$$\sigma_{max} = 193.053(10^{9}) * (-158.00(10^{-6}))$$
$$\sigma_{max} = -30.502 MPa$$
$$\sigma_{min} = 193.053(10^{9}) * (-74.00(10^{-6}))$$
$$\sigma_{min} = -14.286 MPa$$

De igual manera se hace los cálculos para los puntos CBS y CAI. En la Tabla 6.2 se muestra los esfuerzos máximos y mínimos obtenidas anteriormente para los puntos **CAS**, **CBS** y **CAI** donde se encuentran ubicados los strain gages uniaxiales.

Esfuer	Esfuerzos máximos y mínimos de compresión y tracción.			
Esfue	Esfuerzos máximos de Compresión y Tracción [MPa]			
Pos	sición	CAS	CBS	CAI
a	Max	-30.502	-27.414	29.344
0	Min	-14.286	-11.583	14.479

Fuente: Elaboración propia.

Tabla 6.2

Según la Tabla 6.2 los esfuerzos máximos por compresión y tracción son de -30.502 MPa y 29.344 MPa respectivamente.

Ninguno de los esfuerzos llega a valores cercanos al límite de fluencia, el esfuerzo de compresión llega a un 14.88 % del límite de fluencia.

6.4 Análisis Por Fatiga.

El análisis por fatiga se realizará para una condición de paso de 2 locomotoras y 18 vagones con carga minera a 5km/h en el tramo más largo, esto debido a que para esta condición los strain gages ubicados en el punto C nos muestran cargas cíclicas como se ve en la Figura 6.6.

Figura 6. 6 Variación del esfuerzo para condición de 02 locomotoras y 18 vagones con carga mineral. (Fuente: Elaboración propia.)

En la Figura 6.6 se muestran los esfuerzos máximos y mínimos producidos en un intervalo de tiempo, los esfuerzos fueron cálculos a partir de las deformaciones captadas por los strain gages, vistos en la Figura 6.5. Los esfuerzos producidos en los diferentes puntos donde se ubicaron los Strain gages se encuentran en el campo pulsatorio de compresión y tracción.

Según la Figura 6.7 nos indica que el Strain Gages CAI (Punto C aguas Arriba Inferior) se encuentra a tracción y se tiene una variación del esfuerzo que nos ayuda a realizar el análisis por fatiga.

A partir de la Figura 6.7 se realiza el análisis por fatiga, considerando el esfuerzo en el campo pulsatorio de tracción (tensión).

Figura 6. 7 Variación del esfuerzo con respecto al tiempo para 02 locomotoras y 18 vagones (Fuente: Elaboración propia.)

Para el análisis por fatiga es necesario tener una carga cíclica para poder obtener los siguientes valores:

- σ_s : Esfuerzo superior o máximo.
- σ_i : Esfuerzo inferior o mínimo.
- σ_m : Esfuerzo medio o componente estática del esfuerzo.
- σ_a : Esfuerzo alternante o amplitud del esfuerzo.

Figura 6. 8 Esfuerzo variable en el campo pulsatorio (Fuente: Elaboración Propia)

A partir de la Figura 6.7 se determinará el esfuerzo superior, el esfuerzo inferior, el esfuerzo medio y el esfuerzo alternante.

Esfuerzo superior o máximo:
$$\sigma_s = 30.0 \frac{N}{mm^2}$$

Esfuerzo inferior o mínimo: $\sigma_i = 14.0 \frac{N}{mm^2}$
Esfuerzo medio o componente estática del esfuerzo: $\sigma_m = \frac{\sigma_s + \sigma_i}{2} = \frac{30.0 + 14.0}{2} = 22.0 \frac{N}{mm^2}$
Esfuerzo alternante o amplitud del esfuerzo: $\sigma_a = \frac{\sigma_s - \sigma_i}{2} = \frac{30.0 - 14.0}{2} = 8.0 \frac{N}{mm^2}$
Según las características del material, se tiene la resistencia a la tracción:
Esfuerzo ultimo a la tracción para el hierro forjado: $\sigma_{ut} = 350 \frac{N}{mm^2}$
 $\sigma_{ut} = 350 \frac{N}{mm^2} x \frac{0.2248 \ lb}{1N} x \frac{1 \ mm^2}{0.00155003 \ plg^2}$

$$\sigma_{ut} = 50.7603 \times 10^3 \ \frac{lb}{plg^2}$$

Debido a que no se dispone de información con respecto al límite de resistencia a la fatiga S'_e para el hierro forjado se utilizara la Figura 6.9 para lo cual es necesario conocer la relación entre el límite de fatiga y la resistencia a la tracción.

En la Tabla 6.3 se tiene el valor de la relación entre el límite de fatiga y la resistencia a la tracción para diferentes materiales.

Según la Tabla 6.3. la relación entre el límite de fatiga y la resistencia a la tracción para el hierro forjado es de 0.63.

Tabla 6. 3	
Relación entre límite de fatiga y la resistencia a la tracción	
de diversos materiales.	

MATERIAL	RELACIÓN
Acero, AISI 1035	0.46
Acero, barra para tornillos	0.44
Acero, AISI 4140 normalizados	0.54
Hierro Forjado	0.63
Cobre Duro	0.33
Cobre Berílico (Tratado Térmicamente)	0.29

Fuente: MATERIALES Y PROCESOS DE FABRICACIÓN E.P. DeGARMON

Después de obtener la relación entre el límite de fatiga y la resistencia a la tracción podemos obtener el límite de fatiga puesto que el valor de la resistencia a la tracción para el hierro forjado es de 50.760 kpsi obtenemos el límite de fatiga que tiene un valor de 30.00 kpsi. Como se puede ver en la Figura 6.9.

A partir de la Figura 6.9 obtenemos el límite de resistencia a la fatiga para el hierro forjado:

$$S'_{e} = 30x10^{3} \frac{lb}{plg^{2}} x \frac{1 N}{0.2248 lb} x \frac{0.00155003 plg^{2}}{1 mm^{2}}$$
$$S'_{e} = 206.86 \frac{N}{mm^{2}}$$

6.4.1 Factores que modifican el límite de resistencia a la fatiga.

No es posible indicar que el límite de resistencia a la fatiga de un elemento estructural sea igual a los valores obtenidos en laboratorio porque existe algunas diferencias.

Un valor importante a tener en consideración son los factores que cuantifican los efectos de la condición superficial, el tamaño, la carga, la temperatura y otros puntos.

Para poder hacer un reajuste del límite de resistencia a la fatiga se tiene la siguiente formula (Shigley, Mechanical Engineering,2008):

$$S_e = k_a k_b k_c k_d k_e S'_e$$

6.4.1.1 Factor de superficie (ka).

Es importante saber la influencia del acabado superficial debido a que toda pieza o elemento mecanizado presenta crestas y valles originados por el proceso de mecanizado; las crestas y valles pueden dar origen a la presencia de microgrietas los cuales se comportan como puntos de concentración de esfuerzos.

En la Figura 6.10 se tiene los valores típicos de profundidad (Rz) para diversos procesos de fabricación; para el caso de análisis se considera un proceso de Forjado, debido a que en todo el desarrollo de la presente tesis se considera el hierro forjado. Para este caso se considera 160 µm de profundidad promedio de la rugosidad.

Figura 6. 10 Profundidad promedio de la rugosidad Rz. (Fuente: Análisis de Fatiga -Jorge Antonio Rodríguez Hernández)

En la figura 6.11 se tiene la relación entre el coeficiente superficial o factor de superficie (Cs=ka), el acabado superficial (Rt) y la resistencia máxima a la tracción ($\sigma_B = \sigma_u$). Se considera Rz =160 µm de la figura 6.10; según publicación del Doctor en Ingeniería Mecánica Jorge Antonio Rodríguez Hernández se considera Rz ≈ Rt y Rt es hallado de la figura 6.10.

Figura 6. 11 Coeficiente de Superficie o factor de superficie (Cs=ka). (Fuente: Análisis de Fatiga -Jorge Antonio Rodríguez Hernández)

Según la figura 6.11, se considera factor de superficie (Cs = ka) igual a 0.84; considerando

 $Rt = 160 \ \mu m \ y \ \sigma_B = \sigma_u = 350 \ N/mm2.$

6.4.1.2 Factor de tamaño kb.

Se observa que la resistencia a la fatiga disminuye a mayor tamaño de sección transversal.

Para el caso de elementos que no tengan sección circular se puede utilizar el diámetro equivalente (d_{equiv}); para ello se hace uso del texto de "Diseño en Ingeniería Mecánica de Shigley" (Shigley, Mechanical Engineering,2008).

En la Figura 6.12 se considera una sección "I" con un espesor de 13 mm; es por ello que se considera la ecuación correspondiente para esa condición tf > 0.025a.

Figura 6. 12 Vista de sección transversal de sección – Perfil I. (Fuente: Mechanical Engineering-Shigley)

Si $t_f > 0.025a \rightarrow 13 > 0.025 * 322 \rightarrow 13 > 8.05$; Cumple!

El área de 95% de esfuerzo (Shigley, Mechanical Engineering, 2008).

 $A_{0.95\sigma} = 0.05ba = 0.05(1842 * 322)$

$$A_{0.95\sigma} = 29656 \ mm^2$$

Porque la sección de análisis no es un perfil circular se considera el diámetro equivalente.

$$d_{equiv} = \sqrt{\frac{A_{0.95\sigma}}{0.0766}} = \sqrt{\frac{29656}{0.0766}}$$

 $d_{equiv} = 622 \ mm$

Para dequiv mayores a 254 mm se considera valores del factor de tamaño kb=0.6.

6.4.1.3 Factor de carga kc.

Para determinar el factor de carga (kc) se tiene la tabla 6.4 Se tiene kc = 1 para la carga a

flexión a la cual está sometida la estructura de la viga principal del puente.

Tabla 6. 4Factor de carga kc.Tipo de cargakcFlexión1,0Axial0,85Torsión1,00

(Fuente: Mechanical Engineering-Shigley)

6.4.1.4 Factor de temperatura kd.

Para obtener el factor de temperatura (kd) se hace uso de la tabla 6.5.

Tabla 6. 5

Para nuestro caso de estudio se tiene una temperatura ambiente de aproximadamente 20°C

(mapa climático del Perú-SENAMHI) y es por ello que se asume el siguiente valor kd = 1.

T (°C)	kd
20	1,000
50	1,010
100	1,020
150	1,025
200	1,020
250	1,000
300	0,975
350	0,927
400	0,922
450	0,840
500	0,766
550	0,670
600	0,546

(Fuente: Mechanical Engineering-Shigley)

6.4.1.5 Factor de confiabilidad ke.

El factor de confiabilidad (ke) nos ayuda a compensar los errores de aproximación que pudimos ocasionar por la imprecisión al utilizar los gráficos y algunas condiciones asumidas. Para nuestro caso asumiremos el factor más crítico ke = 0.520.

- - - -

Confiabilidad R	ke
0,50	1,000
0,90	0,897
0,95	0,868
0,99	0,814
0,999	0,753
0,999 9	0,702
0,999 99	0,659
0,999 999	0,620
0,999 999 9	0,584
0,999 999 99	0,551
0,999 999 999	0,520

(Fuente: Mechanical Engineering-Shigley)

Una vez determinado los factores que intervienen para poder recalcular el límite de resistencia a la fatiga se procede a calcular un nuevo valor para el límite de resistencia a la fatiga considerando la geometría del material y condiciones de uso (Shigley, Mechanical Engineering,2008).

 $S_e = 0.84 * 0.6 * 1 * 1 * 0.520 * 206.86$

 $S_e = 54.21 MPa$

6.4.2 Diagrama de Wohler para hierro forjado.

Debido a que no se dispone del diagrama de Wohler para el hierro forjado se realiza la construcción aproximada del diagrama de Wohler, así como se muestra en la Figura 6.13.

Figura 6. 13 Diagrama aproxima de Wohler para σm ≠ 0. (Fuente: Jorge Rodríguez Hernández)

Para construir el diagrama aproximado de Wohler para un esfuerzo medio diferente de 0 es

necesario conocer el límite de la amplitud para la fatiga σ_A . Para ello será necesario obtener el

diagrama de Haigh.

El diagrama de Haigh se construye con los valores que se obtuvieron anteriormente; los valores necesarios para graficar el diagrama de Haigh son:

Esfuerzo ultimo a la tracción:
$$\sigma_{ut} = 350 \frac{N}{mm^2}$$

Límite de resistencia a la fatiga: $S_e = 54.21 \frac{N}{mm^2}$

Esfuerzo medio:
$$\sigma_m = 22.0 \frac{N}{mm^2}$$

La figura 6.15 nos muestra el diagrama de Haigh para el hierro forjado, para poder determinar el valor de la amplitud límite para lograr vida infinita

A partir de la Figura 6.15 se obtiene la amplitud límite para lograr vida infinita:

$$\sigma_{A(\infty)} = 50.7 \ \frac{N}{mm^2}$$

Con el valor hallado a partir del diagrama de Haigh se procede a graficar el diagrama de Wohler para en caso de estudio.

Con los valores obtenidos anteriormente se procede a graficar el diagrama de Wohler como se indica en la Figura 6.16; para poder determinar si la estructura del puente ferroviario Sumbay falla o no por fatiga realizamos los siguientes cálculos y haciendo uso de un diagrama de Wohler aproximado podemos indicar si la estructura falla.

 $\log(0.9\sigma_{ut} - \sigma_m) = \log(0.9x350 - 22.0) = \log(293.0) = 2.47$

 $\log \sigma_{A(\infty)} = \log(50.7) = 1.71$

 $\log \sigma_a = \log(8.0) = 0.90$

Figura 6. 16 Diagrama de Wohler para hierro forjado. (Fuente: Elaboración propia)

En la Figura 6.16 luego de haber construido el diagrama aproximado de Wohler y teniendo en cuenta el límite de fatiga ubicamos el esfuerzo alternante al que está sometido la estructura del puente ferroviario Sumbay y como se muestra la estructura está muy por debajo del límite de la fatiga y por ende la estructura principal del puente ferroviario Sumbay no falla por fatiga.

El esfuerzo al cual se encuentra sometido la estructura del puente ferroviario llega a un 52.6% del límite de fatiga, es por ello que se podría concluir que la estructura tiene vida infinita.

Según el Dr. Jorge Rodríguez Hernández la resistencia a la fatiga se define como el valor máximo del esfuerzo alternante que resistirá sin fallar un material para un número dado de ciclos de carga. Por consiguiente, se indica que el puente Sumbay no falla por fatiga, puesto que el esfuerzo alternante se encuentra por debajo del límite de fatiga.

6.4.3 Factor de seguridad a fatiga.

El factor de seguridad a fatiga nos ayuda a predecir si la estructura fallará o no debido a cargas cíclicas. El factor de seguridad se calcula primero identificando todos los ciclos de carga (esfuerzo medio y esfuerzo alternante).

En esta parte se realiza el cálculo del factor de seguridad por tres diferentes criterios; Criterio de Gerber, criterio de Goodman y el criterio de Soderberg.

Los diferentes criterios para el factor de seguridad utilizan los siguientes valores:

Esfuerzo alternante: $\sigma_a = 8.0 \frac{N}{mm^2}$

Esfuerzo medio: $\sigma_m = 22.0 \frac{N}{mm^2}$

Límite de resistencia a la fatiga: $S_e = 54.21 \frac{N}{mm^2}$

Esfuerzo ultimo para hierro forjado: $S_{ut} = 350.0 \frac{N}{mm^2}$

Esfuerzo de fluencia para el hierro forjado: $\sigma_y = 205.0 \frac{N}{mm^2}$

6.4.3.1 Factor de seguridad por Gerber.

Para el criterio por Gerber se utiliza la siguiente ecuación (Shigley, Mechanical Engineering,2008).

$$n_{f} = \frac{1}{2} \left(\frac{\sigma_{ut}}{\sigma_{m}}\right)^{2} \frac{\sigma_{a}}{S_{e}} \left[-1 + \sqrt{1 + \left(\frac{2\sigma_{m}S_{e}}{S_{ut}\sigma_{a}}\right)^{2}} \right] \qquad \sigma_{m} > 0$$
$$n_{f} = \frac{1}{2} \left(\frac{350.0}{22.0}\right)^{2} \frac{8.0}{54.21} \left[-1 + \sqrt{1 + \left(\frac{2 \times 22.0 \times 54.21}{350.0 \times 8.0}\right)^{2}} \right] \qquad \sigma_{m} > 0$$

 $n_f = 5.86$

6.4.3.2 Factor de seguridad por Goodman.

Para el criterio por Goodman se utiliza la siguiente ecuación (Shigley, Mechanical Engineering,2008).

$$n_{f} = \frac{1}{\frac{\sigma_{a}}{S_{e}} + \frac{\sigma_{m}}{S_{ut}}}$$
$$n_{f} = \frac{1}{\frac{8.0}{54.21} + \frac{22.0}{350.0}}$$
$$n_{f} = 4.75$$

6.4.3.3 Factor de seguridad por Soderberg.

Para el criterio por Soderberg se utiliza la siguiente ecuación (Shigley, Mechanical Engineering,2008).

$$n_{f} = \frac{1}{\frac{\sigma_{m}}{S_{y}} + \frac{\sigma_{a}}{S_{e}}}$$
$$n_{f} = \frac{1}{\frac{22.0}{205.0} + \frac{8.0}{54.21}}$$
$$n_{f} = 3.92$$

Luego de obtener el factor de seguridad por los diferentes criterios de falla se procede a graficar para poderlo visualizar de mejor manera cada criterio y poder ver si nos encontramos en la zona segura o en la zona de fallo.

(Fuente: Elaboración propia)

Con los resultados obtenidos y con el diagrama de la figura 6.17 queda demostrado que la estructura se encuentra sobredimensionada, debido a que los factores de seguridad son muy altos y en el diagrama de fatiga para los diferentes criterios nos encontramos en la zona segura.

6.4.4 Acumulación de daño por fatiga.

En la vida real, los elementos estructurales están sometidos a cargas de fatiga variables y no a cargas de fatiga de amplitud constante es por ello que en esta sección de la tesis se hace referencia a la suma de Palmgrem-Miner con la finalidad de evaluar el daño acumulado. Según esta regla se basa en la hipótesis de que el daño total que acumula un elemento estructural bajo rangos de tensión variables se obtiene mediante la suma lineal del daño causado por cada rango de tensión individual, es decir:

$$D = \frac{n_1}{N_1} + \frac{n_2}{N_2} + \dots + \frac{n_k}{N_k} = \sum_{i=1}^k \frac{n_i}{N_i}$$

ni: Es el número de ciclos de rangos de tensión de amplitud variable.

Ni: Es el número total de ciclos hasta el agotamiento bajo rango de tensión de amplitud constante.

La falla se define cuando se consume el 100% de la resistencia, lo que corresponde a obtener un valor de daño (D) igual a 1.

6.4.4.1 Conteo Rainflow.

El método de conteo Rainflow se utiliza para poder determinar el número de ciclos de fatiga y se trabaja con el historial de tiempo de carga. Se utiliza en el análisis de datos de fatiga para reducir un espectro de tensiones variables en un conjunto de tensiones. Esta simplificación permite determinar el número de ciclos para cada esfuerzo.

Para el caso de estudio se considera el paso de 2 locomotora y 18 vagones. Se hace uso de 1 Strain gages tipo lineal para poder obtener posteriormente los esfuerzos variables, como se muestra en la figura 6.18.

Figura 6. 18 Variación del esfuerzo con respecto al tiempo para 02 locomotoras y 18 vagones (Fuente: Elaboración propia.)

Debido a la complejidad de la variación de esfuerzos se hace el uso del Software Matlab para poder hallar la cantidad de ciclos para la variación de esfuerzos haciendo uso de un script.

El script utilizado para el método de Rainflow se detalla en la figura 6.19.

Automatical Property and a reducemental property
increase from and and add a contraction of the
a seguration of the second
Maxwe (1, 1) Woolle
and the second se
<pre>[ao, ey] = extrans(history);</pre>
<pre>source = isros[langth(ny), s); goints = isros[langth(ny), s];</pre>
wide $= \theta_1$ pinks $= \theta_2$
for clim = 1:1: length(cy) pids = pids = 1: potentic(pids) = side;
while gids on 2
$ \begin{array}{l} s^{\mu} s g_{0} = s f_{0} \left[s \rho (p l) s f_{0} (p l) s f_{0} (p l) + 1 \right] \\ \rho (s g_{0} + s f_{0} (s \rho (p l) s f_{0} (p l) + 1 \right) \\ \rho (s g_{0} + s f_{0} (s \rho (p l) s f_{0} (p l) + 1 \right) \\ \rho (s g_{0} + s f_{0} (s \rho (p l) + 1 \right) \\ \rho (s g_{0$
<pre>if orways >= grange gamma = m.e * (wy(points(pide = x)) + ep(points(pide = 1)))) if a pide = 20</pre>
supplying the second second
consistences is a latit header herailt
polytick) - pelperet
Monatality a burnelitate
ktex = 32
#358
construction, ib - [r.s. house, becault
points[puds - 2] - points[puds];
grade a piele (1.2)
and .
ristic
 break
and states of
482
and
Man we want to the second s
Tor x = 111([110 + 1]
<pre>.auda = war(aA(borntcic)) = aA(borage(c + r()))</pre>
inter = 0.3 * [ep[poloin(n]] + sy(poloin(n + 3)]))
stide = side = 1;
construction 1) = [0.2" Ladis' visal:
*** ··································
courts = causte(1:clos, -:);
where the internals
When the second states is
The second

Figura 6. 19 Script para conteo Rainflow (Fuente: MathWorks)

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

La figura 6.20 muestra la cantidad de ciclos para los esfuerzos variables que se presentan al

pasar 2 locomotoras y 18 vagones con carga minera a 5km/h.

Debido a que las 2 locomotoras y 18 vagones pasan 4 veces al día por 365 días al año se multiplica por 4 y por 365 la cantidad de ciclos mostrados en la figura 6.20 para poder obtener la cantidad de ciclos que se generan en un año.

Figura 6. 20 Conteo de ciclos para los esfuerzos en la viga principal de puente ferroviario. (Fuente: Elaboración propia.)

La figura 6.21 muestra la cantidad de ciclos para los diferentes esfuerzos generados al pasar

2 locomotoras y 18 vagones por el puente ferroviario en un año.

Figura 6. 21 Conteo de ciclos para los esfuerzos para 365 días de servicio. (Fuente: Elaboración propia.)

Una vez obtenido la cantidad de ciclos que se generan en un año (**ni**) se procede a realizar el cálculo de acumulación de daño por fatiga.

Tener en consideración el diagrama S-N para el hierro forjado, mostrado en la figura 6.22 para tener la cantidad de ciclos hasta el agotamiento (**Ni**).

Figura 6. 22 Diagrama S-N para el hierro forjado. (Fuente: STRUCTURAL APPRAISAL OF A WROUGHT IRON TRUSS RAILWAY BRIDGE.)

Según la figura 6.22 para esfuerzos inferiores a 20 N/mm2 la cantidad de ciclos a los que podría trabajar el elemento es infinito, teniendo en consideración ello se procede a realizar el cálculo para los diferentes valores de esfuerzo, así como la cantidad de ciclos correspondientes a los diferentes esfuerzos.

$$D = \frac{n_1}{N_1} + \frac{n_2}{N_2} + \dots + \frac{n_k}{N_k} = \sum_{i=1}^k \frac{n_i}{N_i} \le 1$$

Realizando la sumatoria del número de ciclos generados por las 2 locomotoras y 18 vagones (ni) entre el número de ciclos hasta el agotamiento (Ni) se obtiene un valor de D = 0.145 como se muestra en la tabla 6.7; como se tiene un valor de daño (D) menor a 1 podemos considerar que nuestra estructura en análisis no sufre por la cantidad de ciclos a la que se encuentra sometida.

Tabla 6.7

Numero de ciclos para generados en un año y número de ciclos hasta el agotamiento

		10	
Estuerzo	N° CICIOS-ANUAL	Ni	ni / Ni
N/mm2	nı		
0.25	4638420	60	0.000
0.75	9172450	60	0.000
1.25	9039590	60	0.000
1.73	2451340	60	0.000
2.21	567940	60	0.000
2.73	489100	••	0.000
3.23	411720	60	0.000
3.76	293460	60	0.000
4.25	316820	60	0.000
4.74	229220	60	0.000
5.25	237980	60	0.000
5.74	256960	60	0.000
6.26	262800	60	0.000
6.76	273020	60 ···	0.000
7.25	261340	60 ···	0.000
7.74	258420	60	0.000
8.25	274480		0.000
8.75	277400	60	0.000
9.25	239440	60	0.000
9.75	256960	60	0.000
10.26	303680		0.000
10.75	306600		0.000
11.26	789860	60	0.000
11.76	979660	60	0.000
12.25	810300	60	0.000
12.74	849720		0.000
13.25	835120		0.000
13.75	1382620	60	0.000
14.26	3782130	60	0.000
14.75	7394170	60	0.000
15.24	12338460	60	0.000
15.75	12115080		0.000
16.25	9035940	~	0.000
16.76	7570100	~	0.000
17.25	7181740		0.000
17.74	7429940	c0	0.000
18.25	7213860	~~	0.000
18.75	6945220	60	0.000
19.26	7257660	co 1	0.000
19.74	6638620	1.00E+09	0.007
21.48	75032320	7.00E+08	0.107
27.47	7768660	2.50E+08	0.031
30.40	32120	1.00E+08	0.000
		TOTAL	0.145

Fuente: Elaboración Propia

CAPITULO VII

ANÁLISIS COMPARATIVO DE RESULTADOS.

7.1 Análisis Comparativo de Resultados Experimentales Con Strain Gages Lineales.

7.1.1 Análisis comparativo de esfuerzos máximos y mínimos sin carga minera.

Los strain gages lineales son ubicados en los puntos AAS, ABS, AAI, CAS, CBS y CAI; así como se muestra en la Figura 7.1 para una condición sin carga minera, la locomotora transita a 15 km/h en dirección Arequipa a Juliaca.

Figura 7. 1 Ubicación de Strain Gages en puente ferroviario Sumbay – SIN CARGA MINERA. (Fuente: Elaboración Propia)

Figura 7. 2 2 Comparativo de esfuerzos en viga principal sin carga minera – Strain Gages Lineales. (Fuente: Elaboración Propia)

En la Figura 7.2 se muestran los esfuerzos máximos y mínimos calculados a partir de las deformaciones obtenidas de los strain gages ubicados en los diferentes puntos mostrados en la Figura7.1.

A partir de la Figura 7.2 se desarrolla la Tabla 7.1 para mostrar la variación que existe entre los valores de esfuerzo entre los puntos AAS-CAS, ABS-CBS, AAI-CAI.

Esfuerzo	Punto	Esfuerzo (MPa)	Diferencia (MPa)
	AAS	-32.819	0
	CAS	-32.819	0
– /	ABS	-33.398	1.02
Omax	CBS	-31.468	1.93
	AAI	27.221	0.07
	CAI	28.186	0.97
	AAS	-5.405	0.10
	CAS	-5.212	0.19
σmin	ABS	-5.792	0
	CBS	-5.792	0
	AAI	2.896	0
	CAI	2.896	0

Tabla 7. 1 Porcentaje de variación de esfuerzos entre 2 puntos – sin carga.

Fuente: Elaboración propia

Según la Tabla 7.1 la máxima diferencia es de 1.93 MPa entre los puntos ABS y CBS; debido a que la diferencia es mínima, se puede indicar que el tramo N°2 donde se encuentran los puntos CAS, CBS, CAI y el tramo N°4 donde se encuentras los puntos AAS, ABS, AAI están sometidos a los mismos esfuerzos.

7.1.2 Análisis comparativo de esfuerzos máximos y mínimos con carga minera.

Los strain gages lineales son ubicados en los puntos AAS, ABS, AAI, CAS, CBS y CAI; así como se muestra en la Figura 6.3 para una condición con carga de minera, la locomotora transita a 5km/h en dirección Juliaca a Arequipa.

Figura 7. 4 Comparativo de esfuerzos en viga principal con carga minera – Strain Gages Lineales. (Fuente: Elaboración Propia)

En la Figura 7.4 se muestran los esfuerzos máximos y mínimos calculados a partir de las deformaciones obtenidas de los strain gages ubicados en los diferentes puntos mostrados en la Figura 7.3.

A partir de la Figura 7.4 se desarrolla la Tabla 7.2 para mostrar la variación que existe entre los valores de esfuerzo entre los puntos AAS-CAS, ABS-CBS, AAI-CAI.

v		v	
Esfuerzo	Punto	Esfuerzo (MPa)	Diferencia (MPa)
	AAS	-24.904	5.60
	CAS	-30.502	5.60
- /	ABS	-24.904	2 5 1
Omáx	CBS	-27.414	2.51
	AAI	25.097	4.25
	CAI	29.344	4.25
	AAS	-14.286	0.00
	CAS	-14.286	0.00
σmin	ABS	-14.286	2 70
	CBS	-11.583	2.70
	AAI	12.548	1.02
	CAI	14.479	1.93

Tabla 7. 2Porcentaje de variación de esfuerzos entre 2 puntos – con carga.

Fuente: Elaboración propia

Según la Tabla 7.2 la máxima diferencia es de 5.60 MPa entre los puntos AAS y CAS; debido a que la diferencia es mínima, se puede indicar que el tramo N°2 donde se encuentran los puntos CAS, CBS, CAI y el tramo N°4 donde se encuentras los puntos AAS, ABS, AAI están sometidos a los mismos esfuerzos.

Figura 7. 5 Comparativo de esfuerzos máximos y mínimos para condición con carga y sin carga minera. (Fuente: Elaboración Propia)

En la Figura 7.5 se puede apreciar claramente el incremento del esfuerzo mínimo en todas las posiciones donde se encuentran ubicadas los strain gages. Se debe considerar que los esfuerzos máximos son generados por las locomotoras mas no por los vagones de carga minera.

Los esfuerzos máximos y mínimos hallados con los strain gages para las diferentes condiciones (sin carga / con carga) son mucho menores a los de fluencia para el hierro forjado (205MPa), llegando a ser 83.71% menor al límite de fluencia.

7.2 Análisis Comparativo de Resultados Experimentales Con Rosetas De Deformación.

En la Figura 7.6 se muestra la ubicación de los strain gages en la estructura del puente ferroviario Sumbay; en los puntos B, D y E se encuentran ubicados las rosetas de deformación

para la toma de datos experimentales para las diferentes condiciones de carga (sin carga minera,

con carga minera, estático).

Figura 7. 6 Ubicación de rosetas de deformación en puente ferroviario Sumbay. (Fuente: Elaboración Propia)

7.2.1 Análisis comparativo de esfuerzos con roseta en punto "B".

Los esfuerzos principales obtenidos en el punto B para las condiciones de carga (sin carga minera, con carga minera, estático) se muestran en la Figura 7.7.

Figura 7. 7 Esfuerzos principales en punto B (sin carga minera - con carga minera - estático). (Fuente: Elaboración Propia)

242

Los esfuerzos máximos y mínimos hallados en el punto "B" para las condiciones; sin carga, con carga y estático son mucho menores a los de fluencia para el hierro forjado (205MPa), llegando a ser 83.79% menor al límite de fluencia.

Los esfuerzos máximos de corte son menores al esfuerzo de corte del hierro forjado (194.5MPa), llegando a ser 90.61% menor a la resistencia máxima al corte.

7.2.2 Análisis comparativo de esfuerzos con roseta en punto "D".

Los esfuerzos principales obtenidos en el punto D para las condiciones de carga (sin carga minera, con carga minera, estático) se muestran en la Figura 7.8.

Figura 7. 8 Esfuerzos principales en punto D (sin carga minera - con carga minera - estático). (Fuente: Elaboración Propia)

Los esfuerzos máximos y mínimos hallados en el punto "D" para las condiciones; sin carga, con carga y estático son mucho menores a los de fluencia para el hierro forjado (205MPa), llegando a ser 86.14% menor al límite de fluencia.

Los esfuerzos máximos de corte son menores al esfuerzo de corte del hierro forjado, (194.5MPa), llegando a ser 92.54% menor a la resistencia máxima al corte.

7.2.3 Análisis comparativo de esfuerzos con roseta en punto "E".

Los esfuerzos principales obtenidos en el punto E para 3 condiciones de carga (sin carga minera, con carga minera, estático) se muestran en la Figura 7.9.

Figura 7. 9 Esfuerzos principales en punto E (sin carga minera - con carga minera - estático). (Fuente: Elaboración Propia)

Los esfuerzos máximos y mínimos hallados en el punto "E" para las condiciones; sin carga, con carga y estático son mucho menores a los de fluencia para el hierro forjado (205MPa), llegando a ser 91.27% menor al límite de fluencia.

Los esfuerzos máximos de corte son menores al esfuerzo de corte del hierro forjado, (194.5MPa), llegando a ser 94.58% menor a la resistencia máxima al corte.

7.3 Análisis Comparativo de Frecuencias Naturales y Frecuencias de Excitación.

Para el caso de frecuencias naturales y frecuencias de excitación se tiene la Figura 7.10 donde se muestra la frecuencia de excitación para velocidades de 5 km/h hasta 20 km/h, los cuales son representados por los puntos de diferentes colores; en el caso de las frecuencias naturales se representa con las líneas continuas de diferentes colores. Los puntos donde intercepten con las líneas continuas se consideran como resonancia.

Figura 7. 10 Análisis comparativo de frecuencias naturales y frecuencias de excitación. (Fuente: Elaboración Propia)

Los puntos que se interceptan con las líneas continuas nos indican las velocidades a las cuales no debería transitar la locomotora para evitar la resonancia. Según al Reglamento Nacional de Ferrocarriles la velocidad de operación de la locomotora a través del puente ferroviario Sumbay debiera ser a 16 km/h; por ello la empresa FETRANSA tiene como velocidad máxima de tránsito sobre el puente de 15 km/h. Por ello se concluye que no existe resonancia debido a que a la velocidad de 15 km/h ninguna de las frecuencias son excitadas por las locomotoras y los vagones intercepta con las frecuencias naturales.

7.4 Análisis Comparativo de Resultados Obtenidos Por Método de Tres Momentos y Método de Elementos Finitos en Software Computacional.

Se realiza un comparativo de los esfuerzos cortantes máximos, esfuerzos por flexión máxima y la deflexión máxima; obtenidos por el método de tres momentos y análisis FEM mediante software computacional ANSYS para cuatro condiciones de carga como se muestra en la Tabla 7.3 y Tabla 7.4.

245

Tabla 7. 3

Condiciones de carga	Momento Flector Máxima		Fu Cortant	ierza te Máxima	Deflexión máxima	
(t/m, t)	M _{máx} (t.m)	Distancia (m)	V _{máx} (t)	Distancia (m)	δ _{máx} (mm)	Distancia (m)
Una locomotora (120 t)	56.26	12.155	25.92	12.155	2.00	21.83
Una locomotora + 1/2 locomotora (180 t)	109.644	12.155	37.011	12.155	6.57	22.4
Dos locomotoras (240 t)	121.891	12.155	37.232	12.155	8.18	22.118
Dos locomotoras + dos vagones (380 t)	124.615	61.07	37.844	61.07	8.64	50.96

Resumen de cálculos analíticos en la viga principal del puente Sumbay.

Fuente: Elaboración propia

Tabla 7.4

Resumen de análisis FEM en la viga principal del puente Sumbay.

Condiciones de carga	Momento Flector Máximo		Fuerza Cortante Máxima		Deflexión Máxima	
(t/m, t)	M _{máx} (t.m)	Distancia (m)	V _{máx} (t)	Distancia (m)	δ _{máx} (mm)	Distancia (m)
Una locomotora (120 t)	61.460	12.155	28.100	12.155	3.896	20.00
Una locomotora + 1/2 locomotora (180 t)	100.00	12.155	32.999	12.155	6.307	21.091
Dos locomotoras (240 t)	116.27	12.155	39.955	12.155	8.857	22.455
Dos locomotoras + dos vagones (380 t)	112.00	61.066	36.607	61.066	8.411	50.636

Fuente: Elaboración propia

Con los valores mostrados entre la Tabla 7.3 y Tabla 7.4 se realiza un cuadro comparativo

para poder mostrar la diferencia entre ambos resultados.

Tabla 7.5

Cuadro comparativo de resultados entre cálculo analítico y análisis FEM computacional.

Condiciones de carga	Momento Flector Máximo		Fuerza Má	Cortante xima	Deflexión Máxima	
(t/m, t)	M _{máx} (t.m)	Distancia (m)	V _{máx} (t)	Distancia (m)	δ _{máx} (mm)	Distancia (m)
Una locomotora (120 t)	5.20	0	4.92	0	1.89	1.83
Una locomotora + 1/2 locomotora (180 t)	9.64	0	4.02	0	0.26	1.31
Dos locomotoras (240 t)	5.62	0	2.72	0	0.68	0.34
Dos locomotoras + dos vagones (380 t)	12.61	0	1.24	0	0.23	0.32

Fuente: Elaboración propia

En la Tabla 7.5 la diferencia que existe entre el cálculo analítico por el método de tres momentos

y el análisis FEM en software computacional para los momentos flectores máximos, fuerza

cortante máxima y deflexión máxima. La diferencia que existe entre los resultados obtenidos es muy cercana; para el caso de momento flector se tiene una diferencia máxima de 12.61 t-m; para el caso de fuerza cortante se tiene una diferencia máxima de 4.92 t y para la deflexión máxima se tiene una diferencia máxima de 1.89 mm.

Con estos valores obtenidos se concluye que los resultados calculados por el método de tres momentos y el análisis FEM por software computacional son muy cercanos.

A partir de los momentos flectores máximos y fuerza cortante máxima de determina los valores de los esfuerzos por flexión máximos y esfuerzos por cortante máximo para las diferentes condiciones de carga.

Tabla 7. 6 Cuadro comparativo de resultados entre cálculo analítico y análisis FEM computacional.

Condiciones de carga	Esfuerzo F Máx	lexionante imo (MDa)	Esfuerzo Cortante Máximo		
(t/m, t)	ANALITICO	FEM	ANALITICO	FEM	
Una locomotora (120 t)	29.6	32.0	16.6	18.2	
Una locomotora + 1/2 locomotora (180 t)	57.6	53.0	24.1	21.4	
Dos locomotoras (240 t)	64.0	61.0	24.2	25.9	
Dos locomotoras + dos vagones (380 t)	65.5	60.0	24.6	23.8	

Fuente: Elaboración propia

7.5 Análisis Comparativo de Resultados Obtenidos en Campo y FEM en Software Computacional – Condición DINAMICA.

En esta sección se realiza un cuadro comparativo para las diferentes condiciones de carga para el análisis experimental y el análisis obtenido por software computacional.

Los puntos que se muestran ABS, AAI, CBS y CAI son los puntos donde se colocaron los strain

gages lineales y el comparativo que se realiza, es para los resultados obtenidos por los strain

gages y los resultados obtenidos mediante el análisis FEM por software computacional.

Tabla 7. 7

Cuadro comparativo entre valores de strain gages lineales y análisis FEM computacional.

CONDICION DE CARGA	METODO	ABS	AAI	CBS	CAI
CASO 1	Experimental	0.0 e-06	0.0 e-06	-90.0e-06	80.0e-06
Una locomotora (120 t)	ANSYS	1.0e-06	1.0e-06	-100.0e-06	88.5e-05
CASO 2	Experimental	0.0 e-06	0.0 e-06	-100.0e-06	80.0e-06
Una locomotora + $1/2$ locomotora (180 t)	ANSYS	5.0e-06	-5.0e-06	-125.0e-06	112.5 e-06
CASO 3	Experimental	0.0 e-06	0.0 e-06	-163.0e-06	146.0e-06
Dos locomotoras (240 t)	ANSYS	2.0 e-06	2.0 e-06	-178.5e-06	165.0e-06
CASO 4	Experimental	-173.0e-06	141.0e-06	-25.0e-06	20.0e-06
Dos locomotoras + dos vagones (380 t)	ANSYS	-178.5e-06	165.2e-06	-37.5e-06	25.0e-06

Fuente: Elaboración propia

Como se puede visualizar los resultados son muy cercanos y por ende podemos indicar que

nuestro análisis FEM es correcto debido que los resultados son cercanos a los obtenidos con

strain gages.

7.6 Análisis Comparativo de Resultados Obtenidos en Campo y FEM en Software

Computacional – Condición ESTÁTICA.

En esta sección se realiza un cuadro comparativo de los valores obtenidos con las rosetas de deformación ubicados en los puntos B, D y E obteniéndose los resultados de deformación en lo ejes X y Z. La comparación de resultados se realiza convenientemente en los ejes X y Z debido a los puntos donde se colocaron las rosetas de deformación y a los ejes donde fue posible obtener la deformación en el análisis FEM.

y analisis FEM computacional.							
Ubicación	Deformación	Prueba	Valor (µɛ)				
ριιντο ρ	6	Experimental	-128.0e-06				
FUNIUD	εx	ANSYS	-130.2e-06				
DUNTO D	6	Experimental	44.0e-06				
	εx	ANSYS	45.2e-06				
PUNIUD	6	Experimental	-148.0e-06				
	εz	ANSYS	-148.2e-06				
	6	Experimental	-12.0e-06				
PUNTO E	εx	ANSYS	-12.8e-06				
		Experimental	-2.0e-06				
	εz	ANSYS	-2.2e-06				

Tabla 7. 8 Cuadro comparativo entre valores de roseta de deformación y análisis FEM computacional.

Fuente: Elaboración Propia

Como se puede visualizar en la Tabla 7.8 los resultados son muy cercanos y por ende podemos indicar que nuestro análisis FEM es correcto debido que los resultados son cercanos a los obtenidos con strain gages.

CONCLUSIONES

- La variación de velocidad y carga minera transportado en los vagones por las 2 locomotoras GT42AC condujeron a realizar el estudio del comportamiento dinámico del puente ferroviario Sumbay, se realizaron mediciones experimentales mediante el uso de strain gages para medir deformaciones y el uso de acelerómetros triaxiales con el fin de obtener amplitudes de vibración. A partir de las deformaciones experimentales se calcularon analíticamente los valores de esfuerzos. Así mismo se comprobó los valores de los resultados experimentales mediante el uso de simulación numérica a través del FEM obteniéndose buena correspondencia de los resultados. Los resultados experimentales y numéricos llevan a la conclusión que los esfuerzos debido a la carga que produce la locomotora son mayores a los esfuerzos producidos por los vagones con o sin carga minera, estos esfuerzos están por debajo de los esfuerzos permisibles del material hierro forjado con un factor de seguridad de 3 considerando el esfuerzo de fluencia del hierro forjado (205 MPa) y con factor de seguridad a la fatiga de 3.92 calculado por el criterio de Soderberg. Por consiguiente, no se producirán fallas en el puente ferroviario Sumbay debido a la variación de velocidad y carga minera transportada en los vagones por la locomotora GT42AC.
- El análisis dinámico experimental se realizó durante el paso de las 2 locomotoras y 18 vagones sobre la estructura del puente ferroviario Sumbay, donde se realizó mediciones experimentales mediante el uso de strain gages lineales, strain gages tipo rosetas de 45° y acelerómetros triaxiales, obteniéndose deformaciones y espectros de vibración. Los valores de esfuerzos por flexión en la viga principal del puente ferroviario Sumbay obtenidos con strain gages lineales alcanzaron un valor máximo de compresión de 33.2 MPa; este esfuerzo obtenido experimentalmente nos

indica un factor de seguridad de 6 considerando el esfuerzo de fluencia del hierro forjado (205 MPa). Las amplitudes de vibración llegaron a valores máximos de 0.1 mm/s RMS. Así mismo se realizó la prueba de bump test en la estructura principal del puente ferroviario Sumbay, obteniéndose el factor de amortiguamiento de 0.0384 a partir de la onda del tiempo en estado transitorio, este valor indica que el tipo de amortiguamiento de la viga principal del puente ferroviario es Sub-amortiguado; del mismo modo con la prueba bump test en la estructura del puente ferroviario Sumbay se obtuvieron frecuencias naturales de 0.25 Hz, 0.56 Hz, 0.63 Hz, 1.00 Hz, 1.12 Hz, 1.98 Hz, 3.25 Hz, 4.50 Hz, 8.25 Hz, 9.35 Hz,10.0 Hz, 10.25 Hz, 11.00 Hz, 12.00 Hz, 12.25 Hz, 14.50 Hz, 16.18 Hz, 29.13 Hz. Los resultados experimentales llevan a la conclusión que los esfuerzos obtenidos no superan el límite de fluencia del material de hierro forjado, así mismo las amplitudes de vibración no representan un potencial problema en la estructura del puente ferroviario Sumbay debido a que son muy pequeñas y ninguna de las frecuencias naturales del puente es excitada por el paso de las locomotoras y/o vagones (no existe resonancia). Por consiguiente, no se producirán fallas en el puente ferroviario Sumbay a partir de las cargas dinámicas.

El cálculo de los esfuerzos y deformaciones de la estructura principal del puente ferroviario Sumbay se realizó mediante el método de la ecuación de tres momentos y análisis FEM con software computacional ANSYS. Los valores obtenidos mediante el método de la ecuación de tres momentos, evaluando con la carga más crítica de 380 t produce una deflexión máxima de 8.64 mm en el tramo más largo de la viga principal del puente ferroviario Sumbay, con un esfuerzo máximo por flexión de 65.6 MPa, este valor nos indica un factor de seguridad de 3 considerando el esfuerzo de fluencia del hierro forjado (205 MPa) y un esfuerzo cortante máximo de 24.64 MPa. Los valores obtenidos mediante el análisis FEM realizados con software computacional ANSYS para una

VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC" condición dinámica con carga externa de 2 locomotoras y 2 vagones a una velocidad de

tránsito de 15 Km/h, produce una deflexión máxima de 8.41mm en el tramo más largo de la viga principal del puente ferroviario Sumbay, con un esfuerzo máximo por flexión de 61.0 MPa, este valor nos indica un factor de seguridad de 3.4 considerando el esfuerzo de fluencia del hierro forjado (205 MPa) y un esfuerzo cortante máximo de 25.9 MPa. Así mismo mediante el análisis modal realizado con software computacional ANSYS se obtuvieron los primeros modos de vibración de toda la estructura del puente ferroviario Sumbay, las frecuencias son 5.62 Hz, 8.14 Hz, y 10.45 Hz. Los resultados obtenidos por el método de la ecuación de tres momentos y análisis FEM con software computacional conducen a la conclusión que los esfuerzos y las deflexiones no presentan un problema debido a que no superan el límite de fluencia del material hierro forjado.

- El estudio de fatiga en la viga principal del puente ferroviario Sumbay se realizó para una variación de carga cíclica, con una carga externa debido a las 2 locomotoras y 18 vagones cargados de mineral a una velocidad de 5 Km/h. El valor obtenido de esfuerzo alternante llega al 52.6% del límite de fatiga, y los factores de seguridad a la fatiga por el criterio Gerber de 5.86, criterio de Goodman de 4,75 y criterio de Soderberg de 3.92. Estos resultados llevan a concluir que los esfuerzos cíclicos son menores del del límite de fatiga de acuerdo al diagrama S-N del hierro forjado; por lo que, la estructura del puente ferroviario Sumbay se encuentra en la zona de vida infinita del diagrama de fatiga para los diferentes criterios de falla. Por consiguiente, la resistencia de la estructura debido a la variación de carga está en la zona de vida infinita por fatiga.
- La comparación de los resultados experimentales y numéricos se realizó con cuadros comparativos. La diferencia entre los esfuerzos máximos obtenidos por strain gages lineales para una condición de vagones con carga y sin carga minera es de 8.5 MPa, esto debido a que la mayor carga lo ejercen las locomotoras y no los vagones. De la

253

comparación entre las frecuencias naturales y las frecuencias de excitación se obtiene, que a las velocidades de 5 Km/h y 15 Km/h no existe el fenómeno de resonancia. De la comparación del esfuerzo flexionante máximo y esfuerzo cortante máximo por la ecuación de tres momentos y análisis FEM con software computacional ANSYS, se tiene una variación de 5.5 MPa para el esfuerzo flexionante máximo y de 3 MPa para el esfuerzo cortante máximo. Por consiguiente, se concluye que los resultados obtenidos analíticamente y los resultados obtenidos por un software computacional son muy cercanos en esfuerzos flexionante máximo y esfuerzo cortante máximo.

RECOMENDACIONES

- Se recomienda realizar pruebas de resiliencia (Charpy) a una muestra del puente, ya que estas pruebas permiten determinar la resistencia del material a la fractura bajo impacto, lo que es crucial para evaluar la seguridad estructural del puente. Así también permitirá determinar las propiedades mecánicas del material y su composición química para posteriores trabajos de investigación.
- Se recomienda realizar un análisis detallado de las zonas de uniones remachadas del puente, con el objetivo de detectar posibles fallas por cortante, aplastamiento y tensión. Este análisis permitirá evaluar la resistencia de las uniones y determinar si se requiere alguna acción correctiva para evitar posibles fallos estructurales en el futuro
- Se recomienda realizar un análisis de Creep en la estructura del puente ferroviario Sumbay, ya que este análisis se refiere a la deformación permanente de un material bajo carga constante y prolongada. En este caso, la carga constante son las locomotoras y vagones cargados de mineral que transitan por el puente. A sí mismo, el análisis de Creep permitirá evaluar la capacidad del material para resistir esta deformación permanente y determinar si se requieren medidas preventivas para garantizar la estabilidad a largo plazo del puente.

BIBLIOGRAFÍA

- AASHTO (2017) AASHTO LRFD Bridge design specifications, 8^a. Edición. American Association of State Highway and Transportation Officials, Washington.
- Aquino Fernández, A.N. (2018) *Circulo de Mohr para deformación*. Scribd. Consultado el 10 de Abril de 2020. https://es.scribd.com/document/390119901/Circulo-de-MOhr-Para Deformación
- AZOM. (13 de Agosto de 2013) *Hierro forjado: propriedades, aplicaciones*. AZO Materials Consultado el 10 de Marzo del 2020. https://www.azom.com/article.aspx?ArticleID=9555.
- Beer, F.P., Jhonston, E.R., DeWolf, J.T., Mazurek, D.F. (2013) *Mecánica de materiales*, 6^a. Edición. McGraw Hill.
- Richard, G. Budynas, J, Keith. Nisbett. (2008) *Diseño en ingeniería mecánica de Shigley*, 8ª. Edición. McGraw Hill.
- Carrasco Tineo, R. (01 de Octubre de 2015) *Ecuac tres momentos*. Slideshare. Consultado el 28 de Febrero del 2021. https://es.slideshare.net/roycarrascotineo/ecuac-tres-momentos
- Ferrocarril Trasandino S.A. (2018) *Ferrocarril Transandino S.A.* FTSA. Consultado el 20 de Enero de 2020. http://www.ferrocarriltransandino.com/index1.htm
- Francisco Petricio. (s/f). Planchas gruesas. FRANCISCO PETRICIO. Consultado el 06 de Marzo de 2021. http://www.fpetricio.cl/planchas-gruesas/211-astm-a572-gr-50-.html
- Hibbeler, R.C. (2011) Mecánica de materiales, 8ª. Edición. Pearson Educación.
- Hibbeler, R.C. (2012) Análisis estructural, 8ª. Edición. Pearson Educación.
- Hibbeler, R.C. (2017) Mecánica de materiales, Pearson Educación.
- Kirti Gandhi, Ph.D. (s/f) Puente Verrugas. Verrugas viaducto y su reconstrucción, Perú, América del Sur.
- López, J.L. (2004) Ciencia y tecnología, Enciclopedia Temática del Perú. *Ferrocarriles y carreteras*, 6.
- Ministerio de Vivienda, Construcción y Saneamiento. (2006) Reglamento nacional de edificaciones. SENCICO.

- Ortiz Berrocal, L. (2007). *Resistencia de materiales*. McGraw-Hill/Interamericana de España, S.A.U.
- Jaime de Jesús García Villareal. (1990). *Fatiga de metales con cargas de amplitud variable por el método strain-life*.[Tesis de maestría, Universidad Autónoma de Nuevo León]
- OSITRAN. (2018) *Anuario estadístico*. Ositran. Consultado el 03 de Febrero de 2021. https://www.ositran.gob.pe/anterior/publicaciones/anuario-estadístico/
- OSITRAN. (2018) *Plan de negocios*. Ositran. Consultado el 25 de Marzo de 2021. https://www.ositran.gob.pe/anterior/vias-ferreas/ferrocarril-del-sur-y-sur-oriente/
- Pacheco Alarcón, M., Abarca Ortega, A. (15 de Mayo de 2019) Deflexión en vigas. *Resistencia de materiales*.
- Parra, J. (06 de Febrero de 2016). *Teorema de los 3 momentos*. Slideshare. Consultado el 15 de Marzo de 2021. https://es.slideshare.net/JessicaParra15/teorema-de-los-3-momentos_
- Progress Rail. (2017) *Locomotives*. Progress Rail A Caterpillar Company. Consultado el 23 de Diciembre de 2019. http://s7d2.scene7.com/is/contet/Caterpillar/CM20170915-63120-37525
- Rao, S.S. (2012) Vibraciones mecánicas, 4.ª. Edición. Pearson Educación.
- Rodríguez Hernández, J.(s/f) Fatiga, Pontificia Universidad Católica del Perú Sección Ingeniería Mecánica.
- Rodríguez Serquén, A. (2016) Puentes con AASHTO LRFD 2014, 7.ª. Edición.
- Rodríguez Valdez, A.L. (25 de Febrero de 2017) *Res.mat.ii sesión 1.2-2016-5 (2)*. Slideshare. Consultado el 20 de Marzo de 2021. <u>https://www.slideshare.net/analuciarodriguelval.</u>
- Sandoval Rodríguez, C.A. (2013) *Clasificación y selección de strain gages y su aplicación en la industria mecánica*. Concepción.
- Universidad de los Andes. (s/f) *Resistencia de materiales*. Universidad de los Andes Venezuela. Consultado el 07 de Julio de 2021. <u>https://docplayer.es/18035553-Resistencia-de-materiales.html</u>
- Vázquez, M., López, E. (2001) El método de los elementos finitos aplicado al análisis estructural. Noela.

ANEXOS

ANEXOS – A

A. Modos de Vibración de Puente Ferroviario Sumbay con Software ANSYS.

***** HODAL MASSES, SINETIC ENERGIES, AND TRADSLATIONAL EFFECTIVE MASSES SIMMARY *****

							EFFECTIVE	K HASS		
HODE	MARGINERICA	HOBAL MASS	REFER	1	K-DIR	RATION	Y-DIR	RATIO	Z-DIR	BATIOS
1	3.045	0.8854	162.6	1	0.82728-07	0.00	0.2522	0.26	0.1392	0.14
2	3.057	1.019	187.7	1	0.19285-06	0.00	5.475	5.17	0.75486-02	0.01
3	3.075	1.242	232.2	1	0.11596-05	0.00	1.316	1.34	0.30346-04	0.00
	3.050	1.090	204.0	1	0.11156-05	0.00	0.21338-01	0.02	0.3778E-01	0.04
	3.153	0.7216	142.0	1	0.25156-05	0.00	0.20458-01	0.02	0.1740K-02	0.00
	3,158	0.6918	136.2		0.31402-06	0.00	0.1566	0.10	0.80546-03	0.00
	3.200	0.2654	56.43		0.34455-04	0.00	0.27302-07	0.00	0.1203	0.12
	3.200	0.2656	36.69		0.64235-05	0.00	0.44002-07	0.00	0.6622	0.47
	3.447	4.141	2425.		0.95028-01	0.10	0.11252-04	0.00	0.55516-08	0.00
20	5.440	4.024	2.289. 2.30488.08		C LODINE-03	0.00	0.40946-05	0.00	0.11012-04	0.00
12	8 700	1 111	717 4	1.1	0.10138-03	0.00	0.24238-02	0.00	0.10308-03	0.00
12	5.720	1. 11.7	747.4		0.1402-08	0.00	0.24232-02	0.00	O TISTE OF	0.00
14	5.360	0 2050	143.5	10	0.129212-03	0.00	0.14238-05	0.00	O ASSAR 01	0.00
10	6.301	0.2050	103.7	1.1	0.14355-03	0.00	0.110726-02	0.00	0.60061-01	0.40
1.5	6 7 28	0.5120	487.4	1.1	0.24385-00	0.00	0.11838-04	0.00	0.13048-03	0.40
17	6 747	0.4033	367.2	14	0.34705-07	D 00	B 18488-02	0.00	0 15508-01	0.00
10	6.745	0.4517	407.2	14	0.95118-06	D.00	0.10578-05	0.00	1.014	1.03
10	4.758	0.4424	305.5	1.1	0.53218-07	D 00	0.1479	0.11	0 26148-01	n an
20	6.763	0.3113	252.5	14	0.44228-06	0.00	0.41557-05	0.00	0.8591	0.00
21	6.764	0.3645	330.9	- î -	0.30018-06	0.00	0.15652-01	0.02	0.14978-02	0.00
22	7.075	0.5921	852.7	- Q	0.13455-03	0.00	0.21575-07	0.00	0.15546-01	0.02
23	7.075	0.5922	852.4	- î -	0.32328-05	0.00	0.14455-07	0.00	0.5611	0.37
24	7.577	3,603	4053.	÷1	0.40346-03	0.00	0.97438-06	0.00	0.53496-03	0.00
25	7.555	1.015	4340.	- î -	0.8363	0.85	0.44765-05	0.00	0.38926-04	0.00
25	7.624	1,173	1344.	÷1	0.57205-03	0.00	0.34138-03	0.00	0.32956-03	0.00
27	7.695	0.7773	905.6	÷1	0.35346-01	0.04	0.22958-03	0.00	0.23576-03	0.00
25	7.702	0.7151	837.3	1	0.66805-02	0.01	0.18695-04	0.00	0.36565-04	0.00
29	7.754	0.9543	1168.	1	0.1401E-02	0.00	0.12458-02	0.00	0.26448-03	0.00
30	7.754	4.075	5784.	1	0.10655-02	0.00	0.84495-04	0.00	0.17616-03	0.00
31	7.604	1.192	1433.	1	0.3918	0.40	0.04642-04	0.00	0.47276-04	0.00
32	7.014	1.192	1434.	1	0.1342	D.14	0.43368-05	0.00	0.76266-04	0.00
33	7.860	1.053	1320.	1	0.1401	D.14	0.44658-05	0.00	0.82616-04	0.00
34	7.653	3.648	4475.	1	0.6504E-04	0.00	0.40105-05	0.00	0.16726-03	0.00
35	7.056	6.332	7774.	1	0.17555-03	0.00	0.43338-02	0.01	0.45916-09	0.00
36	7.009	3.541	4350.	1	0.42548-04	0.00	0.20596-05	0.00	0.26546-03	0.00
37	7.695	3.711	4570.	1	0.25776-05	0.00	0.1141E-01	0.01	0.74426-05	0.00
35	7.898	5.639	6945.	1	0.3144E-04	0.00	0.1161	0.12	0.64256-05	0.00
39	7.903	3.957	4878.	1	0.15408-04	0.00	0.32538-02	0.00	0.14686-03	0.00
40	7.997	4.645	8388.	1	0.4255E-05	0.00	0.176TE-04	0.00	0.85406-07	0.00
41.	7.995	4.638	8381.	1	0.33218-06	0.00	0.14295-06	0.00	0.41376-07	0.00
42	8.136	4.424	5561.	1	0.41238-03	0.00	0.3531E-02	0.00	0.3973E-04	0.00
43	8.155	0.6753	887.2	1	0.2351E-03	0.00	0.5996E-03	0.00	0.5761E-03	0.00
44	8.178	0.6251	825.3	1	0.35195-04	0.00	0.12776-01	0.01	0.3854K-04	0.00
45	8.190	0.7563	1001.	1	0.42455-03	0.00	0.21662-01	0.02	0.7568E-03	0.00
46	8.212	0.6345	844.7	1	0.1542E-03	0.00	0.2358	0.24	0.67346-05	0.00
47	8.301	0.6873	934.7	1	0.31298-02	0.00	0.5312E-02	0.01	0.11558-02	0.00
40	8.328	0.6271	855.6		0.20558-03	0.00	0.23656-01	0.02	0.32556-04	0.00
49	9.044	0.2581	416.7		0.17092-04	0.00	0.10632-01	0.01	0.52566-04	0.00
50	9,046	0.2581	414.0		0.36766-05	0.00	0.00062-02	0.01	0.61526-06	0.00
51	9.304	2.423	4192.		4.630	4.27	0.92522-06	0.00	0.52556-04	0.00
24	9.309	3.013	3217.		C. JOINE OF	0.02	0.25532-05	0.00	O. MODIE-01	0.00
	0.000	4.333	4188		0.40408-03	0.00	0.10178-04	0.00	O. TAOME. OR	0.00
24	3.004	4.298	4138.		3.144 0.1800F 04	5.22	D ATRAC OT	0.00	0.20001-03	0.00
6.0		0.2617	405.5	10	0.12886.01	0.00	D SEASE DE	0.00	0.74178.08	0.00
57	10 21	13.14	0.23078405	14	0.3440	D 36	B 429 W-DS	0.00	0.32028-04	D 00
-	10.21	8 027	0.18588405	14	0.65005-01	0.07	0.38328-04	0.00	O SETAR-OA	n an
50	10 22	11.21	0.21108405	14	1 /48	1 07	0.94305-03	0.00	0 10478-02	n an
60	10.22	5.750	0.11865+05	- Q.	0.63555-03	D.00	0.19725-02	0.00	0.10218-01	0.01
61	10.21	8.825	0.18228+05	- î -	0.45955-03	0.00	0.13695-02	0.00	0.20176-01	0.00
62	10.21	5.958	0.14402+05	11	0.1607	0.16	0.44625-03	0.00	0.19536-02	0.00
63	10.24	10.04	0.2079E+05	1	0.3360	0.34	0.43238-03	9.00	0.12956-02	0.00
64	10.24	5.003	0.1202E+05	1	0.10526-02	0.00	0.34738-03	9.00	0.41946-01	0.64
65	10.25	6.012	0.1246E+05	1	0.24155-04	0.00	0.49255-05	9.00	0.31356-01	0.03
65	10.25	5.075	0.16842+05	1	0.57386-02	0.01	0.11005-03	9.00	0.85486-02	0.01
67	10.25	6.075	0.14342+05	1	0.12555-01	0.01	0.21305-02	0.00	0.62116-02	0.01
65	10.25	14.14	0.2956E+05	1	0.10055-02	0.00	0.14905-03	0.00	0.24576-04	0.00
69	10.25	14.40	0.3006E+05	1	0.42218-02	0.00	0.10205-01	0.01	0.14506-01	0.02
70	10.29	7.025	0.14672+05	1	0.21676-01	0.02	0.55228-01	0.06	0.67526-03	0.00
71	10.29	9.203	0.1923E+05	1	0.53446-02	0.01	0.13228-01	0.01	0.25236-03	0.00
72	10.29	18.15	0.3794E+05	1	0.90578-02	0.01	0.1221E-01	0.01	0.82216-04	0.00
73	10.29	10.44	0.21028+05	1	0.24458-01	0.03	0.13745-02	0.00	0.73356-03	0.00
74	10.30	7.808	0.16352+05	1	0.1001E-02	0.00	0.345EE-02	0.00	0.8447E-01	0.09

***** MODAL MASSES, KINETIC ENERGIES, AND TRANSLATIONAL EFFECTIVE MASSES SUMMARY *****

						EFFECTIVE MASS				
MODE	FREQUENCY	MODAL MASS	KENE	1	X-DIR	RATIO _{\$}	Y-DIR	RATIO ₈	Z-DIR	RATIO ₈
75	10.30	10.03	0.2101E+05	1	0.1083E-02	0.00	0.3437E-01	0.03	0.6024E-02	0.01
76	10.30	4.561	9559.	1	0.1915E-01	0.02	0.1511E-01	0.02	0.1457E-01	0.01
77	10.31	7.190	0.1508E+05	1	0.5160E-02	0.01	0.2949E-02	0.00	0.3641E-01	0.04
78	10.32	10.07	0.2116E+05	I.	0.2147E-06	0.00	0.2819E-02	0.00	0.6571E-01	0.07
79	10.32	9.457	0.1988E+05	1	0.1549E-04	0.00	0.6305E-03	0.00	0.7606E-02	0.01
80	10.32	13.68	0.2876E+05	I.	0.6587E-04	0.00	0.6555E-03	0.00	0.2372E-02	0.00
81	10.45	2.294	4946.	I.	0.8777E-02	0.01	1.741	1.77	0.6855E-05	0.00
82	10.90	7.219	0.1692E+05	1	6.948	7.06	0.2565E-02	0.00	0.1402E-04	0.00
83	10.93	4.970	0.1171E+05	I.	0.3325E-03	0.00	0.8370E-04	0.00	0.1072E-05	0.00
84	10.93	4.942	0.1165E+05	I.	0.3283E-04	0.00	0.1820E-01	0.02	0.2451E-06	0.00
85	10.96	1.454	3450.	I	0.1540E-02	0.00	0.1510E-02	0.00	0.8918E-04	0.00
86	11.00	1.225	2926.	1	0.2715E-06	0.00	2.777	2.82	0.4207E-04	0.00
87	11.02	3.093	7408.		0.4418E-05	0.00	0.7847E-03	0.00	0.1629E-05	0.00
88	11.02	3.101	7435.		0.3711E-03	0.00	0.2401E-02	0.00	0.5632E-06	0.00
89	11.17	1.025	2527.		0.3470	0.35	0.1828E-02	0.00	0.1869E-03	0.00
90	11.19	1.305	3226.		0.3395	0.35	0.6181E-03	0.00	0.2170E-04	0.00
91	11.20	0.7835	1941.		0.5507E-01	0.06	0.2444E-04	0.00	0.1468E-04	0.00
92	11.22	9.056	0.22496+05	!	0.5179E-02	0.01	0.4455E-05	0.00	0.1379E-03	0.00
93	11.25	0.6926	1729.		0.3521	0.36	0.7673E-03	0.00	0.3749E-04	0.00
94	11.32	2.034	5146.		0.6940E-02	0.01	0.8487E-05	0.00	0.1920E-04	0.00
95	11.35	0.8295	2110.		0.1069	0.11	0.4911E-05	0.00	0.9092E-05	0.00
96	11.38	0.6530	1670.		0.4849	0.49	0.1641E-04	0.00	0.1210E-04	0.00
97	11.59	4./8/	0.12692+05	-	0.2260E-03	0.00	0.96892-09	0.00	0.1859E-01	0.02
98	12.00	1.008	2866.		0.7674E-04	0.00	0.7263E-04	0.00	0.1078E-01	0.01
99	12.38	2.892	8/56.		0.4/43E-05	0.00	0.1/22	0.18	0.59052-06	0.00
100	12.57	3.209	0.10202+03	-	4.091	4.10	0.43046-03	0.00	0.20012-03	0.00
101	12.60	1.503	4/09.	-	0.1/396-01	0.02	0.42256-08	0.00	0.80035-08	0.00
102	12.07	2.440	2200	-	0.1403E-02	0.00	0.14695-04	0.00	0.20976-03	0.00
103	12.71	10 71	2290. 0 3439F±05	-	0.12038-01	0.00	0.3254	0.00	0.34346-03	0.00
105	12.00	0 0 0 0	0.34382+05	- 1	7 926	7 05	0.11008-01	0.00	0.11012-02	0.00
105	13 06	4 569	0.15398+05	1	0 4402E-04	0.00	0.6009E-02	0.01	0.8867E-07	0.00
107	13 12	4.519	0.15358±05	- 1	0.4641E-03	0.00	0 1467E-01	0.01	0.52128-05	0.00
108	13 16	2 978	0.1018F+05	1	0.7925E-01	0.08	0.4427E-04	0.01	0.1198F-01	0.00
109	13.16	2.950	0.1008E+05	÷.	0.1747	0.18	0.3270E-04	0.00	0.4123E-02	0.00
110	13.26	0.7967	2764	÷	0-1440E-02	0.00	0.7756E-04	0.00	0.8180	0.83
111	13.27	0.8077	2809.	÷	0.1761	0.18	0.7061E-03	0.00	0.4842E-02	0.00
112	13.49	6.233	0.2240E+05	÷	0.2351E-02	0.00	17.07	17.35	0.3107E-03	0.00
113	13.68	0.5669	2093.	÷	0.7888	0.80	0.5774E-02	0.01	0.2160E-05	0.00
114	13.72	9.891	0.3677E+05	i	0.3471E-05	0.00	0.8870	0.90	0.1830E-03	0.00
115	14.05	7.042	0.2744E+05	÷	0.1831E-04	0.00	0.1764	0.18	0.1303E-02	0.00
116	14.31	1.633	6600.	i	0.1173E-03	0.00	0.8165E-01	0.08	0.1195E-04	0.00
117	14.46	0.9373	3869.	i.	0.4420E-07	0.00	0.6260E-02	0.01	0.1889E-04	0.00
118	14.65	5.225	0.2214E+05	1	0.2448E-03	0.00	0.1207	0.12	0.2049E-02	0.00
119	14.70	4.835	0.2063E+05	1	0.5566E-01	0.06	0.1530E-04	0.00	0.3767	0.38
120	14.76	3.213	0.1381E+05	1	0.3005E-03	0.00	0.3584E-02	0.00	0.2310E-01	0.02
121	14.83	1.334	5787.	1	0.2007E-03	0.00	0.6662E-01	0.07	0.1048E-02	0.00
122	15.06	2.111	9455.	1	4.701	4.78	0.1751E-02	0.00	2.467	2.51
123	15.13	0.9383	4242.	1	0.2077	0.21	0.6581E-02	0.01	0.1395E-02	0.00
124	15.18	3.266	0.1485E+05	1	0.6774E-02	0.01	0.3099E-04	0.00	0.1192	0.12
125	15.19	1.269	5779.	1	0.1314E-01	0.01	0.3557E-05	0.00	0.4940E-06	0.00
126	15.21	1.465	6687.	1	0.6714E-02	0.01	0.7445E-02	0.01	0.1202E-03	0.00
127	15.25	4.274	0.1961E+05	I	0.9073E-04	0.00	0.2540E-03	0.00	0.1385E-03	0.00
128	15.27	2.471	0.1137E+05		0.5299E-03	0.00	0.5509E-03	0.00	0.5651E-03	0.00
129	15.27	4.332	0.1995E+05	I	0.3509E-05	0.00	0.3460E-01	0.04	0.5726E-04	0.00
130	15.30	4.561	0.2107E+05	I	0.1593E-01	0.02	0.2809E-02	0.00	0.8129E-04	0.00
131	15.37	1.638	7642.	1	0.1072E-02	0.00	0.2434	0.25	0.4734E-04	0.00
132	15.38	4.563	0.2129E+05	I	0.1134	0.12	0.1328E-02	0.00	0.1118E-01	0.01
133	15.51	7.195	0.3417E+05		0.3046E-03	0.00	0.5699E-04	0.00	0.8885E-03	0.00
134	15.58	3.929	0.1883E+05		0.2421E-01	0.02	0.5447E-03	0.00	0.9986E-01	0.10
135	15.64	5.449	0.2631E+05		0.1308E-02	0.00	0.8457E-02	0.01	0.1652E-01	0.02
136	15.68	3.601	0.1748E+05	!	0.6753E-02	0.01	0.8467E-02	0.01	0.5400E-01	0.05
137	15./6	4.407	0.21906+05	-	0.1419E-02	0.00	0.2921	0.30	0.24808-05	0.00
138	15.84	3.362	0.10046+05	-	0.2669E-04	0.00	0.1743E-05	0.00	0.105586-04	0.00
139	15.84	4.744	0.23486+05	-	0.1261E-01	0.01	0.40496-04	0.00	0.19556-03	0.00
140	15.84	2.491	0.12336+05		0.3/92E-04	0.00	0.0111E-04	0.00	0.5462E-03	0.00
141	15.84	2.144	0.10026+05		0.16008.00	0.00	0.13266-04	0.00	0.01008.00	0.00
142	15.00	3.43U A E00	0.1/016+03	-	0.10366-02	0.00	0.13345-04	0.00	0.21036-03	0.00
143	15.09	4.363	0.22032+05		0.30055.03	0.00	0.29046-03	0.00	0.10028-02	0.00
144	16 01	LT./0	0.393/6+03	-	0.30000-03	0.00	0.32002-03	0.00	0.11278 05	0.01
145	16.01	5.696	0.20126+03		0.23096-03	0.00	0.20006-03	0.00	0.112/6-00	0.00
147	16.14	4 783	0.24588±05	-	0.02496-03	0.00	0.15818-03	0.00	0.3509	0.00
148	16.14	4.509	0.2319F+05	- 1	0-46668-01	0.05	0.86798-06	0.00	0.2492	0.00
210						0.00	2000.00 00	0.00		

***** MODAL MASSES, KINETIC ENERGIES, AND TRANSLATIONAL EFFECTIVE MASSES SUMMARY *****

							EFFECTIV	E MASS		
MODE	FREQUENCY	MODAL MASS	KENE	Т	X-DIR	RATIO ₈	Y-DIR	RATIO ₈	Z-DIR	RATIO ₈
149	16.18	4.872	0.2519E+05	1	0.4742E-01	0.05	0.2595E-03	0.00	0.4453	0.45
150	16.30	4.972	0.2608E+05	-	0.5146E-03	0.00	0.1021E-03	0.00	0.3640E-01	0.04
152	16.33	2.007	0.14156+05	-	0.3429	0.35	0.2506E-02	0.00	13.24	13 46
153	16.43	11.44	0.6095E+05	÷	0.2386E-01	0.02	0.4291E-05	0.00	1.881	1.91
154	16.48	4.083	0.2190E+05	i.	0.1410E-02	0.00	0.9962E-07	0.00	0.6212E-01	0.06
155	16.50	3.729	0.2003E+05	i.	0.3818E-01	0.04	0.8038E-04	0.00	0.6150E-01	0.06
156	16.69	0.1012	556.1	I.	0.3475E-04	0.00	0.1364E-04	0.00	0.1750	0.18
157	16.71	0.8454	4661.	1	0.5197E-01	0.05	0.4235E-01	0.04	0.6180	0.63
158	16.89	3.061	0.1723E+05	1	0.7834E-04	0.00	0.9457	0.96	0.2648E-03	0.00
159	17.06	0.1337	768.2		0.2003E-02	0.00	0.1096E-01	0.01	0.2827	0.29
160	17.08	0.1384	796.6		0.3574E-01	0.04	0.2474E-03	0.00	2.007	2.04
161	17.47	0.4056	2444.	-	0.4285E-02	0.00	0.1480E-03	0.00	0.2018E-01	0.02
163	17.62	3 270	2000. 0 2018F±05	+	3 852	3 91	0.3034E-01	0.03	0.3383E-03	0.00
164	17.73	0.2558	1588.	÷.	0.7477E-02	0.01	0.2271E-07	0.00	0.6631E-01	0.07
165	17.74	0.2557	1588.	÷	0.9065E-02	0.01	0.2577E-05	0.00	0.4921E-01	0.05
166	17.85	1.967	0.1238E+05	i	0.1521E-02	0.00	0.6215E-04	0.00	0.2485E-01	0.03
167	17.92	3.791	0.2403E+05	1	0.5766E-03	0.00	0.1458E-04	0.00	0.1823E-02	0.00
168	17.94	1.547	9832.	1	0.1684E-02	0.00	0.1139E-01	0.01	0.3514E-03	0.00
169	17.96	1.925	0.1225E+05	1	0.1051E-03	0.00	0.6713E-03	0.00	0.6025E-01	0.06
170	17.99	1.860	0.1188E+05	I.	0.1981E-03	0.00	0.2088E-03	0.00	0.1387E-01	0.01
171	18.00	3.536	0.2262E+05		0.1024	0.10	0.7818E-05	0.00	0.3965E-02	0.00
172	18.04	3.552	0.2281E+05		0.7579E-02	0.01	0.2194E-04	0.00	0.2563E-01	0.03
173	18.19	4.475	0.2922E+05	-	0.8560E-05	0.00	0.9781E-04	0.00	0.1873E-01	0.02
175	18 26	1 300	9099.	-	0.20346-03	0.00	0.4/456-04	0.00	0.42026-02	0.00
176	18 38	3 117	0 2078F+05	-	0.2012E-02	0.00	0.8651E-04	0.00	0.1996E-01	0.02
177	18.55	0.5967	4053.	÷	0.3371E-04	0.00	0.6163E-05	0.00	0.9663E-04	0.00
178	18.58	0.6107	4160.	i	0.8253E-02	0.01	0.6784E-09	0.00	0.2960E-05	0.00
179	18.58	0.4110	2800.	1	0.4536E-04	0.00	0.2424E-05	0.00	0.6094E-04	0.00
180	18.69	0.5048	3482.	1	0.2642E-02	0.00	0.7412E-04	0.00	0.9599E-04	0.00
181	18.70	0.9083	6272.	1	0.2044	0.21	0.3349E-04	0.00	0.1675	0.17
182	18.72	0.3279	2269.	I.	0.8991E-01	0.09	0.1849E-04	0.00	0.9231E-01	0.09
183	18.73	0.4727	3275.		0.9920E-02	0.01	0.2881E-04	0.00	0.1211E-01	0.01
184	18.80	0.9024	6295.		0.5688	0.58	0.1155E-04	0.00	0.1550E-02	0.00
105	10.00	2.642	/3UL. 0 1996F+05	-	0.16708-03	0.00	0.30/05-03	0.00	0.11/3E-02	0.00
187	19.02	2.042	0.1071F+05	-	0.1079E-02	0.00	0.04302-04	0.00	0.1344E-03	0.00
188	19,11	3.811	0.2748E+05	÷	0.9161E-05	0.00	0.8395E-03	0.00	0.6745E-04	0.00
189	19.15	6.863	0.4969E+05	÷	0.1331E-03	0.00	0.2054E-01	0.02	0.3421E-03	0.00
190	19.17	3.591	0.2606E+05	i.	0.8375E-04	0.00	0.3973E-03	0.00	0.3961E-03	0.00
191	19.42	1.127	8388.	1	0.2681E-04	0.00	0.5177E-05	0.00	0.5051E-02	0.01
192	19.42	1.114	8293.	1	0.7307E-03	0.00	0.1753E-05	0.00	0.5337E-04	0.00
193	19.47	0.7171	5366.	1	0.1228E-02	0.00	0.9791E-01	0.10	0.3615E-03	0.00
194	19.48	2.733	0.2047E+05	1	0.1039E-02	0.00	0.7878E-04	0.00	0.3181E-02	0.00
195	19.50	2.839	0.2131E+05		0.1718	0.17	0.1410E-04	0.00	0.1601E-03	0.00
190	10.05	0.0044	0001.	-	0.9721E-02	0.01	0.1196E-01	0.02	0.1035E-02	0.00
198	19.87	2.582	0.2012E+05	1	0.2030E-04	0.00	0.6098E-05	0.00	0.4072E-07	0.00
199	19.98	0.4882	3845.	÷	0.1190E-02	0.00	0.5562E-02	0.01	0.2202E-02	0.00
200	20.09	0.3948	3147.	i	0.1195E-05	0.00	0.2235E-01	0.02	0.5030E-02	0.01
201	20.10	0.4067	3243.	i.	0.2039E-03	0.00	0.7449E-01	0.08	0.2993E-02	0.00
202	20.20	2.726	0.2196E+05	1	0.7365	0.75	0.3631E-03	0.00	0.2677E-03	0.00
203	20.31	12.04	0.9800E+05	1	0.3851E-03	0.00	0.2185E-05	0.00	0.1026E-01	0.01
204	20.40	0.5328	4379.	1	0.5562E-04	0.00	0.4092E-03	0.00	0.7086E-02	0.01
205	20.41	9.753	0.8024E+05	I	0.9159E-04	0.00	0.9145E-04	0.00	0.3416E-03	0.00
206	20.42	1.595	0.1314E+05		0.3397E-02	0.00	0.3544E-03	0.00	0.2052E-02	0.00
207	20.43	5.568	0.45888405	-	0.1792E-05	0.00	0.1064E-02	0.00	0.2419E-03	0.00
200	20.44	4.010	0.5402E+05	-	0.0/336-03	0.00	0.54146-05	0.00	0.40256-05	0.00
209	20.45	3 770	0.3432E+05	1	0.0124E-03	0.00	0.2244F-04	0.00	0.3787E-05	0.00
211	20.49	11.72	0.9707E+05	÷	0.1341E-02	0.00	0.1427E-03	0.00	0.3637E-04	0.00
212	20.55	14.84	0.1237E+06	i	0.5677E-03	0.00	0.9997E-04	0.00	0.3602E-02	0.00
213	20.55	12.71	0.1059E+06	1	0.1157E-03	0.00	0.4396E-03	0.00	0.1479E-03	0.00
214	20.55	8.300	0.6920E+05	I.	0.3967E-04	0.00	0.2159E-04	0.00	0.1114E-04	0.00
215	20.56	12.50	0.1044E+06	I.	0.4600E-04	0.00	0.3667E-05	0.00	0.6626E-04	0.00
216	20.57	8.530	0.7123E+05	I.	0.5482E-03	0.00	0.3236E-05	0.00	0.2800E-02	0.00
217	20.57	10.52	0.8789E+05	1	0.3008E-03	0.00	0.9779E-07	0.00	0.6136E-04	0.00
218	20.58	12.80	0.1070E+06		0.5458E-03	0.00	0.1671E-04	0.00	0.1440E-03	0.00
219	20.59	/.100	0.61308+05		0.31096-04	0.00	0.1405E-03	0.00	0.22068-05	0.00
<u> 660</u>	20.33				0.30346-02					
sum					47.55	48.32	84.09	85.47	48.67	49.46

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

B. Valores de Velocidad Friccional Vo y Zo.

Valores Vo y Z	Zo.		
CONDICIÓN	TERRENO ABIERTO	ÁREA SUBURBANA	ÁREA URBANA
Vo (km/h)	13.2	17.6	19.3
Zo (m)	0.07	1.00	2.50

Fuente: Manual de puentes - AASHTO 2014

C. Mapa Eólico del Perú.

Mapa Eólico Del Perú. (Fuente: NORMA E020)

D. Valores de Presión Básica del Viento PB.

COMPONENTE DE LA SUPERESTRUCTURA	CARGA A BARLOVENTO (kg/m^2)	CARGA A SOTAVENTO (kg/m^2)
Reticulados, columnas y arcos	245	122
Vigas	245	No Aplicable
Grandes superficies planas	195	No Aplicable

Presiones básicas PB correspondientes a VB=160 km/h

Fuente: Manual para puentes ASSHTO-2014

E. Distribución de Isoaceleraciones en Perú

Distribución de isoaceleraciones-Perú. (Fuente: Universidad Nacional de Ingeniería)

F. Zonas Sísmicas en Perú.

Zonas Sísmicas en Perú. (Fuente: Norma Técnica Peruana E020)

G. Factor de Zona Z.

Factor de zona "Z	Z ".
ZONA	Z
1	0.10
2	0.25
3	0.35
4	0.45

Fuente: Norma Técnica E030 Diseño Sismorresistente.

H. Coeficiente de Sitio.

Coe	ficiente	dø	Sitio
COE	ficiente	ue	SIIIO

Coeficiente	Tipo de Perfil de Suelo					
de Sitio	Ι	Π	III	IV		
S	1.0	1.2	1.5	2.0		

Fuente: Norma Técnica E030 Diseño Sismorresistente

I. Factor de Modificación de Respuesta "R".

SUD ESTDUCTUDA	IN	IPORTANCIA	L
SUB-ESTRUCTURA	CRÍTICA	ESENCIAL	OTROS
Pilar tipo de gran dimensión.	1.5	1.5	2.0
Pilotes de concreto armado.			
• Solo pilotes verticales.	1.5	2.0	3.0
• Grupo de pilotes incluyendo pilotes inclinados.	1.5	1.5	2.0
Columnas individuales.	1.5	2.0	3.0
Pilotes de acero compuesto con concreto.			
• Solo pilotes verticales.	1.5	3.5	5.0
• Grupo de pilotes incluyendo pilotes inclinados.	1.5	2.0	3.0
Columnas múltiples.	1.5	3.5	5.0

Factores de Modificación de respuesta R.

Fuente: AASHTO 2014

J. Factor de Uso Según Categoría

Factor	de	uso	según	categoría.	
I actor	uv	nso	SUSIII	cure goriu.	

CATEGORÍA	DESCRIPCIÓN	FACTOR U			
	A1: Establecimiento del sector salud (públicos y privados) del segundo y tercer nivel, según lo normado por el ministerio de salud.	Ver nota 1			
A Edificaciones Esenciales	A2: Edificaciones esenciales para el manejo de las emergencias, el funcionamiento del gobierno y en general aquellas edificaciones que puedan servir de refugio después de un desastre.	1.5			
B Edificaciones Importantes	Edificaciones donde se reúnen gran cantidad de personas tales como cines, teatros, estadios, coliseos, centros comerciales, terminales de buses de pasajeros, establecimientos penitenciarios, o que guardan patrimonios valiosos como museos y bibliotecas. También se consideran depósitos de granos y otros almacenes importantes para el abastecimiento.	1.3			
C Edificaciones Comunes	Edificaciones comunes tales como: viviendas, oficinas, hoteles, restaurantes, depósitos e instalaciones industriales cuya falla no acaree peligros adicionales de incendios o fugas de contaminantes.	1.0			
D Edificaciones Temporales	Construcciones provisionales para depósitos, casetas y otras similares.	Ver nota 2			
 Nota 1: Las nuevas edificaciones de categoría A1 tienen aislamiento sísmico en la base cuando se encuentren en las zonas sísmicas 4 y 3. En las zonas sísmicas 1 y 2, la entidad responsable puede decir si usa o no aislamiento sísmico. Si no se utiliza aislamiento sísmico en las zonas 1 y 2, el valor de U es como mínimo 1.5 Nota 2: En estas edificaciones se provee resistencia y rigidez adecuadas para acciones 					
laterales, a criterio del pro	yectista.				

K. Mapa climático del Perú.

L. Strain Gages Lineales (Galgas Extensiométricas).

250UW/250UWA

General Purpose Strain Gages-Linear Pattern

- BAAA			GA DESIGN See Note	GE ATION s 1 and 4	RESISTANCE (DHMS) See Note 3	OPTIONS
· · ·		actual star	CEA-00-25 CEA-00-25 CEA-00-25 CEA-00-25 W2A-00-25 W2A-00-25 W2A-00-25	0UWA-120 0UW-175 0UWA-350 0UW-10C 0UW-120 0UW-120 0UW-125 0UW-350 0UW-10C	$\begin{array}{c} 120 \pm 0.396 \\ 175 \pm 0.396 \\ 350 \pm 0.396 \\ 1000 \pm 0.396 \\ 120 \pm 0.696 \\ 175 \pm 0.696 \\ 350 \pm 0.696 \\ 1000 \pm 0.696 \end{array}$	P2, SP36 P2, SP36 P2, SP36 P2, SP36 P2, SP36
		and the set of the set	5. I I I I I I I I I I I I I I I I I I I			-
			DESCRIP General-pr solder tab (2.5 x 1.8 r pattern.	TION urpose gage area 0.10 x mm). Soe ak	. Exposed 0.07 in so 250UN	RoHS ^a
GAGE DI		ES = Each Sect S = Secton (S	DESCRIP General-pa solder tab (2.5 x 1.8 r pattern. Legend on CP 1 = Soction 1) M	TION urpose gage area 0.10 x mm). See ak = Compléte = Matrix	. Exposed 0.07 in so 250UN Pattern	Economic Contract Con
CAGE DI	MENSIONS Overall Length	ES = Each Bact S = Secton (S Grid Width	DESCRIP General-pu solder tab (2.5 x 1.8 r pattern. Legend on CP 1 - Soction 1) M Overall Width	TION urpose gage area 0.10 x mm). See ak = Complete = Matrix Matrix). Exposed 0.07 in so 250UN Pattern Length 1	Econy, Carlos RoHS Cony, Carlos Inch millimeter Matrix Width
Gage Longth 0.250	MENSIONS Overall Length 0.450	ES = Each Sact S = Secton (S Grid Width 0.180	DESCRIP General-pu solder tab (2.5 x 1.8 r pattern. Legend on CP 1 - Soction 1) M Overall Width 0.180	TION urpose gage area 0.10 x mm). See ak = Complete = Matrix Matrix 0.1	Exposed 0.07 in so 250UN Pattern Longth 1 55	inch millimeter 0.27

Series	Description	Strain Range	Temperature Bange
CEA	Universal general-purpose strain gages.	±5%	~100° to +350°F (~75° to +176°C)
W2A IPX8S Rated	For water-exposure applications. Based on the CEA Series with Option P2 pre-attached cables, W2A strain gages are fully evolved with a silicone rubber coating and tested to 10 GD insulation resistance, 1 meter water depth, 30 minutes duration. Other requirements can be activised on demand.	±9% -60° to +190°F (-60° to +80	
	Example of the W2A co	natruction:	P

Note 1: Insert desired S-T-C number in spaces marked XX.

Note 2: W2A leadwines are attached with lead-free solder and are RoHS compliant. Note 3: Pattern names ending with "A" are built with Advanced Sensors Technology.

Technical Data References: SEARCH our website using the document number. 11506 - Gage Series; 11507 - Optional Features

2586-EN Rev 28+Jul-2021. For technical questions, contact mm@upgsensors.com

www.micro-measuremente.com

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

M. Rosetas de Deformación.

Other Rectangular Rosette Patterns

General Purpose Strain Gages

	GAGE SERIES	GAGE RESISTANCE	GAGE LENGTH	
GAGE PATTERN	See Note 1	(OHMS)	inches	milimeters
120WR	WA, WD, WK, SA, SH SD	120, 360	0.12	3.05
	Actual size Three-element 45° res Matrix size: 0.34L x 0	stangular stacked rosette. 40W in. (8.6L x 10.2W mm)	6	-2
125RD	EA WA SA	350	0.125	3.16
	General-purpose the pattern except for grid Matrix size: 0.40L x 0	e-element 45° rectangular d resistance. 47W in. (10.1L x 11.9W mm)	rosette. Si	milar to 125RA
250RA	EA, WA, WK, EP, SA,	SK 120, 350	0.25	6.35
	Large three-element arrangement. See ata Matrix size: 0.78L x 0	45 ¹ rectangular rosette v o 250RD pattern 93W in. (19.8L x 23.6W mm)	eith conven	ient solder tab
250RD	EA, EK, S2K, WA, WE	^{6,} 350, 1000	0.25	6.35
	Large three-element except for resistance (DP) when optional fe Matrix size: 0.78L x 0	45° rectangular rosette. Sk EK-Series gages are suppli ature W or SE is not specifier 93W in. (19.8L x 23.6W mm)	milar to the ed with dup d.	250RA pattern lex copper pads
250WR	WA, WD, WK, SA, SH	120, 350	0.25	6,35
	actual size Matrix size: 0.51L x 0	stangular stacked rosette. 60W in. (13.0L x 15.2W mm)		

Note 1: Products with designations and options shown in bold are not RoHS compliant.

See http://www.vishaypg.com/micro-measurementa/stress-analysis-strain-gages/other-rectangular-meettes/ for complete specifications.

N. Chasis de Adquisición de Datos.

Assembling Your CompactDAQ Hardware

Chassis and Controller Options

Comparable/2 choose control the timing, synchronization, and plus transfer todowen the motives and an enternel or built to computer. The VD modules and the programming expension are common settlement all Comparable/CPV2 interest options, to you can change your system deployment without remeating in other parts of your decipt.

CompartDAD features a variety of consectivity and module capacity concers.

President and a local division of		difference and the second
100355		CONTRACTOR OF

Connectivity	Madulo Capacity	Propheser	Mediate Capacity	
uśa	5, 6 (A F	1.05-GHz duel-cole (Fiel Hore	1013	
Griefel	U.Link	1 DE GHL BUR cov intel Ceneral	a.)	
AX2 7 Generation (1	1.30-0H) dual-core intel if		

CompaciDAO Chassis and Controller Listing

Module Options

By operitying your module minuto include exactly the style combination of signal conditional IC), you can ensure excludes measurements and deep sensor connectivity without the lengthy process of custom design or expensive pure-shownal options.

CompartDAG is comparishe with over 60 10 modeles for the sensor and signal types listed below

A	polien/	ŀ¢	nt
+	Vohieje		
٠	Duriners.		
٠	Universa	i	

+ Therrocours

+ HID

- Aniilog Output • Virlege • Current
- Digital I/O Bus • Kost • CAN • Orget • UN • Institucijel • Reizy
 - UN

Strandmitte based
Acceleration and sound

Sensor Connectivity

You have a lot of different options when it comes to choosing your connectivity. Choosing between a BNC, D-SUB, screw terminal, RJ50, LEMO, spring terminals, and other connectivity options to achieve the best performance can be difficult. Your measurement type requirements, the locking mechanism you need, the tuggedness of the connector, and the asse of connection/disconnection help you determine the appropriate connector for your application.

BNC

This miniature duck connect/boornect connector features two price and ensures a high-quality connection with path a quarter turn of the coupling rule. It is sharf for angle-ended measurements. Since the BNC connector his two price. It doaled provide a their effectential measurement, which requires three plate.

D-SUB

Sensuroled by a D-shaped metal to ensure the context connection orientation; a D-SUB connector contains two or more parallel tows of ants or socials. Its many different state are dericted by the number of positions for averagin, the DB-25 dericter 25 positions. Writely used for senial conversion, the D-SUB connector also works for a writely of measurements facours of the available positions.

The wire from the sensor is held by the Eghtening of a

screw in this connector, which others so many different

implementation possibilities that it has become one

of the treat common connectors. However, a sonew

terminal connector doesn't provide a guick connect/

disponvent solution, as it can be tedpus in Nigher

R.150

- Similar to the RGAS escent that it uses one more part
- of signal wines for a total all 10, the RUS0 connector
- provides a rpack and secure consect/deponent
- Fore CompactDAQ, which is deal for bridge based
- menturierrents. It can measure Transducer Electronic Data Sheets (7EDS).

LEMO.

The push(pull connector withis with several connector standards to offer high-quality connections with a veriety of options to you can achieve high measurement quality.

Spring Terminals

channel count applications.

Screw Terminal

A spring mechanism located issule this connector allows, a user to quickly and easily connect bars whet from the eerser simply by compressing the spring with a small screwdriver, inserting the wear and their teasering to lock large for law strained court, often reconfigured applications, spring connectors can be teadous in higher strained court use cases as they do not provide a spack mult sharmed commentationsmut solution.

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

O. Certificado de Calibración.

	~ Cal	ibration	Certifi	cate ~	
Model Number:	EX629	M33A			
Serial Number:	P7292 (J	(axis)			
Description:	ICP® Triaxial Accel	erometer	Method	Back-to-Back Comporis	on (AT401-3)
Manufacturer:	IMI				
		Calibratio	m Data		
Sensitivity @ 6000	CPM 100	mV/g	Output Bias	11.0	VDC
	(10.2	mV/m/s*)			
dB 00 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 10 20 10 10 10 20 10 10 20 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Temperature: 74 °F (24	Sensitive TO H 10010 D Date P	ity Plot R	derve Illamaiste 51 %.	K000100 0
	Day (93)	Enourney (CEM)	Dev. (%)	Frequency (CPM)	Dev. (%)
Frequency (C)	18	18000	-0.2	420000	-4.7
900	1.8	30000	-0.9	600090	-0.0
1800	1.2	60000	-1.0		
1000	0.9	180000	-0.3		
REF. FREQ	0.0	300000	-4.2		
Anatorian Last (1997) "Da antirion keri da M Quintettu dagi	(1955 (1956 and) Inerset for closer displacement of the Deepe	the function of the format oo	of Unit	de laborate de transferio de la construcción de la construcción de la construcción de la construcción de la con	ale. Another for the
As Left: Ne	w Unit, In Tolerance				
		Not	les	Alexandree Description 17014	
Calibration Calibration Calibration See Manufa See Manufa Measureme are as follows: Technician:	is NIST Traceable thru cate shall not be reprodu is performed in complia cturer's Specification SI nt uncertainty (95% con 5-9 Hz; +7- 2.0%, 10-95 Ano	Project 683/28732 ced, except in full, v nee with ISO 9001, neet for a detailed his fidence level with cr Hz; +/+ 1.5%, 100- drew Shwee	vithout written ap ISO 10012-1, AN ting of performan everage factor of : 1999 Hz; +/- 1.0 TACODE	proval from PCB Piezotron SI/NCSL Z540.3 and ISO ice specifications. 2) for frequency ranges tes %, 2-10 kHz; +/- 2.5%. Date:09/2	nics, Inc. 17025 zed during calibration 3/19
ALCANDITION CENT ANNEL ST		A PCB PIEZO	DEPEN, NY 14	1043 www.pcb.com	of the
PAGE 4 of 1	THE SS			IN ADDRESS OF	
	IN MARKE			1	

"ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY- AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC"

ANEXOS B

A. PLANOS

BACH. QUISPE SAIRE, Amilcar 2021/10/25 LAMINA: ASESOR: MAG. ING. MACEDO SILVA, Arturo

FECHA:

02

TESISTAS: BACH. AYMA MARCA, Elmer

METODO DE PROYECCION:

 (ϕ)

ESTRUCTURA PLANTA SUPERIOR

ELEVACION TRAMO

	TITULO: ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC	escala: 1:30
	PLANO: TRAMO 1 - GEOMETRÍA	FORMATO: A2
	TESISTAS: BACH. AYMA MARCA, Elmer BACH. QUISPE SAIRE, Amilcar	<i>FECHA:</i> 2021/10/25
$\bigcirc \square$	ASESOR: MAG. ING. MACEDO SILVA, Arturo	LAMINA: 02-1

LAMINA: ASESOR: MAG. ING. MACEDO SILVA, Arturo

04

 (ϕ)

	-		1 LATADANDA 1 - 19190
			PLATABANDA 2 = 10880
2368	2135	3385	PLATABANDA 3 = 4110
	م ک	م م	-

PLATABANDA INFERIOR Y SUPERIOR

FIEEIM - CAR	NICA	
and and a state of the state of	TITULO:	ESCALA:
	ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC	1:50
	PLANO: TRAMO 2 - ELEVACION Y PLANTA	FORMATO:
ATTENT AND	DE ESTRUCTURA METALICA	AZ
TODO DE PROYECCION:	TESISTAS: BACH. AYMA MARCA, Elmer	FECHA:
$\triangle \square$	BACH. QUISPE SAIRE, Amilcar	2021/10/25
$\bigcirc \Box$	ASESOR: MAG. ING. MACEDO SILVA, Arturo	LAMINA: 05

SECCION TRANSVERSAL EN APOYO

SECCION TRANSVERSAL INTERMEDIO

ELEVACIÓN TRAMO

an an	TITULO:	ESCALA:
	ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC	1:30
	PLANO: TRAMO 3 - GEOMETRÍA	FORMATO: A2
ETODO DE PROYECCION:	TESISTAS: BACH. AYMA MARCA, Elmer	FECHA:
$\triangle \square$	BACH. QUISPE SAIRE, Amilcar	2021/10/25
	ASESOR: MAG. ING. MACEDO SILVA, Arturo	LAMINA: 07

ELEVACIÓN TRAMO

ESTRUCTURA PLANTA SUPERIOR

anna a	TITULO:	ESCALA:
	ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC	1:30
CHAN I	PLANO: TRAMO 3 - ELEVACION Y PLANTA DE ESTRUCTURA METÁLICA	FORMATO: A2
METODO DE PROYECCION:	TESISTAS: BACH. AYMA MARCA, Elmer	FECHA:
$\triangle \square$	BACH. QUISPE SAIRE, Amilcar	2021/10/25
	ASESOR: MAG. ING. MACEDO SILVA, Arturo	LAMINA: 08

1531

SECCIÓN VIGA EN APOYOS ESC. 1:10

COLUMN ST		ESCALA:
	ESTUDIO DEL COMPORTAMIENTO DINAMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC	1:20
	PLANO: TRAMO 3 - SECCIONES	FORMATO:
COLOR DO	TRANSVERSALES	A2
TODO DE PROYECCION:	TESISTAS: BACH. AYMA MARCA, Elmer	FECHA:
$\triangle \square$	BACH. QUISPE SAIRE, Amilcar	2021/10/25
$\bigcirc \square$	ASESOR: MAG. ING. MACEDO SILVA, Arturo	LAMINA: 09

	TITULO: ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC	escala: 1:40	
	PLANO: TRAMO 4 - GEOMETRÍA	FORMATO: A2	
METODO DE PROYECCION:	TESISTAS: BACH. AYMA MARCA, Elmer	FECHA:	
$ \Rightarrow \neg$	BACH. QUISPE SAIRE, Amilcar	2021/10/25	
	ASESOR: MAG. ING. MACEDO SILVA, Arturo	LAMINA: 10	

PLANTA SUPERIOR TRAMO

PLANTA INFERIOR TRAMO

PLANTABANDA INFERIOR Y SUPERIOR

anna	TITULO:	ESCALA:
	ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC	1:50
	PLANO: TRAMO 4 - ELEVACIÓN Y PLANTA DE ESTRUCTURA METÁLICA	FORMATO: A2
TODO DE PROYECCION:	TESISTAS: BACH. AYMA MARCA, Elmer	FECHA:
$\triangle \square$	BACH. QUISPE SAIRE, Amilcar	2021/10/25
	ASESOR: MAG. ING. MACEDO SILVA, Arturo	LAMINA: 11

Riel 80 lb/pie Durmiente Riel de seguridad 205 Crucetas Horizontal ∠10x7.7x0.993cm Rigidizador Rigidizador Viga Principal Viga Principal 161 161 161 161 1842 Remaches Ø1" 2132

SECCIÓN TRANSVERSAL INTERMEDIO

anna	TITULO:	ESCALA:
	ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC	1:20
	PLANO: TRAMO 4 - SECCIONES TRANSVERSALES	FORMATO: A2
METODO DE PROYECCION:	TESISTAS: BACH. AYMA MARCA, Elmer	FECHA:
$\bigcirc \bigcirc \bigcirc$	BACH. QUISPE SAIRE, Amilcar	2021/10/25
	ASESOR: MAG. ING. MACEDO SILVA, Arturo	LAMINA: 12

PLANTA TRAMO

ELEVACIÓN TRAMO

A DO	TITULO:	ESCALA:		
	ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC	1:30		
	PLANO: TRAMO 5 - GEOMETRÍA	FORMATO: A2		
METODO DE PROYECCION:	TESISTAS: BACH. AYMA MARCA, Elmer	FECHA:		
$\bigoplus \left(- \right)$	BACH. QUISPE SAIRE, Amilcar	2021/10/25		
	ASESOR: MAG. ING. MACEDO SILVA, Arturo	LAMINA: 13		

ESTRUCTURA PLANTA SUPERIOR

ELEVACIÓN TRAMO

anna a	TITULO:	ESCALA:
	ESTUDIO DEL COMPORTAMIENTO DINÁMICO DEL PUENTE FERROVIARIO SUMBAY - AREQUIPA DEBIDO A LA VARIACIÓN DE VELOCIDAD Y CARGA MINERA DE LA MÁQUINA LOCOMOTORA GT42AC	1:30
	PLANO: TRAMO 5 - GEOMETRÍA	FORMATO: A2
TODO DE PROYECCION:	TESISTAS: BACH. AYMA MARCA, Elmer	FECHA:
$\bigcirc \bigcirc \bigcirc$	BACH. QUISPE SAIRE, Amilcar	2021/10/25
	ASESOR: MAG. ING. MACEDO SILVA, Arturo	LAMINA: 13-1

C5 ESC. 1:5

3651 3657

8381

578

C4 ESC. 1:5