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Resumen

Las transformaciones en el Uso y Cobertura del Suelo (LULC) son un desafio ambiental de
escala global; por lo que su andlisis y prediccién son necesarios para una planificacion territorial
sostenible y la mitigacion de impactos ecoldgicos. La provincia del Cusco, ha experimentado
un proceso de urbanizacién que ha transformado la cobertura natural del suelo. Este estudio
tiene como objetivo analizar los cambios histéricos en el LULC durante los periodos 2004-
2014 y 2014-2024 mediante aprendizaje automatico, utilizando plataformas de procesamiento
en la nube. Se utilizaron imdgenes satelitales de acceso abierto, adecuadas para el andlisis
multitemporal propuesto. La precisiéon de la clasificacién se optimizé mediante el uso de
variables derivadas, incluyendo indices espectrales y capas topograficas. Para la proyeccion
de escenarios futuros, se aplicé un modelo hibrido de simulacién que integra enfoques de
dindmica espacial con técnicas de aprendizaje automadtico. Se validé el modelo mediante la
proyeccion del afio 2024 y compardndolo con datos reales. Para 2034, se prevé un incremento
de las zonas urbanas en 16.67 km?, pasando de representar el 9.48 % al 12.63 % del 4rea total.
La arquitectura hibrida propuesta presenta un desempefio predictivo consistente, respaldado
por una Exactitud Global de 0.889, Kj;s;, = 0.98 y Andlisis Multiescala (960 m) > 78 %.
Estos resultados indican la capacidad del modelo para capturar patrones no lineales complejos
y evidencian su potencial para generar informacion para la gestion sostenible de los recursos
naturales y el ordenamiento territorial en la provincia de Cusco.

Palabras clave: Aprendizaje Automdtico, Modelos Predictivos, Teledeteccion, Uso y

Cobertura del Suelo.
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Abstract

Land Use and Land Cover (LULC) transformations represent a global environmental challenge;
therefore, their analysis and prediction are essential for sustainable land-use planning and
the mitigation of ecological impacts. The province of Cusco has undergone a significant
urbanization process that has transformed its natural land cover. This study aims to analyze
historical LULC changes during the 2004—2014 and 2014-2024 periods using machine learning
techniques and cloud-based processing platforms. Open-access satellite imagery suitable for the
proposed multitemporal analysis was employed. Classification accuracy was enhanced through
the incorporation of derived variables, including spectral indices and topographic layers. To
project future scenarios, a hybrid simulation model integrating spatial dynamics approaches with
machine learning techniques was implemented. Model validation was performed by projecting
conditions for 2024 and comparing the results with observed data. By 2034, an increase in
urban areas of 16.67 km? is projected, rising from 9.48 % to 12.63 % of the total area. The
proposed hybrid architecture demonstrates robust predictive performance, supported by an
Overall Accuracy of 0.889, Kjiso = 0.98, and a Multiscale Analysis (960 m) exceeding 78 Yo.
These results indicate the model’s ability to capture complex non-linear patterns and highlight
its potential to support sustainable natural resource management and land-use planning in the
province of Cusco.

Keywords: Machine Learning, Predictive Models, Remote Sensing, Land Use and Land

Cover.
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CAPITULO I

Introduccion

1.1 Generalidades

La deteccién y prediccion de cambios en el uso y cobertura del suelo (LULC) se
ha consolidado recientemente como un tema de gran relevancia dentro del dmbito de la
teledeteccion, captando el interés tanto de investigadores como de planificadores territoriales.
Este interés surge debido al impacto que las transformaciones en LULC ejercen sobre la
cobertura natural, el cambio climético y otros problemas ambientales asociados. A escala global,
diversas clases de cobertura terrestre han experimentado modificaciones considerables como
resultado de actividades antropogénicas crecientes, entre las que destacan la deforestacion, la
expansion agricola, la urbanizacion y la mineria. Bajo este escenario, la actualizacion periddica
de mapas de LULC resulta un requisito bdsico para comprender y gestionar la naturaleza
dindmica del territorio.

Para el mapeo espacio-temporal de LULC, las imdgenes multiespectrales obtenidas
mediante sensores remotos son una fuente de informacion esencial. Entre las plataformas
satelitales mas utilizadas se encuentran MODIS, SPOT, SAR, la serie Landsat, las misiones
Sentinel-2 y RapidEye. De estas, las series Landsat y Sentinel-2 han sido ampliamente
empleadas en estudios de LULC debido a su disponibilidad y caracteristicas técnicas. Se
recomienda particularmente el uso de composiciones libres de nubes, generadas a partir de
series temporales de imédgenes, en lugar de depender de imdgenes individuales, para mitigar
distorsiones atmosféricas. No obstante, los métodos tradicionales para la busqueda, filtrado,
enmascaramiento de nubes, composicion, descarga y clasificacion de estos grandes volimenes
de datos demandan una considerable capacidad computacional y de almacenamiento. Frente a
estos desafios, la plataforma Google Earth Engine (GEE) permite procesar datos de teledeteccion
a gran escala de manera 6ptima.

En el entorno de GEE se encuentran disponibles diversos algoritmos de clasificacion

supervisada, tales como Arbol de Decisién (DT), Bosque Aleatorio (RF), Naive Bayes
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(NB), Distancia Minima (MD) y CART. Entre ellos, el algoritmo RF ha sido extensamente
recomendado en la literatura cientifica por ofrecer una alta exactitud en la clasificacién y por
su capacidad intrinseca para manejar datos de alta dimensionalidad con un nimero reducido de
parametros a ajustar. Asimismo, se ha demostrado que la incorporacion de factores topogréficos
(como elevacion y pendiente) e indices espectrales derivados puede mejorar la precision de la
clasificacion LULC.

Ademas de la clasificacién histérica de LULC, la prediccion de cambios futuros resulta
relevante para simular escenarios proyectados del paisaje y comprender los factores impulsores
de la transformacién del suelo. Existen diversos modelos de prediccidn, categorizados como
temporales y espaciales, asi como enfoques hibridos que combinan elementos de ambos.
Recientemente, los modelos hibridos, como el modelo CA-Markov, han demostrado ser
especialmente efectivos al integrar las capacidades de simulacién espacial del CA con la
prediccion temporal de la Cadena de Markov. Numerosos investigadores han aplicado el modelo
CA-Markov para predecir la dindmica futura de LULC en diversos contextos geograficos.

Este estudio analiza la dindmica histérica del uso y cobertura del suelo (LULC) en la
provincia del Cusco para los afios 2004, 2014 y 2024, empleando el algoritmo Random Forest
dentro de Google Earth Engine para generar clasificaciones. A partir de estas cartografias, se
identifican y cuantifican los cambios ocurridos en el territorio a lo largo de las dos décadas
evaluadas. Ademas, se desarrolla una proyeccion para el afio 2034 mediante un modelo hibrido
que combina Perceptron Multicapa, Cadenas de Markov y Automatas Celulares, incorporando
variables topogréaficas (altitud, pendiente y aspecto) junto con factores de proximidad (red
hidrogréfica, Instituciones Educativas, vias nacionales y provinciales, atractivos turisticos,
poblaciones dispersas, poblaciones grandes). La propuesta metodoldgica integra informacion
espectral y topografica para incrementar la precision de las clasificaciones y por aplicar un
enfoque predictivo avanzado para anticipar la evolucion espacio-temporal del paisaje.

La presente investigacion tiene como finalidad aportar informacién cuantitativa y
espacialmente explicita para comprender la magnitud y los patrones del crecimiento urbano
y su impacto en las coberturas naturales de la provincia del Cusco. Se aspira a que los resultados

obtenidos, incluyendo los mapas histéricos, mapas de transicion espacial, mapas de pontencial



y el escenario proyectado, constituyan una base de informacién para el andlisis y la planificacién

urbana en el marco de la gestion sostenible del territorio.

1.2 Justificacion

La justificacién principal para emprender esta investigacion reside en la necesidad de
gestionar la tierra y los recursos naturales de manera sostenible ante la compleja dindmica
del Uso y Cobertura del Suelo (LULC) (Lin & Peng, 2024; Setiawan, 2024; Taloor, 2024). Se
justifica el desarrollo de modelos predictivos y andlisis espaciales para anticipar y mitigar riesgos
ambientales y prevenir el deterioro ecoldgico. Este estudio busca ofrecer un sustento técnico
riguroso para que los planificadores urbanos y los responsables de politicas publicas puedan
formular estrategias de desarrollo sostenible y gestionar recursos no renovables (Kondum et
al., 2024). La cuantificacién del LULC y su prediccion son determinantes para optimizar los
patrones de uso del suelo con el fin de contribuir a los objetivos de reduccién de emisiones de

carbono y proteccion de ecosistemas (H. D. Nguyen et al., 2024; Wang et al., 2024).

1.3 Planteamiento del problema

El acelerado proceso de expansion urbana, particularmente marcado en los paises
en desarrollo, constituye un fendémeno complejo impulsado principalmente por la migracioén
hacia las ciudades en busca de mejores oportunidades, actuando como un motor demografico
determinante (Huaraca Yucra & Surco Vega, 2019). Si bien esta migracion puede dinamizar la
economia mediante la incorporacién de una fuerza laboral flexible, también introduce desafios
que afectan negativamente la sostenibilidad ambiental y urbana (Huarcaya Fernandez Baca &
Villalba Velasque, 2016; Sharma et al., 2024). En paralelo, el incremento del turismo intensifica
la presién sobre el territorio, generando una mayor demanda de infraestructura y servicios
urbanos, lo que a menudo excede la capacidad planificada (Condori Juarez, 2019; B. Roy,
2021).

La expansion urbana no planificada produce impactos adversos en el uso del suelo y
la vivienda (Trujillo, 2019), profundizando desigualdades socioecondmicas al limitar el acceso

equitativo a servicios bdsicos, vivienda y oportunidades de empleo (Giindiiz, 2025; Trujillo,
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2019). Como consecuencia, los procesos de urbanizacién no regulada generan transformaciones
aceleradas del territorio que comprometen tanto la calidad ambiental como la cohesién social.

La provincia de Cusco presenta la mayor concentracién poblacional del Departamento
homoénimo, superando ampliamente en densidad al resto, como se observa en la Figura 1. Este
dinamismo demogréfico y turistico ha desencadenado una ocupacion del territorio caracterizada

por multiples problemaéticas.

Figura 1
Cusco: densidad poblacional por provincia 2023-2024.

Nota. Fuente: Instituto Nacional de Estadistica e Informatica (INEI), 2024.

Se evidencia un impacto territorial y ambiental severo, la expansion descontrolada ocupa
zonas no aptas, afectando dreas de cultivo, bosques y paisajes (Trujillo, 2019). La construccién
informal avanza sobre laderas inestables, bordes de rios y terrenos expuestos a amenazas de
inundaciones y aluviones (Huaraca Yucra & Surco Vega, 2019; Mamani & Cutipa, 2024;
Trujillo, 2019).

Adicionalmente, se observa una degradacion del patrimonio cultural y urbano. Las
ocupaciones informales han invadido zonas arqueoldgicas y dreas de importancia histérica

(Mamani & Cutipa, 2024; Trujillo, 2019), favorecidas por la ausencia de lineamientos de



proteccion (Mamani & Cutipa, 2024).

La gestion del suelo presenta altos niveles de informalidad, con proliferacion de
transferencias de “derechos y acciones” sin habilitacion urbana ni titulos de propiedad (Berrio
Gomez, 2017), incluyendo ocupaciones sobre terrenos estatales y privados. Estas nuevas dreas
urbanas suelen carecer de servicios bdsicos, sistemas de saneamiento adecuados, espacios
publicos y dreas verdes (Yafie Zufiga, 2019), ocasionando sobrecarga de la infraestructura
existente. De manera paralela, la alta densidad no planificada incrementa la demanda eléctrica
sin considerar riesgos de incendio o explosion (Huaraca Yucra & Surco Vega, 2019).

Finalmente, la movilidad urbana presenta disfunciones. El planeamiento ha priorizado el
enfoque centrado en la vialidad, relegando el espacio publico. Paradéjicamente, la ampliacién de
la oferta vial ha inducido mayor congestion (Trujillo, 2019), mientras que la pérdida de densidad
habitacional en ciertas zonas aumenta los costos de mantenimiento de la infraestructura urbana
(Berrio Gomez, 2017).

Todos estos procesos, ademds de alterar la configuracion urbana y social, comprometen
la sostenibilidad de los servicios ecosistémicos, esenciales para la estabilidad econémica y
ambiental a largo plazo. En este escenario, la deteccion eficiente del estado actual y los cambios
futuros en el uso y cobertura del suelo (LULC) adquiere un papel estratégico.

La falta de informacién actualizada y técnicamente sélida limita la toma de decisiones,
lo que puede derivar en una planificaciéon urbana inadecuada y comprometer la sostenibilidad
del territorio. Por ello, las estrategias de monitoreo basadas en aprendizaje automadtico y
simulacién espacial representan herramientas clave, capaces de generar proyecciones detalladas

que permitan apoyar el disefio de politicas y estrategias de desarrollo sostenible.

1.3.1 Formulacion del problema

1.3.2 Problema general

(En qué medida se proyectan los cambios en el uso y cobertura del suelo mediante la
implementacién de un modelo predictivo, con el fin de generar informacién para la gestién

sostenible de los recursos naturales?



1.3.3

Problemas especificos

. ¢Con qué nivel de precision se puede clasificar el uso y cobertura del suelo a partir de

imagenes satelitales historicas?

¢(Cudl es la magnitud de los cambios entre clases de cobertura del suelo, y cudles son

las transiciones mads relevantes durante el periodo de anélisis?

. (Puede un modelo basado en tendencias histdricas reproducir cambios reales de uso y

cobertura de suelo?

1.4 Alcances y Limitaciones

1.4.1 Alcances del Estudio

= Area de estudio y periodo temporal: El andlisis se centra en la provincia de Cusco,

evaluando la dindmica de cambio de la Cobertura y Uso del Suelo (LULC) durante la
temporada de invierno de los afios 2004, 2014 y 2024. El objetivo principal es identificar

transformaciones histéricas y proyectar escenarios futuros.

Fuentes de datos satelitales: Se usan datos multisatélite de teledeteccion, utilizando
Reflectancia Superficial (SR) de las misiones Landsat 5 (TM) y Landsat 8 (OLI), asi
como Reflectancia en la Base de la Atmosfera (BOA) de Sentinel-2 (MSI). El acceso,
filtrado y preprocesamiento se realizé a través de la plataforma Google Earth Engine
(GEE). Con el fin de reducir interferencias por nubosidad, se priorizaron las capturas

correspondientes a la temporada de invierno.

Infraestructura y procesamiento: El procesamiento masivo de datos (Big Data) se
realizard mediante plataformas de andlisis geoespacial en la nube, especificamente

Google Earth Engine (GEE) y Google Colab.

Clasificacién de cobertura terrestre: La clasificacion LULC fue realizada mediante
el algoritmo Random Forest (RF), empleando bandas espectrales, indices espectrales

(NDVI, NDBI, NDMLI, UI, BSI, SAVI) y variables topograficas (altitud y pendiente). La
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generacion de muestras se basa en imagenes de alta resolucion disponibles en Google
Earth Pro para los ainos 2002, 2014 y 2024 y un Mapa de Peligros del 2004 (Apéndice A).
Se consideraran tres clases principales: cobertura urbana/asentamientos, vegetacion y

suelo desnudo.

Modelamiento y prediccion espacial: La simulaciéon de dindmicas de cambio se llevara
a cabo utilizando Cadenas de Markov (MC) y Autématas Celulares (CA), integrados
con una red neuronal Perceptrén Multicapa (MLP). Se incluirdn variables derivadas
del modelo digital de elevacion (elevacion, pendiente, aspecto), asi como factores de
accesibilidad a elementos naturales (distancia a la red hidrolégica), a sitios de interés
turistico y a infraestructura y servicios (distancia a poblaciones dispersas y centros
urbanos, IIEE y carreteras) para modelar los potenciales de transicion y la distribucién

espacial futura del LULC.

Limitaciones

Enfoque Disciplinario: El estudio se desarrolla principalmente desde una perspectiva
técnica, orientada por los principios y métodos del aprendizaje automadtico y
el modelamiento computacional. En consecuencia, el andlisis se concentra en la
implementacién y evaluacion de herramientas de procesamiento y modelamiento de
datos espaciales, sin integrar en profundidad enfoques provenientes de otras dreas del

conocimiento.

Recursos y Reproducibilidad: El estudio emplea exclusivamente herramientas open-
source o con planes de acceso gratuito (GEE, Google Colab), lo que garantiza su
reproducibilidad. Esta eleccién implica trabajar con los recursos computacionales

disponibles en dichas plataformas y con imagenes satelitales de acceso libre.

Calidad y Disponibilidad de Datos: El estudio enfrenta restricciones relacionadas con
los datos satelitales. La resolucién espacial de Landsat (30 m), aunque estdndar para
andlisis histéricos, puede influir en la precision del mapeo LULC en dreas heterogéneas

(Li et al., 2024; Setiawan, 2024). Ademads, la disponibilidad limitada de imigenes en



algunos afios puede afectar las composiciones generadas.

= Generalizacién y Dependencia Histérica del Modelo: Los algoritmos de Machine
Learning (RF y ANN) basan su aprendizaje en patrones historicos. Esto puede limitar
su capacidad de generalizacion si emergen dindmicas de cambio futuras completamente
nuevas o no representadas en los datos de entrenamiento (Bojer, 2024; H. D. Nguyen

et al., 2024).

= Exclusion de Factores Dindmicos: Como consecuencia del enfoque disciplinario,
los modelos espaciales hibridos dependen en gran medida de variables biofisicas
y de proximidad. Esto restringe la incorporacién de factores socioecondmicos y
politicos dindmicos (cambios en la zonificacion, establecimiento de dreas restringidas
o protegidas, fluctuaciones del mercado inmobiliario) que influyen directamente en las

proyecciones futuras (M’Barek, 2024; Zafar, Zubair, Zha, Mehmoodd et al., 2024).

= Disponibilidad de Variables Predictoras: La mayoria de los rdsteres utilizados
como variables predictoras (aspecto, pendiente, elevacién, distancia a la red
hidrolégica, poblaciones dispersas, centros urbanos, carreteras y sitios de interés
turistico) se mantuvieron constantes debido a la ausencia de informacién geoespacial
correspondiente a cada afio. Solo las capas de distancia a Instituciones Educativas
(IIEE) pudieron desagregarse temporalmente. Esta limitacion reduce la sensibilidad del
modelo para capturar cambios asociados a variaciones reales en la infraestructura y la

accesibilidad.

1.5 Objetivos

1.5.1 Objetivo General

Cuantificar los cambios proyectados en el uso y cobertura del suelo mediante un modelo

predictivo, con el fin de generar informacidn para la gestion sostenible de los recursos naturales.



1.5.2

Objetivos Especificos

. Determinar el nivel de precision de la clasificacién de uso y cobertura del suelo a partir

de imagenes satelitales.

Cuantificar los patrones espaciales de cambio y las transiciones mds relevantes entre

clases de cobertura del suelo.

. Validar la precision del modelo contrastando sus resultados con datos reales

correspondientes a un afio clave dentro del periodo de anélisis.

1.6 Antecedentes

(Giindiiz, 2025), Land-Use Land-Cover Dynamics and Future Projections Using GEE,

ML, and QGIS-MOLUSCE: A Case Study in Manisa, Department of Geomatics Engineering,

Aksaray University, 68100 Aksaray, Turkey.

= Se compararon cuatro algoritmos de aprendizaje automatico (RF, SVM, KNNy CART) en

la plataforma Google Earth Engine para la generacion de mapas LULC, donde Random
Forest obtuvo un OA de 98 % y un indice « de 0.97, superando el desempeiio de los

modelos basados en drboles de decision simples y vecindad.

Se aplicé un post-procesamiento mediante operaciones de moda focal para reducir el
ruido tipo salt-and-pepper en las clasificaciones, mejorando la continuidad espacial de

las categorias de cobertura terrestre.

La arquitectura CA-ANN (usando el plugin MOLUSCE) alcanz6 una correccién
proporcional del 92% (K, = 0.99), permitiendo proyectar para el afio 2030 un
incremento del 23.67 % en dreas urbanas y una reduccién del 3.16 % en cuerpos de

agua.

Comentario: El flujo de trabajo evidencia que los algoritmos de aprendizaje por conjuntos (RF)

presentan una menor tasa de error en zonas de transicion espectral en comparacién con CART
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y KNN, los cuales muestran mayor confusion en clases de suelo desnudo y dreas periurbanas
debido a limitaciones en la optimizacién de hiperpardmetros en GEE.

(B. Roy, 2021), A machine learning approach to monitoring and forecasting spatio-
temporal dynamics of land cover in Cox’s Bazar district, Bangladesh from 2001 to 2019,

Department of Geography and Environmental Science, Begum Rokeya University, Bangladesh.

= Se desarroll6 un flujo de trabajo de clasificacion basado en el algoritmo Random Forest
aplicado a series temporales de sensores Landsat 4-5 TM y Landsat 8 OLI, alcanzando

métricas de precision entre el 87 % y el 99.8 Y.

= La validacién del modelo predictivo mediante matrices de confusion y estadisticos
Kappa demostré que la integracion de RF con CAS permite proyectar escenarios futuros

con una fiabilidad del 93.2 %.

Comentario: La integracion de clasificadores de aprendizaje por conjuntos (RF) con sistemas de
automatas celulares parametrizados mediante redes neuronales (CA-ANN) permite la captura
de dependencias espaciales no lineales. El uso de RF para la generacién de mapas LULC reduce
el ruido en la clasificacion de datos, lo cual es disminuye los sesgos para el modelamiento de

transicion temporal.

(Belay et al., 2024), Scenario-Based Land Use and Land Cover Change Detection and
Prediction Using the Cellular Automata-Markov Model in the Gumara Watershed, Upper Blue

Nile Basin, Ethiopia.

= Se ejecutd una clasificacion multitemporal utilizando el algoritmo Random Forest (RF)
integrado en la plataforma Google Earth Engine (GEE), procesando 10 variables que
incluyen bandas espectrales de Landsat, indices de vegetacion (NDVI, SAVI) y factores

topograficos.

= El andlisis de importancia de variables identificé a la elevacién como el factor de mayor
peso en la discriminacion de clases. Se obtuvo una precision general de entre 91.13 % y

94.84 % y coeficientes Kappa («) de 0.88 a 0.94.
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= Para la fase predictiva (2035-2065), se implement6 el modelo de Autématas Celulares-
Markov, validado con métricas de concordancia espacial K,,, (0.89) v Ksandara (0.94),

evaluando escenarios de tendencia inercial (BAU) y de gobernanza ambiental (GOV).

Comentario: El disefio computacional destaca por la integracion de variables topograficas y

espectrales para lograr una mejor clasificacion.

(Badshah et al., 2024), The role of random forest and Markov chain models in

understanding metropolitan urban growth trajectory.

= La metodologia hace uso de imdgenes satelitales Landsat (1991-2021) a través de la
plataforma Google Earth Engine, utilizando el algoritmo de aprendizaje automatico
Random Forest para la clasificacién de coberturas terrestres e integrando variables

topogréaficas y de proximidad.

= Para la simulacién de la trayectoria de crecimiento urbano hacia los afios 2031, 2041
y 2051, se implement6 el modelo hibrido Cadenas de Markov y Automatas Celulares

mediante el Land Change Modeler (LCM) en el software TerrSet.

= Este sistema emplea redes neuronales de Perceptréon Multicapa para generar mapas
de potencial de transicidon, permitiendo modelar interacciones complejas entre factores

socioecondmicos y cambios ambientales en el drea metropolitana.

= La validacion de la precision espacial del modelo predictivo alcanz6 un valor AUC-ROC

de 0.88.

= E] clasificador RF demostr6 una alta estabilidad con una exactitud general superior al

90 % y un coeficiente Kappa de aproximadamente 0.88.

Comentario: El estudio sugiere la eficiencia de integrar técnicas de machine learning con

modelos probabilisticos para entender la dindmica territorial.

(Kamran et al., 2024), Application of Cellular Automata and Markov Chain model for

urban green infrastructure in Kuala Lumpur, Malaysia.
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= La analisis multitemporal se desarroll6 a partir de imédgenes satelitales Landsat (1990,
2005 y 2021) para monitorear la infraestructura verde urbana (UGI) en Kuala Lumpur,
empleando tanto el clasificador de Mdxima Verosimilitud como mdquinas de vectores

de soporte para categorizar el suelo en seis clases principales.

= La validacion de los mapas clasificados mostré una Exactitud General que progresé del

91.06 % en 1990 al 98.28 % en 2021 y coeficientes Kappa entre 0.8997 y 0.9626.

= Para modelar las dindmicas de cambio y proyectar el estado del territorio hacia el afio

2050, se aplic6 el modelo hibrido Cadenas de Markov y Autématas Celulares.

= Se identific6 que las dreas construidas (built-up area) presentaron una probabilidad de
0.2736 de transicionar hacia suelo desnudo (bare ground), mientras que la probabilidad

de permanecer como area construida fue de 0.6381.

Comentario: La integracién de CA-Markov resulta fundamental para la planificacion urbana,
ya que permite anticipar como la expansion de superficies impermeables y suelo desnudo
incrementa riesgos ambientales como las inundaciones, proporcionando una base cientifica

para fortalecer la resiliencia de los servicios ecosistémicos en ciduades de rdpido crecimiento.

(Vahid & Aly, 2025), A Comprehensive Systematic Review of Machine Learning
Applications in Assessing Land Use/Cover Dynamics and Their Impact on Land Surface

Temperatures.

= La metodologia comprende una revision sistemdtica de 144 publicaciones (periodo
2014-2024) sobre el uso de algoritmos de aprendizaje automético (Machine Learning)
para monitorear cambios en el uso y cobertura del suelo (LULC) y su impacto directo

en la temperatura de la superficie terrestre (LST).

= Los hallazgos identifican a Random Forest y Support Vector Machines como los
clasificadores mads utilizados y precisos para la obtencién de mapas de LULC, gracias a

su alta capacidad para procesar datos no lineales y multitemporales.
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» El andlisis destaca la superioridad de los modelos hibridos, especialmente la
combinacion de Autématas Celulares con Redes Neuronales Artificiales o algoritmos de

optimizacion, para la simulacién precisa de dindmicas térmicas y territoriales futuras.

= Se observa una transicion técnica hacia el Deep Learning, 1o que permite manejar la
complejidad de los datos satelitales de alta resolucién y mejorar la predictibilidad de los

servicios ecosistémicos ante el cambio climatico.

Comentario: Esta revision sistematiza la evolucion de las herramientas computacionales en la
gestion territorial, evidenciando que la integracion de inteligencia artificial es determinante para
modelar la relacion entre urbanizacion y microclima. La transicion hacia modelos predictivos
ofrece una base cientifica para el disefio de estrategias de adaptaciéon urbana que prioricen la

restauracion térmica mediante infraestructura verde.

(Toscan et al., 2025), Impact of nature-based solutions (NBS) on urban surface

temperatures and land cover changes using remote sensing and machine learning.

= [a metodologia se fundamenta en el procesamiento de series temporales de imigenes
Landsat (1984-2023) a través de la plataforma Google Earth Engine, utilizando el
algoritmo de aprendizaje automético Random Forest para la clasificacion supervisada
de la cobertura terrestre y la recuperacion de la temperatura de la superficie terrestre

(LST).

= El flujo de trabajo técnico integra el calculo de indices espectrales como el NDVI y el
NDBI como variables predictoras para modelar la correlacion térmica entre la expansion

de superficies impermeables y la pérdida de vegetacion.

= Para la simulacién de la dindmica espacial hacia los afios 2030, 2040 y 2050, se
implement6 el modelo estocdstico CA-Markov, permitiendo proyectar escenarios de

cambio de uso de suelo bajo la influencia de soluciones basadas en la naturaleza (NBS).

= El modelo alcanz6 un valor de validacion Kappa de 0.86, los datos predichos se
compararon con la cobertura real de 2023, resultando en una exactitud general del

84.78 % y un valor Kappa general de 0.88.
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Comentario: La investigacion sugiere la viabilidad de integrar modelos de machine learning
y simulaciones probabilisticas para la planificaciéon urbana climdticamente inteligente. Al
cuantificar el impacto térmico de la urbanizacion, el estudio proporciona un marco metodolégico
util para evaluar escenarios de planificacion urbana bajo criterios climaticos.

(Ahmad et al., 2025), How do land use changes affect temperature and groundwater in

urban areas? An integrated remote sensing, and machine learning approach.

= Para la modelizacion de escenarios futuros, se aplicé el sistema hibrido CA-Markov,
que simula las transiciones espaciales basandose en la probabilidad histérica de cambio

de suelo.

= La validacién del modelo de simulacion espacial demostré una alta fiabilidad técnica,

obteniendo un valor de kappa histogram: 0.9495.

» El andlisis de los resultados revela una correlacion critica donde la sustitucion de dreas
agricolas por zonas construidas no solo eleva la LST, sino que reduce la recarga de
los acuiferos, proyectando un descenso significativo en los niveles fredticos para el afio

2038.

Comentario: Al integrar modelos predictivos de LULC con variables hidrogeoldgicas, la
investigacion proporciona una herramienta para la gestién sostenible de recursos hidricos,
permitiendo a los planificadores urbanos anticipar y mitigar los efectos del estrés térmico y la

escasez de agua en megaciudades de rapido crecimiento.

(K. C. Roy et al., 2024), Land-use/cover change and future prediction by integrating the
ML techniques of random forest and CA-Markov chain model of the Ganges alluvial tract of

Eastern India, Weste University.

= Se propone una arquitectura que fusiona RF para la extraccién de caracteristicas

espectrales con modelos de simulacién espacio-temporal (CA-Markov).

= El modelo incorpora “variables predictoras” (drivers) espaciales, como la distancia
euclidiana a redes hidricas y viales, procesadas mediante 16gica difusa o reescalado para

alimentar las reglas de transicion del autdmata.



15

= La prediccion a 10 y 20 afios se genera iterando las probabilidades de la cadena de

Markov, ajustada por la idoneidad del terreno.

Comentario: El estudio ejemplifica la aplicaciéon de Soft Computing en geoinformadtica, donde
el aprendizaje automdtico (RF) no solo clasifica, sino que mejora la calidad de los datos de
entrada para los modelos deterministicos y estocdsticos subsiguientes, refinando la precision de

las simulaciones a largo plazo.

(Bendechou et al., 2024), Monitoring and Predicting Land Use/Land Cover Dynamics
in Djelfa City, Algeria, using Google Earth Engine and a Multi Layer Perceptron Markov Chain

Model, Weste University.

= Se aplico el algoritmo Support Vector Machine en GEE para la clasificacion supervisada,
aprovechando su capacidad de generalizacion en espacios de caracteristicas de alta

dimension mediante funciones kernel.

= Para la prediccion, se utilizé una red neuronal Multi-Layer Perceptron integrada con
Cadenas de Markov (MLP-Markov). El MLP se entrena para modelar el potencial de
transicion de cada celda basdndose en variables explicativas, capturando relaciones no

lineales complejas.

= La validacion del modelo hibrido MLP-Markov alcanzé una precision del 83.96 %.

Comentario: El uso de perceptrones multicapa permite ponderar la influencia de multiples
variables conductoras, superando las limitaciones de las matrices de probabilidad estaticas

propias de los modelos markovianos tradicionales.
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CAPITULO I

Marco tedrico

2.1 LaLuzy el Espectro Electromagnético

La luz es una forma de energia que se manifiesta como una onda electromagnética.
Aunque la percepcion visual humana se limita a una fraccién reducida de este fendmeno,
el espectro visible, la luz forma parte de un continuo mds amplio denominado espectro
electromagnético. El espectro abarca desde las ondas de radio, caracterizadas por longitudes
de onda muy largas, hasta los rayos gamma, con longitudes de onda extremadamente cortas.
Cada tipo de radiacion electromagnética se define por su longitud de onda y frecuencia. La
interaccion de esta energia con los objetos permite obtener informacion sobre ellos a distancia
(Khan Academy, 2024).

Figura 2
El espectro electromagnético.

Nota. Fuente: National Institute of Standards and Technology (NIST), 2024.

2.1.1 Bandas Espectrales

Una banda espectral se define como un intervalo especifico y estrecho de longitudes de
onda dentro del cual un sensor multicanal detecta la radiacion electromagnética. La capacidad
de un sensor para definir y discriminar estos canales se conoce como su resolucion espectral

(Ezekiel, 2017).
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Existen numerosas formas de designar estas bandas, como la de Institute of Electrical
and Electronics Engineers (IEEE), que son un estdndar para radar y comunicaciones (Manning,

2018).

Figura 3
Division del espectro electromagnético en bandas.

Nota. Fuente: Manning, 2018.

2.2 Sistemas de Referencia Espacial

2.2.1 WGS 84 (Sistema Geodésico Mundial de 1984)

El WGS 84 (World Geodetic System 1984) es el sistema de referencia geodésico
tridimensional estdndar, ampliamente adoptado y utilizado a nivel global para aplicaciones
de geoposicionamiento y navegacion. Define un marco para especificar posiciones mediante
latitud, longitud y altitud elipsoidal. Ha sido adoptado por organismos internacionales como la
Organizacion de Aviacion Civil Internacional (OACI, ICAO por sus siglas en inglés) (National
Geospatial-Intelligence Agency, 2025).

Este sistema fue desarrollado por la National Geospatial-Intelligence Agency (NGA)
de los Estados Unidos. Se usa un elipsoide de referencia geocéntrico (el origen se ubica en
el centro de masas de la Tierra) y define un sistema de coordenadas cartesiano tridimensional
fijo a la Tierra (ECEF - Earth-Centered, Earth-Fixed). En este sistema, el eje Z apunta hacia el
Polo Norte geodésico convencional, el eje X interseca el punto donde el ecuador se cruza con
el meridiano de Greenwich (longitud 0°), y el eje Y completa un sistema ortogonal dextrogiro
(orientado a la derecha), como se ilustra en la Figura 4. WGS 84 es el datum de referencia

oficial para el Sistema de Posicionamiento Global (GPS) y es el estdndar de facto en cartografia
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moderna, navegacion satelital y Sistemas de Informacion Geografica (SIG) (United Nations
Office for Outer Space Affairs (UNOOSA), 2012).

Figura 4
Representacion del sistema de coordenadas WGS 84.

Nota. Fuente: GeneSys Elektronik GmbH, 2024.

2.2.2 Sistemas de Referencia Espacial en Perii (EPSG)

De acuerdo con (Servicio Nacional de Meteorologia e Hidrologia del Pera (SENAMHI),
2015), los sistemas de referencia espacial, identificados mediante cédigos asignados por el
EPSG (European Petroleum Survey Group, actualmente [IOGP Geomatics Committee), permiten
definir de manera univoca cémo se representan las coordenadas geograficas y proyectadas en
los mapas. Para el territorio peruano, los cédigos EPSG:32717, EPSG:32718 y EPSG:32719
corresponden a sistemas de coordenadas proyectadas bajo la Proyeccion Universal Transversa
de Mercator (UTM) para las zonas 17 Sur, 18 Sur y 19 Sur, respectivamente. Todos ellos utilizan
el datum WGS 84. La adopcion de estos sistemas estandarizados garantiza la interoperabilidad,
consistencia y precision en la visualizacion, andlisis e intercambio de datos geoespaciales en el

pais.

EPSG:32719. El sistema de referencia de coordenadas EPSG:32719 (Figura 5a) corresponde
a la proyeccion UTM Zona 19 Sur sobre el datum WGS 84. Es el sistema que cubre la mayor
extension de la provincia de Cusco y se utiliza cominmente para la cartografia en la regién

oriental del Peru (Figura 5b).
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Las principales caracteristicas del sistema se resumen en la Tabla 1.

Tabla 1
Caracteristicas principales del sistema EPSG:32719
Caracteristica Descripcion
Nombre del sistema WGS 84 / UTM zone 19S
Limites geograficos (WGS 84) Longitudes entre -72.0° y -66.0°; latitudes entre -
80.0°y 0.0°
Area de uso Regioén comprendida entre los meridianos 72° O y

66° O en el hemisferio sur, desde el ecuador hasta
80° S; aplicable en dreas terrestres y marinas
Paises incluidos Argentina, Bolivia, Brasil, Chile, Colombia y Peru
Sistema de referencia geografico base EPSG:4326 (WGS 84)

Nota. Fuente: (Esri Support, 2025).

Figura 5
Sistema de referencia EPSG:32719.

Py

SOUTH AMERICA

ANT

© MapTiler © OpenStreetMap contributors
(a) Area de cobertura del sistema EPSG:32719 (b) Ubicacion de la Provincia de Cusco dentro
(UTM Zona 19 Sur). de la zona EPSG:32719.

Nota. Fuente de la subfigura (a): EPSG.io, 2025a. Fuente de la subfigura (b): EPSG.io, 2025b.

2.3 Teledeteccion

La teledeteccion (Remote Sensing, RS) se define como el conjunto de técnicas y
procedimientos utilizados para obtener informacién sobre un objeto, drea o fendmeno sin
establecer contacto fisico directo con él (M. Khan et al., 2023). En el contexto de las ciencias
de la Tierra, la teledeteccion es una disciplina esencial para la captura, procesamiento y andlisis

de imdgenes digitales de la superficie terrestre, obtenidas principalmente a través de sensores
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montados en satélites artificiales (Valladares Herrera, 2023).

Actualmente, la teledeteccion se utiliza ampliamente para adquirir una comprensién
detallada de los patrones del paisaje, registrar la energia electromagnética emitida o reflejada
por la superficie, y proveer un contexto histérico fundamental para el estudio de los cambios
en la cobertura y uso del suelo (LULC) (M. Khan et al., 2023). Misiones satelitales histéricas,
como la serie Landsat, y programas mds recientes, como Sentinel, han sido instrumentales para

el avance de esta disciplina.

2.3.1 Sensores Satelitales

La funcién primordial de un sensor satelital en teledeteccion es detectar y medir la
radiacion electromagnética (EM) reflejada o emitida por la superficie terrestre. Esta informacién
capturada se transforma en datos digitales que pueden ser posteriormente procesados y
analizados para extraer informacién temadtica (Ezekiel, 2017).

Existen dos categorias principales de sensores utilizados en la teledeteccion satelital,

clasificadas segtin la fuente de energia que utilizan para la observacion (Ezekiel, 2017):

1. Sensores Pasivos (Opticos/Infrarrojos):

= Son los sensores mds comunes para la Observacion de la Tierra (EO - Earth

Observation).

= Detectan la energia electromagnética natural, principalmente la radiacion solar
reflejada por los objetos en la superficie terrestre, o la radiacion térmica emitida

por ellos.

= La informacién contenida en las imdgenes Opticas depende de las propiedades
de reflectividad (o emisividad) espectral del objeto observado en las longitudes

de onda especificas que el sensor es capaz de registrar (bandas espectrales).

= [a adquisicién de datos se realiza muestreando la energia en puntos discretos
a lo largo de los segmentos 6ptico e infrarrojo del espectro electromagnético,

almacenando esta informacion en diferentes bandas.
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= La calidad de los datos de los sensores Opticos pasivos puede verse afectada por
las condiciones de iluminacién solar (hora del dia, estacion, latitud), la presencia

de sombras, y las condiciones atmosféricas (aerosoles, nubes, vapor de agua).
2. Sensores Activos (Radar/LiDAR):

= Estos sensores emiten su propia fuente de energia (generalmente microondas o
pulsos laser) hacia la superficie y miden la sefial que retorna tras interactuar con

los objetos.

2.3.2 Programas Satelitales

Un programa satelital se refiere a una iniciativa coordinada, generalmente a largo plazo,
que involucra el disefio, desarrollo, lanzamiento y operacion de uno o mds satélites con objetivos
especificos, comtinmente orientados al monitoreo sisteméatico y la observacion de la Tierra desde

el espacio (Ezekiel, 2017).

2.3.3 Programa Landsat

El programa Landsat es una de las misiones de observacion de la Tierra de mayor
continuidad temporal, gestionado conjuntamente por la Administracién Nacional de Aerondutica
y el Espacio (NASA) y el Servicio Geolégico de los Estados Unidos (USGS) (F. Zhao et al.,
2024). Este programa proporciona el archivo histérico més extenso de imdgenes satelitales de
resoluciéon moderada disponible a nivel global, con registros ininterrumpidos desde 1972 (Laar
et al., 2024).

Las imédgenes Landsat, con una resolucion espacial nominal de 30 metros para la
mayoria de sus bandas espectrales, son un recurso fundamental para estudios ecoldgicos,
andlisis de cambios de cobertura y uso del suelo (LULC), y gestion de recursos naturales.
Aunque no permiten captar detalles muy finos, su resolucién es adecuada para estudios a
escala de paisaje, evitando al mismo tiempo los altos requerimientos de almacenamiento y
procesamiento asociados a sensores de muy alta resolucion. Ademads, la constelacion Landsat
tiene una frecuencia de revisita de aproximadamente 16 dias, permitiendo el andlisis temporal

y fenoldgico del territorio (Young et al., 2017).
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Los satélites Landsat se agrupan en tres generaciones principales segun la evolucién de

sus plataformas e instrumentos (Figura 6). La Tabla 2 resume las bandas espectrales, rangos y

resoluciones de los sensores mds representativos del programa.

Figura 6

Linea de Tiempo del Programa Landsat.

Nota. Fuente: Young et al., 2017.

Tabla 2

Bandas Espectrales de Sensores Landsat.
Banda LS 1-5 MSS LS4-5T™ LS 7 ETM+ LS 8-9 Pixel (m)

OLI/TIRS
Coastal B1 (0.43-0.45) 30
Blue B1(0.45-0.52) BI1(0.45-0.52) B2 (0.45-0.51) 30
Green B1(0.50-0.60) B2 (0.52-0.60) B2 (0.52-0.60) B3 (0.53-0.59) 30 (60T MSS)
Red B2 (0.60-0.70) B3 (0.63-0.69) B3 (0.63-0.69) B4 (0.64-0.67) 30 (60" MSS)
NIR B4 (0.80-1.10) B4 (0.76-0.90) B4 (0.77-0.90) B5 (0.85-0.88) 30 (60" MSS)
SWIR 1 B5 (1.55-1.75) B5(1.55-1.75)  B6 (1.57-1.65) 30
SWIR 2 B7(2.08-2.35) B7(2.09-2.35) B7(2.11-2.29) 30
Thermal B6 (10.40- B6* (10.40- B10/B11 (10.6— 307
12.50) 12.50) 12.5)

Pan B8 (0.52-0.90) B8 (0.50-0.68) 15
Cirrus B9 (1.36-1.38) 30

Nota. Fuente: (Young et al., 2017). Los valores 1 indican resolucion nativa de MSS.

2.3.4 Programa Sentinel

El programa Sentinel constituye la principal constelacion de observacion de la Tierra de

la Agencia Espacial Europea (ESA) dentro del marco del programa Copernicus (Gascon et al.,

2015). A diferencia de Landsat, Sentinel se estructura en misiones especializadas por tipo de
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aplicacion y sensor.

Sentinel-2. La misién Sentinel-2 consta de dos satélites en operacion (Sentinel-2A y Sentinel-
2B), equipados con el instrumento multiespectral MSI, mediante el cual se registra informacién
en 13 bandas distribuidas en el visible, infrarrojo cercano y SWIR. Las resoluciones espaciales
de estas bandas son de 10 m, 20 m y 60 m, permitiendo una observacion detallada de la estructura
y dindmica de la vegetacion. La Tabla 3 resume las caracteristicas principales de estas bandas.

Tabla 3
Bandas espectrales del instrumento MSI de Sentinel-2

Banda Escala Resolucién (m) Longitud de onda (nm) Descripcién

Bl 0.0001 60 444 Aerosoles
B2 0.0001 10 495 Azul
B3 0.0001 10 560 Verde
B4 0.0001 10 665 Rojo
B5 0.0001 20 704 Borde rojo 1
B6 0.0001 20 740 Borde rojo 2
B7 0.0001 20 780 Borde rojo 3
B8 0.0001 10 835 NIR (ancho)
BS8A  0.0001 20 865 NIR (estrecho)
B9 0.0001 60 945 Vapor de agua
B11  0.0001 20 1610 SWIR 1
B12  0.0001 20 2190 SWIR 2

Nota. Fuente: (European Union/ESA/Copernicus and Google Earth Engine, n.d.).

2.3.5 Escenas (Tiles)

En el contexto del procesamiento de datos satelitales, el término “tile” se refiere a una
subdivision geogréfica regular de la 6rbita del satélite. Es una unidad de archivo y procesamiento
de datos geograficos, generalmente rectangular, que forma parte de un sistema de mosaico
predefinido (tiling scheme), el cual cubre la superficie terrestre (Guth et al., 2021).

Caracteristicas de los tiles:

1. Limites Geograficos: Los limites de los tiles suelen definirse en un sistema de

coordenadas proyectado (como UTM) y forman una cuadricula regular sobre el globo.

2. Nomenclatura Estandar: Los archivos de datos distribuidos suelen nombrarse utilizando

un cédigo que identifica univocamente al tile, facilitando su catalogacion y recuperacion.
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3. Contenido y Estructura: Un tile contiene los datos de reflectancia (u otras mediciones)
para todas las bandas espectrales adquiridas por el sensor sobre esa drea geografica
especifica, organizados como una matriz o array de pixeles. Facilitan la gestioén y el

procesamiento distribuido de grandes volimenes de datos.

La funcién principal de dividir los datos en tiles es optimizar la descarga, el
almacenamiento, el procesamiento y la visualizacién de los datos, permitiendo trabajar con
unidades manejables en lugar de franjas orbitales completas (Guth et al., 2021). La Figura 7
muestra un ejemplo visual de un tile de Sentinel-2 sobre el drea de estudio.

Figura 7
Ejemplo de Escena (Tile) Sentinel-2 (27-06-2024).

Nota. Fuente: Elaboracion propia.

2.3.6 Niveles de Procesamiento de Datos Satelitales

Los datos adquiridos por los sensores satelitales pasan por diferentes etapas de
procesamiento antes de estar listos para su andlisis temdtico. Estos niveles estandarizados
indican el grado de correccién y calibracién aplicado a los datos brutos. A continuacién, se
describen los principales niveles de procesamiento relevantes para imagenes Opticas (Liang

et al., 2024):



25

= Nivel-0 (LO): Corresponde a los datos brutos (raw data) transmitidos desde el satélite.
Estdn descomprimidos y formateados, pero no presentan correcciones radiométricas ni

geométricas.

= Nivel-1 (L1): Incluye los datos LO a los que se han aplicado correcciones radiométricas
(conversiéon de niveles digitales a radiancia espectral) y correcciones geométricas
(georreferenciacion basada en pardmetros orbitales y, ocasionalmente, puntos de
control). Los productos L1 se entregan normalmente en Radiancia o Reflectancia en el
Tope de la Atmosfera (TOA), lo que significa que atn incluyen los efectos atmosféricos

como aerosoles, vapor de agua y dispersion.

= Nivel-2 (L2) y superiores: Derivan de los productos L1 tras aplicar correccion
atmosférica y, en muchos casos, transformaciones adicionales para obtener variables
biofisicas o geofisicas. Incluyen la Reflectancia Superficial (SR o BOA), que representa
la reflectancia real de la superficie terrestre, libre de interferencias atmosféricas. Los
productos L2 (como Sentinel-2 L2A o Landsat Collection 2 Nivel-2) son los mds
adecuados para andlisis cuantitativos, clasificacion LULC, cdlculo de indices espectrales

y estudios multitemporales debido a su mayor consistencia entre fechas.

La Figura 8 ilustra esquemdticamente los niveles de procesamiento.

Figura 8
Niveles de procesamiento de Datos Satelitales.

Nota. Fuente: (Young et al., 2017)..
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2.3.7 Geospatial Big Data (GBD)

El concepto de Geospatial Big Data (GBD) se aplica a datos geoespaciales que
destacan por su elevado volumen, rapidez de produccién, heterogeneidad y requerimientos
computacionales avanzados para su procesamiento y andlisis (J. Wu et al., 2024). Entre ellos se

encuentran los archivos de imédgenes satelitales multitemporales Landsat y Sentinel.

2.4 Sistemas de Informacion Geografica

Un Sistema de Informacion Geogréfica (SIG) es un sistema informdtico disefiado
para capturar, almacenar, manipular, analizar, administrar y presentar todo tipo de datos
geograficamente referenciados (U.S. Geological Survey, 2023). Su funcién principal es conectar
los datos descriptivos (atributos) a su ubicacion espacial en un mapa, integrando la informacién
geografica con diversos tipos de informacién temética. Esta integracion proporciona la base para
la elaboraciéon de mapas, el andlisis espacial y la modelizacién, aplicable en una vasta gama
de disciplinas cientificas e industrias. Mediante los SIG se visualizan y comprenden patrones
espaciales, relaciones geograficas y el contexto territorial de fendmenos diversos. Sus beneficios
incluyen la mejora en la comunicacién de informacidn espacial, el aumento de la eficiencia en

la gestion de datos territoriales y el apoyo a una toma de decisiones mds informada (Esri, n.d.).

2.4.1 Google Earth Engine (GEE)

Google Earth Engine (GEE), ilustrado en la Figura 9, es una plataforma basada en la
nube que combina un catdlogo de datos geoespaciales de escala planetaria con capacidades
de computo para el andlisis cientifico y la visualizacién. Es ampliamente utilizada por la
comunidad académica, organizaciones sin fines de lucro, entidades gubernamentales y el
sector privado. GEE aloja un extenso archivo de datos publicos, incluyendo series temporales
histéricas de imdagenes satelitales que abarcan més de cuarenta afios. Nuevas imégenes se
incorporan continuamente, poniéndolas a disposicion para andlisis y mineria de datos a escala
global. Ademas del catdlogo de datos, GEE ofrece Interfaces de Programacion de Aplicaciones

(APIs) y un entorno de desarrollo para facilitar el andlisis de estos grandes conjuntos de datos
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geoespaciales (Gorelick et al., 2017).

Figura 9
Google Earth Engine.

Google Earth Engine

Nota. Fuente: Google Developers, 2023.

2.4.2 Editor de Codigo de Earth Engine

El Editor de Cédigo de Google Earth Engine es un entorno de desarrollo integrado
(IDE) basado en la web, disefiado para escribir, ejecutar y depurar scripts utilizando la API de
JavaScript de Earth Engine. Facilita el desarrollo interactivo de flujos de trabajo geoespaciales
complejos de manera agil y visual (Google Developers, 2023).

Por defecto, Google Earth Engine realiza los computos internamente utilizando el
sistema de coordenadas geograficas WGS 84 (EPSG:4326), aunque permite la reproyeccion
a otros sistemas segun sea necesario, garantizando asi la compatibilidad con una amplia gama

de datos espaciales globales (Google Earth Engine Developers, 2025).

243 QGIS

QGIS es un Sistema de Informacién Geografica (SIG) de escritorio, libre y de c6digo
abierto, disponible para multiples plataformas (Windows, macOS y Linux) (Figura 11). Se utiliza
en distintas etapas del flujo de trabajo geoespacial, abarcando tareas de preprocesamiento como
la preparacion de capas vectoriales (Khosravi, 2025), la manipulacion y andlisis de datos réster
(Fu et al., 2024), y la extraccion de informacién puntual a partir de capas réster (Buthelezi
et al., 2024). Asimismo, permite la gestién y edicién de datos vectoriales, la digitalizacion y
la elaboracion de mapas temdticos, soporta andlisis espaciales avanzados y la recopilacion de

datos en campo (Haripavan et al., 2025).
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Figura 10
Interfaz del Editor de Codigo de Google Earth Engine.

Nota. Fuente: Google Developers, 2023.

Figura 11
QGlIS.

Nota. Fuente: U.S. Geological Survey, 2023.

2.4.4 Google Earth Pro

Google Earth Pro es una aplicacion de escritorio que permite explorar un globo terrdqueo
virtual tridimensional (3D), construido a partir de imédgenes satelitales, aéreas y datos SIG. Es
ampliamente utilizado como herramienta de geovisualizacion y, en el contexto de la clasificacion
LULC supervisada, como fuente de datos de referencia (K. C. Roy et al., 2024). A diferencia
de los SIG 2D tradicionales que utilizan proyecciones cartogrificas planas, Google Earth
emplea una proyeccion en perspectiva dindmica que simula la vista desde un punto elevado,
actualizandose interactivamente a medida que el usuario navega (desplaza, inclina, acerca/aleja)
(Sweet, 2011).

Su aplicacién principal en flujos de trabajo LULC se centra en:
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= Obtencion de Muestras de Entrenamiento: Las imédgenes de alta resolucion histdrica
disponibles en Google Earth Pro sirven como base para la identificaciéon visual y
digitalizacién manual de puntos o poligonos de entrenamiento (ground truth). Los
investigadores interpretan visualmente la cobertura del suelo en estas imdgenes para
generar los datos etiquetados necesarios para entrenar algoritmos de clasificacion

supervisada como Random Forest (Ganjirad, 2024; Ishtiaque et al., 2021).

» Validacién y Evaluacién de Precision: De manera similar, las imdgenes de alta resolucion
de Google Earth Pro se utilizan como fuente independiente de datos de referencia para
validar la precision de los mapas LULC generados a partir de imédgenes satelitales de
menor resolucién. Se comparan puntos o dreas del mapa clasificado con la interpretacién
visual en Google Earth para construir la matriz de confusion y calcular las métricas de

precision (Mazroa et al., 2024).

Aunque la interfaz principal es 3D, la base de datos de imagenes subyacente de Google
Earth utiliza internamente coordenadas geograficas (latitud/longitud) referidas al datum WGS

84 (EPSG:4326) (Sweet, 2011).

2.4.5 Google Colab

Google Colaboratory, comtinmente conocido como Google Colab, es un servicio
gratuito basado en la nube que proporciona entornos de ejecucion de cuadernos Jupyter
(Jupyter notebooks). Se utiliza ampliamente en la comunidad cientifica y educativa para
la implementacién, ejecucién y comparticiéon de cddigo, especialmente en los campos del
Aprendizaje Automdtico (ML) y el Aprendizaje Profundo (Deep Learning, DL) (Lukas et al.,
2024).

Estd disefiado para facilitar tareas de ciencia de datos, investigacién y educacion,
ofreciendo acceso gratuito (con ciertas limitaciones) a recursos computacionales de alto
rendimiento, como Unidades de Procesamiento Gréfico (GPUs) y Unidades de Procesamiento
Tensorial (TPUs), que son esenciales para entrenar modelos computacionalmente exigentes
(Burke, 2023; Vidhya, 2020).

Caracteristicas principales (Burke, 2023; Vidhya, 2020):
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1. Integracion con el Ecosistema de Google: Se integra de forma nativa con Google Drive
para el almacenamiento y acceso a cuadernos y datos. Permite la carga de datos desde

diversas fuentes.

2. Colaboracion: Facilita la colaboracion en tiempo real, permitiendo que varios usuarios

editen el mismo cuaderno simultdneamente, de manera similar a Google Docs o Sheets.

3. Accesibilidad y Configuracién Minima: Al ser un servicio basado en la nube, es accesible
desde cualquier dispositivo con un navegador web y conexién a internet, eliminando
la necesidad de instalar software complejo o disponer de hardware potente localmente
(Google Research, 2025). Proporciona entornos preconfigurados con librerias comunes

de ciencia de datos (NumPy, Pandas, Scikit-learn, TensorFlow, PyTorch, etc.).

2.5 Tecnologias de Procesamiento Geoespacial y Cientifico

El desarrollo del presente estudio requiri6 la integracion de lenguajes de programacion
de alto nivel y bibliotecas especializadas en cédlculo numérico, andlisis espacial y aprendizaje
automadtico. Estas herramientas permitieron la orquestacion de flujos de trabajo complejos,

desde el preprocesamiento de imagenes satelitales hasta la modelizacion predictiva.

2.5.1 Lenguajes de Programacion

Python. Python es un lenguaje de programacion interpretado, de alto nivel y propdsito general,
es actualmente el lenguaje mds utilizado en la ciencia de datos y la computacién cientifica
moderna. Su disefio prioriza la legibilidad del c6digo y ofrece una vasta coleccion de bibliotecas

para el manejo de matrices y datos geoespaciales (Python Software Foundation, 2025).

JavaScript. JavaScript es un lenguaje ligero, interpretado y orientado a objetos, conocido
principalmente por su ejecucion en entornos web (Mozilla Developer Network, 2025).
2.5.2 Librerias de Andalisis y Procesamiento Cientifico

= NumPy: Es la biblioteca base para la computacién cientifica en Python. Proporciona

objetos de matriz multidimensionales (arrays) de alto rendimiento y herramientas para
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trabajar con estos arreglos.

= SciPy: Construida sobre NumPy, esta libreria ofrece algoritmos para optimizacidn,

integracion, interpolacion, problemas de valores propios y otras tareas avanzadas.

= Pandas: Proporciona estructuras de datos de alto nivel (DataFrames) para la

manipulacion y andlisis de datos tabulares.

2.5.3 Librerias de Analisis Geoespacial y Aprendizaje Automadtico

= GDAL (Geospatial Data Abstraction Library): Es una biblioteca de traduccién para

formatos de datos geoespaciales réster y vectoriales.

= Scikit-learn: Es una biblioteca de aprendizaje automdtico que integra herramientas

simples y eficientes para mineria de datos y andlisis.

= Matplotlib, Seaborn y Plotly: Conjunto de bibliotecas para la visualizacioén de datos.
Matplotlib y Seaborn se utilizaron para la generacion de graficos estaticos y estadisticos
de alta calidad, mientras que Plotly integré capacidades interactivas para la exploracion

dinamica de los resultados.

2.6 Usoy Cobertura del Suelo (LULC)

La cobertura del suelo (Land Cover) se refiere a los elementos biofisicos observados
sobre la superficie terrestre, tales como la vegetacion (bosques, pastizales), cuerpos de agua,
suelo desnudo, nieve/hielo o infraestructura construida (Saoum & Sarkar, 2024). Por otro lado,
el uso del suelo (Land Use) describe las actividades humanas o las funciones socioeconémicas
que se desarrollan sobre un drea determinada, implicando a menudo la gestion, transformacién
o alteracién de la cobertura biofisica para la producciéon de bienes y servicios (agricultura,

urbanizacion, silvicultura, conservacion, etc.).

2.6.1 Enmascaramientoy Eliminacion de Nubes

El enmascaramiento de nubes es una etapa fundamental en el preprocesamiento de

imagenes satelitales Opticas, ya que la presencia de nubes y sus sombras altera la sefial espectral,
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reduce la observabilidad de la superficie e introduce sesgos en los productos derivados (Garcia
et al., 2025; Liang et al., 2024). Las técnicas utilizadas para este fin pueden agruparse en dos
enfoques principales: (i) métodos basados en metadatos de calidad (QA/QC) y (ii) métodos

multitemporales y de composicion.

Métodos Multi-temporales y de Composicion.

= Bandas de calidad (QA/QC): Muchos productos satelitales incluyen bandas especializa-
das para la identificacion de pixeles como nubes, sombras, nieve, agua o saturacion.
En sensores como Landsat, estas bandas codifican informacion binaria o multibit
(QA_PIXEL, QA_RADSAT), permitiendo enmascarar nubes, sombras y pixeles saturados

mediante operaciones l6gicas (Liang et al., 2024).

» Indices probabilisticos de claridad (Cloud Score+): Cloud Score+ es un método
basado en la combinacién de multiples métricas espectrales, estadisticas y fisicas para
obtener un valor continuo de “claridad”. Los pixeles con valores altos se consideran
confiables, permitiendo generar mascaras mas flexibles que las basadas tinicamente en

clasificaciones discretas.

= Composicion temporal (mediana o percentiles): Es una de las técnicas mds utilizadas,
ya que reduce valores atipicos asociados a nubes y sombras, y genera representaciones

mads estables y realistas de la superficie terrestre (Garcia et al., 2025; Karurung et al.,

2025).

2.6.2 Remuestreo

El remuestreo (resampling) constituye una etapa de preprocesamiento ampliamente
empleada en teledeteccion cuando se integran multiples conjuntos de datos con distintas
resoluciones espaciales (Luo & Chen, 2025). Este procedimiento permite unificar la resolucién
espacial de las variables de entrada, con el fin de garantizar la coherencia analitica y la

compatibilidad espacial entre las distintas fuentes (Rotich et al., 2025a).

Técnicas de Remuestreo.
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= Vecino mds cercano (Nearest Neighbor): Es un método ampliamente utilizado por su
facil implementacion y por la conservacion de la informacién espectral original (Ettehadi

et al., 2019).

» Bilineal (Bilinear Interpolation): Utiliza el valor medio ponderado de los cuatro pixeles

circundantes. Esto da como resultado pixeles suavizados (Guth et al., 2021).

= Bicubica (Bicubic Interpolation): Es una técnica de orden superior que ofrece una

calidad de imagen mejorada en comparacion con las anteriores (Guria et al., 2024).

Consecuencias del Cambio de Resoluciéon. El remuestreo influye directamente en la calidad

de los datos:

= Introduccién de distorsiones: El remuestreo de un mapa casi siempre resulta en
distorsiones debido al desplazamiento de pixeles y ajustes de tamafio (Guth et al.,

2021; Zambrano-Luna et al., 2025).
= Pérdida de detalle (Downscaling - Aumento de tamario de pixel):

* La conversién de una resolucion fina a una mds gruesa provoca una pérdida
de detalles espaciales y un aumento en el nimero de pixeles mixtos (Ettehadi
etal., 2019), simplifica el andlisis, pero conlleva la pérdida de detalles més finos

(Pande et al., 2024).

* El aumento del tamaiio de la cuadricula conduce a la pérdida de valores extremos
(como elevaciones altas y valles), acercando los valores a la media (Guth et al.,

2021).
= Mejora potencial del detalle (Upscaling - Reduccion de tamario de pixel):
* Generalmente, se prefieren pixeles mds pequeios porque tienen el potencial de

acomodar un detalle mds fino (Guth et al., 2021).

* Se ha sugerido que el downscaling (hacia una resoluciéon mads fina) es mads
adecuado para la clasificacion de cobertura terrestre, ya que utiliza por completo

la informacién detallada de las bandas de alta resolucién (Ettehadi et al., 2019).
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* Sin embargo, el remuestreo posterior a una resoluciéon mas pequena (hacer un
upscaling por interpolacién) siempre hard que el tamafio del pixel y la resolucién

espacial intrinseca de los datos diverjan (Guth et al., 2021).

2.6.3 Indices Espectrales

Los Indices Espectrales (IE) son herramientas cuantitativas adimensionales, derivadas de
datos de teledeteccion, disefiadas para realzar y caracterizar propiedades biofisicas especificas
de la superficie terrestre (Ezekiel, 2017; Patle, 2024). Estos indices se calculan tipicamente
mediante operaciones algebraicas que combinan los valores de reflectancia superficial (SR)
medidos en dos o mds bandas espectrales (Ezekiel, 2017). Su incorporacion en los procesos de
clasificacion supervisada contribuye en la mejora de la precision de los mapas tematicos de Uso
y Cobertura del Suelo (LULC) (K. C. Roy et al., 2024).

Su proposito es realzar fendmenos o caracteristicas especificas de la superficie terrestre
que no son evidentes en las bandas individuales, sirviendo como indicadores ttiles para modelar
o inferir dinamicas biofisicas (Patle, 2024). En el contexto de la clasificacién LULC, la inclusién
de indices espectrales como variables predictoras adicionales ha demostrado consistentemente
mejorar la precision de los mapas tematicos resultantes (Ganjirad, 2024).

Lamayoria de los indices espectrales comtinmente utilizados se construyen bajo la forma
de un Indice de Diferencia Normalizada (NDI), calculado como el cociente entre la diferencia y
la suma de la reflectancia en dos bandas seleccionadas. Esta normalizacién produce valores que
generalmente oscilan en el rango de -1 a +1 (Dahal et al., 2024). Un valor cercano a +1 suele
indicar una alta probabilidad de presencia o una fuerte expresion de la caracteristica biofisica
que el indice estd disefiado para detectar, mientras que valores bajos o negativos indican ausencia
o baja expresion (Ezekiel, 2017). En la Tabla 4 se detallan los indices espectrales seleccionados
por su capacidad para discriminar las coberturas de interés en el drea de estudio.

Indice de Vegetacion de Diferencia Normalizada (NDVI): . Evalda la presencia, vigor

y densidad de vegetacion fotosintéticamente activa (K. C. Roy et al., 2024).

= Valores altos: vegetacion densa y saludable (Wijayanto et al., 2025).

= Valores negativos: superficies sin vegetacion (suelo desnudo, roca, agua, nieve) (Pham
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Tabla 4
Indices Espectrales (IE) utilizados en el estudio.
IE Nombre Completo Férmula
NDVI Indice de Vegetacion de Diferencia Eig;ﬁgg (Shrestha et al., 2023)
Normalizada
SAVI  Indice de Vegetacién Ajustado al Suelo % X (1 + L) (Belay et al.,
2024)
NDMI Indice de Humedad de Diferencia % (Youssef, 2024)
Normalizada
NDBI fpdice de Diferencia Normalizada de % (Mhangara et al., 2024)
Area Construida
Ul indice Urbano %REM.NSH.{%%% et al., 2021)
BSI Indice de Suelo Desnudo (Normaliza- (RED+ )—(NIR+ ) (Ganjirad,

(RED+SWIR1)+(NIR+BLUE)
do) 2024

Nota. NIR: Infrarrojo Cercano; RED: Rojo; BLUE: Azul; SWIRI: Infrarrojo de Onda Corta 1;
SWIR2: Infrarrojo de Onda Corta 2; L: Factor de ajuste del suelo para SAVI (usualmente 0.5).

& Ali, 2024).

Indice de Vegetacion Ajustado al Suelo (SAVI): . Variante del NDVI que reduce
la influencia del suelo en dreas con vegetacion escasa. Incluye un factor de correcciéon L
(tipicamente L = 0.5) (Belay et al., 2024).

Indice de Diferencia Normalizada de Area Construida (NDBI): . Utilizado para

identificar zonas urbanas o construidas (built-up) (Dahal et al., 2024; K. C. Roy et al., 2024).

» Valores altos: areas edificadas (Pham & Ali, 2024).

= Valores negativos: cuerpos de agua o vegetacion densa (Dahal et al., 2024).

Indice de Humedad de Diferencia Normalizada (NDMI):. Informa sobre el contenido

de humedad en la vegetacion y el suelo (Ishtiaque et al., 2021; Kandulna et al., 2025).
= Valores altos: alta humedad (vegetacion vigorosa, agua).
= Valores bajos: sequedad (suelo desnudo, vegetacion estresada, zonas construidas).

Indice de Suelo Desnudo (BSI):. Destaca areas desprovistas de vegetacién (suelo
expuesto, superficies erosionadas, caminos de tierra) (Shrestha et al., 2023).
Indice Urbano (UI): . Resalta caracteristicas espectrales de zonas urbanas utilizando

la diferencia entre SWIR2 y NIR (Hidalgo-Garcia & Arco-Diaz, 2022).
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2.6.4 Variables Topogrdficas

Las variables topograficas describen la forma y las caracteristicas del relieve terrestre.
Son factores importantes que influyen en diversos procesos ambientales y en la distribucion

espacial de las coberturas del suelo.

Modelo Digital de Elevacion (DEM). Un Modelo Digital de Elevacion (DEM - Digital
Elevation Model) es una representacion digital y rasterizada de la topografia de una superficie
(Figura 12). Consiste en una matriz regular de celdas (pixeles), donde cada celda almacena un
valor que representa la elevacion (altitud, Z) en una ubicacion geografica especifica (X, Y).
Especificamente, un DEM representa la elevacion del “terreno desnudo” (bare earth), es decir,
la superficie del suelo sin incluir elementos sobrepuestos como vegetacion (arboles, arbustos)
o estructuras artificiales (edificios) (Equator Studios, 2023). Los DEM son utilizados en una
amplia gama de disciplinas, incluyendo geomorfologia, hidrologia, planificacién territorial,
gestion de riesgos naturales y teledeteccion (Guth et al., 2021). Son producidos por diversas
entidades, como agencias cartograficas nacionales, instituciones cientificas y proveedores
comerciales de datos geoespaciales (Guth et al., 2021). Proporciona directamente la Elevacion

y se utiliza para derivar la Pendiente (Slope) y el Aspecto (Aspect) (Shen et al., 2024).

ALOS World 3D-30m (ALOSDEM). El ALOSDEM, proveniente del satélite Advanced Land
Observing Satellite, es una fuente de datos topogréficos de alta resolucion, frecuentemente
citado con una resolucion de 12.5 x 12.5 metros (Shen et al., 2024). Los datos del sensor ALOS
PALSAR (banda L) se han integrado con datos LiDAR y climdticos para mejorar los mapas
de biomasa aérea sobre bosques secos tropicales, lo que demuestra su valor en el monitoreo

forestal de LULC (Singh et al., 2024).

Copernicus Global DEM (CGDEM). Los productos de elevacion del Programa Copernicus
se utilizan tanto como fuente de variables topograficas como para fines de validacién de otros

productos de cobertura terrestre, con una resolucién de 30 metros (Z. Xu et al., 2025).
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Figura 12
Modelo Digital de Elevacion (DEM).

Nota. Fuente: Simou et al., 2014.

2.6.5 Analisis de Cambios Multitemporal

El andlisis de cambios multitemporal, también conocido como deteccién de cambios
(change detection), es una metodologia central en teledeteccion y SIG que consiste en analizar
imagenes o datos geoespaciales adquiridos sobre la misma drea geogrifica en diferentes
momentos para identificar, cuantificar y caracterizar las transformaciones ocurridas entre esas
fechas (Duan et al., 2025). Su propoésito principal es determinar qué ha cambiado, dénde ha
cambiado y cudl ha sido la magnitud de dicho cambio en un periodo especifico (Tadesse,
2024). Este andlisis permite comprender la dindmica espacio-temporal de los procesos de
transformacion del paisaje (Sarif & Gupta, 2024). Ademds, el andlisis historico de cambios
constituye la base para la calibracién y validacion de modelos de simulacién y prediccion de

escenarios futuros de LULC (Shrestha et al., 2023).
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Matriz de Probabilidad de Transicion. La Matriz de Probabilidad de Transicion es una

herramienta cuantitativa fundamental derivada del analisis de cambios LULC entre dos fechas,

utilizada para describir la dindmica de las transformaciones observadas. Es un componente

clave en los modelos de Cadenas de Markov aplicados a la simulacion LULC (Toscan et al.,

2025).

1. La matriz de probabilidad de transicion representa las probabilidades estimadas de que

un pixel que pertenecia a la clase de cobertura i en el tiempo inicial (#1) transite a la

clase j en el tiempo final (¢;) (Mansour et al., 2025).

2. Estructura e Interpretacion:

Es una matriz cuadrada donde las filas representan las clases LULC en el tiempo
inicial (¢1) y las columnas representan las mismas clases en el tiempo final (#,)

(Toscan et al., 2025).

Entradas Diagonales (P;;): Los elementos a lo largo de la diagonal principal
representan la probabilidad de persistencia o estabilidad de cada clase. Un valor
cercano a 1 indica que una alta proporcién del drea de esa clase en ¢| permanecio

sin cambios en t, (Pham & Ali, 2024).

Entradas Fuera de la Diagonal (P;;, i # j): Representan las probabilidades de
transicion de la clase i a la clase j. Indican la proporcion del drea de la clase i

en ¢ que se transformo a la clase j en #, (Duan et al., 2025).

Propiedad Matematica: Cada elemento P;; es una probabilidad, por lo que su
valor estd comprendido entre 0 y 1 (0 < P;; < 1). Ademds, la suma de las
probabilidades a lo largo de cada fila debe serigual a 1 (Z’}zl P;; = 1), indicando
que toda el drea de la clase i en #; debe asignarse a alguna clase (incluida ella

misma) en t, (Mansour et al., 2025).

Consideraciones sobre la Escala Temporal. La eleccion de los intervalos de tiempo para

el andlisis de cambios y la derivacidon de matrices de transicién es un aspecto metodoldgico
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importante. Diferentes escalas temporales pueden revelar distintos aspectos de la dindmica

LULC, y una eleccién inadecuada puede afectar la interpretacion de los resultados:

= Intervalos Cortos: Un periodo de tiempo muy corto entre observaciones puede capturar
fluctuaciones estacionales o cambios menores, pero podria no reflejar tendencias
estructurales a largo plazo. Ademds, puede magnificar el impacto del “ruido” o errores

de clasificacion entre fechas (Guo & Shen, 2024).

= Intervalos Largos: Un periodo de tiempo muy extenso puede promediar u ocultar cambios
intermedios importantes y dificultar la atribucion de los cambios a factores causales

especificos (Guo & Shen, 2024).

= Prictica Comun: En estudios de modelado y predicciéon LULC, es comun utilizar
intervalos de andlisis histdrico que oscilan entre 5 y 15 afios para calibrar los modelos

de transicion que luego se usan para proyectar cambios futuros (Bendechou et al., 2024).

2.7 Aprendizaje Automatico

El Aprendizaje Automdtico (Machine Learning, ML) es un subcampo de la Inteligencia
Artificial (IA) (Qamar & Zardari, 2023). Los modelos de Aprendizaje Automatico comprenden
un conjunto de metodologias computacionales impulsadas por datos, disefiadas para identificar
patrones, relaciones y estructuras subyacentes en conjuntos de datos multidimensionales
(Amindin et al., 2024).

Existen diversas categorias de aprendizaje automatico, siendo las principales:

= Aprendizaje Supervisado: En esta modalidad, el algoritmo se entrena utilizando un
conjunto de datos previamente etiquetado, donde cada ejemplo de entrada estd asociado
a una salida o etiqueta conocida. El objetivo es que el modelo aprenda una funcién de

mapeo que pueda generalizar a nuevos datos no vistos.

= Aprendizaje No Supervisado: En contraste, este enfoque utiliza datos no etiquetados. El
algoritmo explora los datos de manera auténoma para descubrir patrones, agrupaciones

o estructuras inherentes sin guia explicita sobre las salidas correctas.
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Para tareas de clasificacién, como la identificacion de coberturas del suelo, la
clasificacion supervisada generalmente presenta resultados con mayor precisiéon (accuracy)

en comparacién con los métodos no supervisados (Xiang, 2024).

2.7.1 Meétodos de Muestreo

Existen diversas estrategias para la seleccion de datos de muestra, entre ellas el Muestreo
Aleatorio Simple (Simple Random Sampling, SRS), el Muestreo Aleatorio Estratificado
(Stratified Random Sampling, STRAT) y el Muestreo Sistemdtico (Systematic Sampling,
SYSTEM).

Muestreo Aleatorio Estratificado (Stratified Random Sampling, STRAT). El muestreo
aleatorio estratificado (STRAT) resulta especialmente adecuado cuando se requiere garantizar
una representacion equilibrada de todas las categorias presentes en el drea de estudio. Al dividir
la poblacién en grupos homogéneos reduce el sesgo, mejora la robustez de la evaluacién de la
precision y asegura una distribucién proporcional de los puntos de muestra, incrementando la

fiabilidad del proceso de validacién (Wijayanto et al., 2025).

= Se utiliza ampliamente en mapeo LULC para la generacion de muestras de entrenamiento

y prueba (Khosravi, 2025).

= La estratificacion asegura una representacion equilibrada de todas las clases tematicas,
reduciendo el sesgo y mejorando la precision de las evaluaciones (Wijayanto et al.,

2025).

= Al asignar puntos de muestra de forma proporcional a cada categoria, se incrementa
la consistencia y fiabilidad de la validacion de clasificaciones (Ahmad et al., 2025;

Wijayanto et al., 2025).

2.7.2 (lasificaciéon Supervisada de Coberturas del Suelo

La clasificacion supervisada es un método ampliamente usado en teledetecciéon y ML

para el andlisis cuantitativo y la segmentacion temdtica de imagenes satelitales (Patel & Vyas,
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2024). Los mapas resultantes de la clasificacion LULC proporcionan informacién que permite
identificar y cuantificar el tipo, la ubicacion, el uso y la extension de las diversas caracteristicas
biofisicas (naturales) y antrépicas (creadas por el ser humano) sobre la superficie terrestre
(Figura 13).

Figura 13
Ejemplo clasificacion de Coberturas del Suelo.

Nota. Fuente: Brown et al., 2022.

El proceso metodoldgico de la clasificacion supervisada se fundamenta en las siguientes

etapas:

1. Se selecciona un conjunto de dreas o puntos de muestra representativos dentro de la
imagen, correspondientes a las distintas categorias LULC de interés (clases). La calidad
y representatividad de estas muestras son criticas para el desempeiio del clasificador

(Xiang, 2024).

2. Utilizando las muestras de entrenamiento etiquetadas, el algoritmo clasificador de MLL
aprende a identificar los patrones caracteristicos (espectrales, texturales, contextuales)

asociados a cada clase (Sarif & Gupta, 2024).

3. Una vez entrenado, el modelo establece una funcion discriminante f(x) que se aplica a

cada pixel x de la imagen completa. Esta funcién asigna automdticamente cada pixel a
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una de las m categorias predefinidas Cy, segmentando asi la imagen en un mapa tematico

LULC (M. Khan et al., 2023):

Pixel x € R” — Cy € {C1,Ca, ..., Cn} (1)

donde x es el vector de caracteristicas del pixel (valores de reflectancia en n bandas) y

Cy es la clase asignada.

Algoritmo Bosque Aleatorio (Random Forest, RF). El Bosque Aleatorio (Random Forest,
RF) es un algoritmo de aprendizaje automético supervisado, no paramétrico, propuesto por
Breiman en 2001 (K. C. Roy et al., 2024). Es un método de aprendizaje por conjuntos (ensemble
learning) que construye y combina las predicciones de multiples drboles de decision (Decision
Trees, DTs) individuales para mejorar la precision general, la robustez y la estabilidad de las
predicciones (Ganjirad, 2024; Sharma et al., 2024).

Durante el entrenamiento, se crean multiples subconjuntos de datos mediante muestreo
aleatorio con reemplazo a partir del conjunto de entrenamiento original. Cada drbol de decision
del bosque se entrena de forma independiente utilizando uno de estos subconjuntos (Chen, 2024).
Ademds, en cada nodo de cada drbol, la division dptima se busca solo sobre un subconjunto
aleatorio de las variables predictoras disponibles, lo que introduce una segunda fuente de
aleatoriedad y ayuda a decorrelacionar los drboles. La prediccion final del bosque se obtiene
agregando las predicciones de todos los drboles individuales mediante el voto mayoritario en
tareas de clasificacion, o calculando la media en tareas de regresion (Arunab & Mathew, 2024;
Sharma et al., 2024). Esta estrategia combinada confiere al RF una notable versatilidad para
abordar una amplia gama de problemas (DataScientest, 2025).

La estructura conceptual de un Bosque Aleatorio se puede representar como un conjunto
de drboles:

(h(x,0),k=1,...,K} 2)

donde h(x, ®;) representa el k-ésimo arbol de decisién entrenado con un vector de pardmetros

aleatorios ®; (que incluye el subconjunto de datos bootstrap y las variables consideradas en
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cada nodo), x es el vector de variables de entrada para un pixel, y K es el niimero total de drboles

en el bosque (K. C. Roy et al., 2024). La prediccion final se basa en la agregacién de las salidas

h(x,0;) parak =1,...,K.

El algoritmo RF presenta varias caracteristicas que explican su amplio uso en

clasificacion LULC:

2.7.3

Frecuentemente alcanza precisiones de clasificacion superiores a otros algoritmos como
SVM o CART, logrando a menudo Precisiones Globales (OA) por encima del 90 % y
coeficientes Kappa (k) superiores a 0.85 en aplicaciones LULC (Zafar, Zubair, Zha,

Fahd & Nadeem, 2024).

Es inherentemente resistente al ruido en los datos, a la presencia de valores atipicos
(outliers) y exhibe una baja tendencia al sobreajuste (overfitting) comparado con un
unico drbol de decision, lo que mejora la capacidad de generalizacién del modelo a

datos no vistos (Amindin et al., 2024; IBM, 2025; Vahid & Aly, 2025).

Puede procesar eficazmente conjuntos de datos con un gran ndmero de variables
predictoras (alta dimensionalidad), como los derivados de imdgenes multiespectrales
con multiples indices y variables auxiliares. Tolera adecuadamente la multicolinealidad

entre variables (Amindin et al., 2024; Zafar, Zubair, Zha, Fahd & Nadeem, 2024).

Es paralelizable y generalmente requiere menos ajuste fino de hiperpardmetros en
comparacién con otros métodos como SVM o redes neuronales profundas (Badshah

et al., 2024; Wahdatyar, 2024; Wahdatyar et al., 2024).

RF proporciona una medida intrinseca de la importancia relativa de cada variable
predictora en el modelo, lo cual es ttil para la interpretacion del modelo y la seleccion

de caracteristicas (A et al., 2024; Chen, 2024).

Modelos ML para Prediccion de Transiciones LULC

Redes Neuronales Artificiales (ANN). Actualmente se utiliza con frecuencia el aprendizaje

automatico para derivar las reglas de transicion de manera empirica a partir de datos histéricos
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de cambios en la cobertura y uso del suelo (LULC) y de sus factores impulsores. Dentro de estos
métodos, las Redes Neuronales Artificiales (ANN) resultan idéneas para modelar, debido a su
capacidad para modelar relaciones no lineales y de alta complejidad entre variables predictoras

y la probabilidad de transicion LULC (Suthar et al., 2024; M. Zhang et al., 2024).

Perceptréon Multicapa (MLP). El Perceptréon Multicapa (MLP) es un modelo representativo
dentro de las Redes Neuronales Artificiales de tipo feed-forward (Bhuyan et al., 2024; G.
Liu et al., 2024; Xiang et al., 2024). Se caracteriza por su estructura sencilla, su facilidad de
entrenamiento, un costo computacional moderado y tiempos de prediccion eficientes, lo que
ha favorecido su aplicacién en tareas como la simulacién de la expansion urbana (T. Xu et al.,
2022).

El objetivo principal del MLP es modelar relaciones complejas y no lineales entre
variables para la generacién de mapas de potencial de transicidn entre clases de cobertura y uso
del suelo (Bendechou et al., 2024). Cada mapa expresa, para cada unidad espacial de andlisis, la
aptitud relativa para transicionar hacia una clase futura especifica. Estos mapas actian como el
conjunto de reglas espaciales (f) que guian la asignacién de cambios realizada por el Autémata
Celular durante la simulacién del periodo siguiente (, — t3) (Naeem et al., 2025). La Figura 14
presenta una arquitectura general de una ANN.

Figura 14
Arquitectura general de una Red Neuronal Artificial.

Hidden Layers

Input Layer . . Output Layer
P SREP SR
5 “A.""XOXO’A A%
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Nota. La red esta compuesta por capas de entrada, ocultas y de salida. Fuente: geeksforgeeks,
2024.
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El entrenamiento de un MLP se realiza habitualmente mediante el algoritmo de
retropropagacion (backpropagation), que ajusta los pesos de la red para minimizar una funcién
de error (Ishtiaque et al., 2021; K. C. Roy et al., 2024).

El optimizador es responsable de la actualizacion de los pesos durante el entrenamiento.
El Descenso de Gradiente Estocdstico (SGD) es uno de los métodos mads utilizados (Chaulagain
et al., 2025). La incorporacion del término de momento (&) permite acelerar la convergencia
del algoritmo en direcciones coherentes del gradiente y reducir oscilaciones, lo que mejora la
eficiencia del entrenamiento (Ishtiaque et al., 2021; K. C. Roy et al., 2024; Shen et al., 2024).

La funcién de activacion introduce la no linealidad necesaria para que el modelo pueda
capturar relaciones complejas entre las variables (Hussain et al., 2025). La funcién tangente
hiperbélica (Tanh) se emplea con frecuencia en las capas ocultas, dado que transforma los valores
en el intervalo entre -1 y 1 (Alam & Maiti, 2025; Fu et al., 2024), lo que puede contribuir a
estabilizar el entrenamiento. Diversos estudios han reportado resultados favorables del uso de
Tanh en arquitecturas ANN para predicciones de transicion LULC (Tasan et al., 2025).

La funcién Softmax se utiliza cominmente en la capa de salida de modelos de
clasificacién multiclase, ya que transforma un vector de valores no normalizados en una
distribucion de probabilidad normalizada (contributors, 2025). Esta funcidn garantiza que todas

las probabilidades se encuentren en el rango [0, 1] y que su suma sea igual a 1:

o(z) = o —— 3)

El tamafio del lote determina cudntas muestras del conjunto de entrenamiento se procesan
antes de actualizar los pesos (Hussain et al., 2025). Un tamaio de lote igual a 1 corresponde
al aprendizaje estocdstico. Este enfoque realiza una actualizacién de los pesos después de cada
muestra individual, lo que introduce variabilidad en el proceso de optimizacion y permite una

adaptacién mds fina de los pardmetros del modelo.

2.7.4 Métodos de Bisqueda de Hiperparametros (HPO)

La busqueda de hiperpardmetros es un paso esencial en el aprendizaje automadtico

(Machine Learning - ML) para lograr una alta precisién y un rendimiento optimo de los
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modelos (B. Roy, 2021). Los hiperparametros son propiedades o parametros del modelo que se
configuran antes del entrenamiento y controlan el proceso de aprendizaje supervisado, afectando

directamente la precision (B. Roy, 2021).

Bisqueda en Cuadricula (Grid Search).

= Es un enfoque sistemadtico disefiado para identificar los mejores hiperpardmetros. Su
método consiste en evaluar cada combinacion posible de valores de pardmetros que han

sido predefinidos dentro de un rango especifico (Hanh et al., 2025).

= A pesar de su simplicidad, el método de Grid Search a menudo proporciona resultados

fiables (Hanh et al., 2025).

= Este método evalda el rendimiento del modelo (generalmente la precision) mediante el
uso de validacion cruzada (cross-validation) (Maddah et al., 2025). Después de probar
todas las combinaciones, identifica el conjunto de hiperpardmetros que proporciona el

mayor rendimiento (Maddah et al., 2025).

2.8 Modelos Hibridos para Simulacion Espacio - Temporal

La simulacién espacio-temporal busca representar explicitamente tanto la evolucién
temporal como la distribucién espacial de los cambios LULC (K. C. Roy et al., 2024).

Para capturar la complejidad de las dindmicas LULC, que involucran interacciones no
lineales entre factores biofisicos y socioecondmicos a diferentes escalas, los modelos hibridos
han demostrado ser particularmente efectivos. Estos modelos integran las fortalezas de diferentes
enfoques algoritmicos (Risma, 2019). Un enfoque hibrido prominente y ampliamente utilizado
es la combinacién de Autématas Celulares (CA) y Cadenas de Markov (MC), a menudo

potenciado con técnicas de aprendizaje automatico para definir las reglas de transicion espacial.

2.8.1 Modelo Hibrido CA-Markov

El modelo CA-Markov es un método eficaz y frecuentemente empleado que fusiona
dos componentes metodolégicos complementarios para simular la dindmica LULC de manera

integrada en el espacio y el tiempo (Duan et al., 2025).
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2.8.2 Componente Temporal: Cadenas de Markov y Matrices de Transicion

Una Cadena de Markov es un proceso estocdstico que modela la probabilidad de
transicion entre diferentes estados a lo largo del tiempo, asumiendo que el estado futuro
depende unicamente del estado actual (propiedad Markoviana). Aplicado al andlisis LULC
entre dos fechas (1 y t,), el andlisis de Markov cuantifica empiricamente la probabilidad de que
una unidad de drea (pixel) perteneciente a la clase i en ¢ transite a la clase j en #, (Pham & Alj,
2024; M. Zhang et al., 2024). El resultado principal de este andlisis es la Matriz de Probabilidad
de Transicién (P;;), la cual resume estas probabilidades y define la cantidad total de cambio
esperado (“demanda de transicidn”) entre cada par de clases para el siguiente intervalo de tiempo
(Mansour et al., 2025). Sin embargo, el modelo de Markov intrinsecamente carece de capacidad
espacial, predice cudnto cambio ocurrird, pero no déonde ocurrird, asumiendo implicitamente

una distribucion espacial aleatoria de las transiciones (Kashani et al., 2025).

2.8.3 Componente Espacial: Autématas Celulares (CA)

Para superar la limitacion espacial del modelo de Markov, se integra un Autémata
Celular. Un CA es un modelo dindmico espacialmente explicito, basado en una cuadricula
regular de celdas (pixeles). El estado futuro de una celdaen el tiempo 7+1 (S;41) estd determinado
por su propio estado actual (S;) y el estado de sus celdas vecinas (N), de acuerdo con un conjunto
predefinido de reglas de transicion locales (f) (Z. Yang et al., 2023; X. Zhang et al., 2023).

Formalmente, su funcionamiento se puede describir como:

Sl+1 = f(Sl‘aN) (4)

En el modelo hibrido CA-Markov, el CA actiia como el motor de asignacion espacial. Utiliza la
cantidad total de cambio por transicion calculada por la Cadena de Markov (la “demanda”) y la
distribuye espacialmente sobre la cuadricula. Esta asignacidon no es aleatoria, sino que se basa
en la “aptitud” o “idoneidad” de cada celda para experimentar una transicion especifica, la cual
se determina mediante las reglas de transicion (f). Estas reglas suelen incorporar informacién

sobre factores locales y la influencia del vecindario (Belay et al., 2024; Kashani et al., 2025).
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2.8.4 Variables Predictoras

Las variables predictoras, también denominadas factores impulsores (driving factors o
drivers), son las variables espaciales que representan los factores biofisicos y socioecondémicos.
Estas variables sirven como entradas para entrenar el modelo de aprendizaje automdtico que

genera los mapas de potencial de transicion (Algadhi et al., 2024; Xiang, 2024).

Factores Topograficos: Derivados de un DEM, como la elevacion, la pendiente y el

aspecto (orientacion de la ladera).

s Factores de Proximidad o Accesibilidad: Distancia euclidiana a elementos lineales
(carreteras, rios) o puntuales (centros urbanos). La Figura 15 muestra ejemplos visuales

de mapas de proximidad.

= Factores Socioeconémicos: Densidad de poblacion, precio del suelo, zonificacion,

politicas de uso del suelo.

= Factores Ambientales: Tipo de suelo, precipitacion, temperatura.

Figura 15
Ejemplos de Variables Predictoras de Proximidad.

(b) Distancia a centros
(a) Proximidad a rios. urbanos. (¢) Proximidad a carreteras.

Nota. Mapas basados en distancia euclidiana. Fuente (a) y (c): Al-Abadi, 2015. Fuente (b):
Gharbia et al., 2016.
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2.8.5 Analisis de Colinealidad

Se refiere al fenémeno estadistico donde dos o mds variables predictoras exhiben una
fuerte correlacion (Z. Xu et al., 2025), lo que introduce informacién redundante en el modelo
(D. Zhao et al., 2025).

El objetivo principal de este andlisis es asegurar la validez de la prediccién (Hanh et al.,
2025). Los modelos de aprendizaje automdtico son sensibles a la multicolinealidad, la cual puede
distorsionar la precision (Alam & Maiti, 2025), conducir al sobreajuste (overfitting) (Buthelezi
et al., 2024) y dificultar la interpretacion de la contribucién individual de cada variable (Z. Xu
et al., 2025). Si se detecta una alta correlacion, es necesario eliminar una de las variables en

conflicto para evitar resultados sesgados (Danso et al., 2025).

Coeficiente de Correlacion de Pearson (r). El Coeficiente de Correlacion de Pearson (PCC)
es uno de los métodos mds usados para medir la relacién lineal entre dos variables (Hanh
etal., 2025; Naeem et al., 2025). Se considera que existe una fuerte correlaciéon cuando el valor
absoluto |r| > 0.7 o |r| > 0.8 (Buthelezi et al., 2024; Hanh et al., 2025; Tayyab et al., 2024).
El coeficiente se calcula dividiendo la covarianza de las dos variables por el producto

de sus desviaciones estindar (Badavath & Sahoo, 2025)
n
}}m—fﬂw—f)

JimwaZm 5)’

i=1

r =

Donde r es el coeficiente de correlacién, x; y y; son los valores de las variables x e y, X
y y representan los valores promedio de cada variable, n representa el nimero de observaciones

parax y y (Naeem et al., 2025).
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2.9 Meétricas de Evaluacion de Modelos

2.9.1 Meétricas de Evaluacion de la Clasificacion

Matriz de Confusion (Confusion Matrix, MC). La Matriz de Confusién es la herramienta
mads utilizada para evaluar el desempefio de un modelo de clasificacién supervisada (Patel &
Vyas, 2024).

Propésito y Estructura:

= Es una matriz de tamaio n X n, donde n es el nimero de clases teméticas. Compara las
clases reales o de referencia (verdad de terreno, usualmente en las filas) con las clases

asignadas por el modelo (predicciones, usualmente en las columnas).

= Los elementos a lo largo de la diagonal principal (M C;;) representan el niimero de
muestras (pixeles) que fueron clasificadas correctamente, es decir, donde la clase
predicha coincide con la clase real (Ezekiel, 2017). Los elementos fuera de la diagonal

(MC;j, i # j) representan las clasificaciones erroneas (confusiones entre clases).
La matriz de confusién permite derivar cuatro conteos basicos (Anzalone et al., 2024):

1. Verdadero Positivo (VP o TP - True Positive): Niumero de muestras positivas que fueron

correctamente clasificadas como positivas.

2. Verdadero Negativo (VN o TN - True Negative): Niimero de muestras negativas que

fueron correctamente clasificadas como negativas.

3. Falso Positivo (FP - False Positive): Numero de muestras negativas que fueron
incorrectamente clasificadas como positivas. También se conoce como Error de Tipo I

0 Error de Comision.

4. Falso Negativo (FN - False Negative): Numero de muestras positivas que fueron
incorrectamente clasificadas como negativas. También se conoce como Error de Tipo II

o Error de Omision.
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Métricas de Precision Derivadas de la Matriz de Confusion. La Matriz de Confusién
permite evaluar el desempeiio de un clasificador (Kondum et al., 2024). Entre las mds utilizadas
se encuentra la Precision Global (Overall Accuracy, OA), que resume la proporcion total de
muestras correctamente clasificadas (Tola & Deyassa, 2024; X. Wu et al., 2024). Aunque es
sencilla e intuitiva, puede resultar insuficiente cuando existe desbalance entre clases (Ezekiel,
2017).

Precision Global (Overall Accuracy, OA). La OA se obtiene dividiendo la suma de
los elementos de la diagonal principal de la matriz por el nimero total de muestras evaluadas
(Ishtiaque et al., 2021). Su valor oscila entre 0 (clasificacién completamente incorrecta) y 1

(clasificacion perfecta), o entre 0 % y 100 Y.

i MCii TP+TN

OA = =
N TP+ FP+TN+FN

(x100 %) (5)

donde M C;; son los elementos diagonales de la matriz, N es el total de muestras, y la
expresion alternativa corresponde al caso binario (Giindiiz, 2025; Shrestha et al., 2023).

Precision del Usuario (User Accuracy, UA) o Precision (Precision). La UA mide la
fiabilidad del mapa desde la perspectiva del usuario (Giindiiz, 2025). Para una clase i, representa
la proporcién de muestras clasificadas como esa clase que realmente pertenecen a ella (Ezekiel,
2017; K. C. Roy et al., 2024). Refleja la probabilidad de que un pixel etiquetado como clase 7
sea correcto, y estd inversamente asociada al Error de Comision (falsos positivos) (Anzalone

et al., 2024).

MC;; TP

UA (Precision) = =
2iogMCy TP+ FP

(x100 %) (6)

donde }}; M Cy; corresponde al total de muestras clasificadas como clase 7 (total de la columna).

Precision del Productor (Producer Accuracy, PA) o Exhaustividad (Recall /
Sensibilidad). La PA evalia qué tan bien el mapa representa la realidad para una clase
especifica (Giindiiz, 2025). Para la clase 7, es la proporcion de muestras de referencia de
esa clase que fueron correctamente identificadas en el mapa (K. C. Roy et al., 2024). Esta

inversamente asociada al Error de Omision (falsos negativos) (Anzalone et al., 2024).
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MGy
?:1 MC,'j TP+ FN

PA (Recall) = (x100 %) (7)

donde ) j MC;; corresponde al total de muestras reales de la clase i (total de la fila).
Puntuacion F1 (F1-score). El F1 es la media arménica entre la Precision (UA) y
la Exhaustividad (PA). Proporciona una métrica equilibrada que integra simultdneamente los
errores de comision y omision (Anzalone et al., 2024). Resulta especialmente ttil cuando las
clases estdn desbalanceadas o cuando se requiere ponderar por igual ambos tipos de error
(Rotich et al., 2025b).
Precision X Recall

F1=2x
Precision + Recall 8)

Coeficiente Kappa (K). EI Coeficiente Kappa (K) es una métrica que evalia el grado de
concordancia entre un mapa clasificado y los datos de referencia, corrigiendo el acuerdo que
podria ocurrir por azar (B. Roy, 2021). A diferencia de la Precision Global, Kappa incorpora
explicitamente la probabilidad de coincidencia aleatoria, lo que lo convierte en un indicador
mads robusto cuando las clases son desbalanceadas.

Rango e interpretacion. Kappa expresa el nivel de acuerdo mads alld del azar (K. C.

Roy et al., 2024). Su valor oscila tipicamente entre -1 y +1:

K > 0.80: Acuerdo casi perfecto o excelente (Tola & Deyassa, 2024).

0.61 < K < 0.80: Acuerdo sustancial (Mhangara et al., 2024).

0.41 < K < 0.60: Acuerdo moderado (Mhangara et al., 2024).

0.21 < K < 0.40: Acuerdo regular o justo (Mhangara et al., 2024).

K <0.20: Acuerdo leve o pobre (Mhangara et al., 2024).

Unvalorde K = 1 indica concordancia perfecta; K = 0 implica que el acuerdo observado

es equivalente al esperado por azar; y valores negativos reflejan un acuerdo inferior al azar.
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Calculo del coeficiente. El Kappa se basa en la proporcion de acuerdo observado (P,,,

equivalente a la OA) y la proporcion de acuerdo esperado por azar (P,) (Rotich et al., 2025b).

1. Férmula conceptual:

9)

donde P, = ), MC;;/ N es laexactitud observada y P, es la probabilidad de coincidencia

aleatoria, calculada como:

_ Z?=1(MCi+ : Mc+i)

P, N

(10)

2. Férmula matricial (Kappa de Cohen): Para el cdlculo directo a partir de la matriz de

confusidn, se emplea la siguiente expresion expandida:

K = NYL MCyi -3 (MCiy - MCy,)
N? - Zyzl(MCH : MC+1‘)

(11)

donde: N es el numero total de muestras; n es el nimero de clases; MC;; es el valor
diagonal (aciertos); MC;, es la suma de la fila i (Total Referencia/Real); MC,; es la

suma de la columna i (Total Clasificado/Mapa).

Variantes del coeficiente Kappa. Dado que el Kappa estdndar penaliza tanto los errores
de ubicacion como los de cantidad, se emplean variantes para descomponer el acuerdo (Pontius,
2000). Para el presente estudio se calculé el Kappa de Histograma (Kj;s0), €l cual evalia el
acuerdo méximo posible dadas las proporciones marginales (totales por clase) de la matriz.

El Ky, utiliza la concordancia maxima posible (P4 ) en lugar de la observada (P,):

Prgx — P

Khisto = _p (12)
e

donde P4« se calcula sumando los minimos de los totales marginales para cada clase:

?:1 min(MC;y, MCy;)
N

(13)

Prax =
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Area Bajo la Curva ROC (AUC-ROC). El andlisis de la Curva de Caracteristica Operativa
del Receptor (ROC) y el Area Bajo la Curva (AUC) constituye una métrica para evaluar la
precision y fiabilidad de los modelos que simulan o predicen cambios en LULC (Badshah et al.,
2024; Shrestha et al., 2023).

A diferencia de las métricas anteriores (como OA o Kappa) que evaltiian una clasificacién
final “dura”, el AUC-ROC determina qué tan efectivamente un modelo predice la distribucion
continua de una variable booleana (probabilidad de transicién), cuantificando la capacidad
de discriminar entre dreas de cambio y no cambio independientemente del umbral de corte
seleccionado (Badshah et al., 2024; Shrestha et al., 2023).

Interpretacion de la Curva y el Area. La curva ROC expone el rendimiento
contrastando la Tasa de Verdaderos Positivos (Sensibilidad) en el eje Y contra la Tasa de
Falsos Positivos (1 - Especificidad) en el eje X. El valor del AUC resume este rendimiento en

un dnico escalar:

= El valor oscila teéricamente entre O y 1. Un AUC = 0.5 indica un rendimiento aleatorio

(sin capacidad predictiva).

= Cuanto mds se aproxime el valor a 1, mayor serd la capacidad del modelo para separar

correctamente las clases de transicion.

Relevancia frente a otras métricas. El coeficiente Kappa presenta limitaciones para
diferenciar entre errores de cuantificacion y errores de ubicaciéon (Badshah et al., 2024). E1 AUC-
ROC complementa esta evaluacion al validar la idoneidad de las probabilidades de transicion
generadas por modelos como MLP-CA-MC, siendo una herramienta estindar en médulos de

validacion de software geoespacial avanzado (Badshah et al., 2024).

2.9.2 Meétricas de Evaluacién de Simulacion Espacio-Temporal

Las métricas de evaluacion estdndar, como la Precision Global (OA) y el Coeficiente
Kappa, operan mediante una comparacion estricta pixel a pixel (Ovejero-Campos, 2021). Esta
aproximacion es rigurosa en el andlisis geoespacial, ya que penaliza de igual manera todos

los errores sin considerar el contexto (Mas et al., 2019). Estos “casi aciertos” (near miss) son
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comunes en paisajes heterogéneos, zonas de transicion (ecotonos) o al trabajar con resoluciones
moderadas (Liang et al., 2024; Robalino Trujillo, 2023).

Para obtener una evaluacién mads realista de la concordancia estructural, se emplean
métricas de precision difusa (fuzzy accuracy) que relajan el criterio estricto de coincidencia,

introduciendo tolerancia espacial, temdtica o de escala.

Precision Difusa por Vecindad. Este enfoque aborda la incertidumbre de localizacién (Hagen,
2003; Visser, 2004). En lugar de una comparacion directa pixel a pixel, introduce una tolerancia
a errores de localizacion reconociendo el acuerdo dentro de una vecindad espacial definida,
usualmente mediante una “ventana mévil” (Esri, 2024).

Un pixel del mapa simulado se considera un “acierto difuso” si la clase correcta (segin
los datos de referencia) se encuentra presente en cualquier lugar dentro de la ventana de vecindad
definida (Mas et al., 2019; Robalino Trujillo, 2023). Esta métrica cuantifica la proporciéon de
aciertos y “casi aciertos”, validando la capacidad del modelo para simular patrones espaciales
generales, incluso si la localizacidn exacta a nivel de pixel presenta ligeros desplazamientos

(Ovejero-Campos, 2021).

Anadlisis de Validaciéon Multiescala. El Analisis de Validaciéon Multiescala es un enfoque
alternativo esencial para evaluar modelos LULC, dada la heterogeneidad del paisaje a diferentes
niveles de detalle (Fassnacht et al., 2014; Tiamgne et al., 2025).

El mecanismo consiste en agregar espacialmente los mapas simulado y de referencia a
resoluciones progresivamente mds gruesas (H. H. Nguyen et al., 2025) y recalcular las métricas
de concordancia en cada nueva escala.

Se espera que, si el modelo captura correctamente los patrones espaciales generales, la
concordancia aumente a medida que la escala se vuelve mds gruesa, ya que los pequefos errores
de localizacion a nivel de pixel se promedian y el acuerdo en la estructura general del paisaje

se hace evidente (Marey et al., 2025).
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2.10 Inteligencia Artificial Explicable (XAI) en la Modelizacion de Cobertura de Suelo

La Inteligencia Artificial Explicable (XAI) comprende procesos y métodos disefiados
para proporcionar claridad y capacidad de interpretacion a los sistemas de IA, contrarrestando
la naturaleza de “caja negra” tipica de modelos complejos como las redes neuronales profundas
(Mehdiyev et al., 2025a, 2025b). En el contexto de la gestion ambiental y la cartografia
de susceptibilidad, la XAl es necesaria para fomentar la confianza y validar la consistencia

ecoldgica de las predicciones (Pradhan et al., 2023; X. Yang et al., 2025).

2.10.1 Anadalisis de Dominancia de Variables mediante Permutacion

Para interpretar el funcionamiento interno de este modelo de “caja negra”, se requiere
valorar la aportacién especifica de cada variable predictora. La Importancia de Caracteristicas
por Permutacién (PFI) es una técnica “agndstica del modelo” que evalda la influencia de cada
factor en la estabilidad predictiva (Medianovskyi et al., 2023).

El método opera bajo una premisa de ruptura de asociacion, se mide la degradacién en el
rendimiento del modelo cuando la relacién estadistica entre una variable predictora especifica y
la variable objetivo es destruida mediante un reordenamiento aleatorio (shuffling) de sus valores,
manteniendo inalterada su distribucién marginal (Altmann et al., 2010). Esto permite identificar
interacciones no lineales complejas entre los predictores (Diaz-Uriarte & Alvarez de Andrés,
20006).

Se define como Altmann et al. (2010):

VIj = Shase — Sperm,j (14)

Donde VI; es la importancia de la variable j, Spqs. €s el AUC-ROC del modelo con los
datos originales, y Sp.rm,; €s el AUC-ROC calculado tras permutar aleatoriamente el vector de
la variable j. Una disminucion apreciable en el AUC (VI; > 0) indica que el modelo depende

de dicha variable para discriminar las transiciones de uso de suelo.
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2.10.2 Grdficos de Dependencia Parcial

Las Curvas de Respuesta, materializadas en los Graficos de Dependencia Parcial (PDP),
explican cémo dichas variables influyen en la prediccién (X. Yang et al., 2025). Un PDP
visualiza la dependencia marginal entre una caracteristica de interés y la variable objetivo
(susceptibilidad de cobertura de suelo), promediando el efecto de todas las demds variables del
modelo (Medianovskyi et al., 2023; Z. Yang et al., 2024). Estos graficos son esenciales para
investigar la relacion entre un factor ambiental y la cobertura de suelo, identificando umbrales
y comportamientos no lineales que los andlisis de importancia global por si solos no pueden
detectar (Mondal et al., 2023; Nam et al., 2025).

Formalmente, sea S el subconjunto de caracteristicas de interés y C el subconjunto
complemento que contiene todas las demds variables predictoras. La funcién de dependencia
parcial fs se define teéricamente como la esperanza matematica de la salida del modelo f sobre

la distribucién marginal de las caracteristicas en C:

fs(xs) = Ex. [f(xs, Xc)] = / f(xs, Xc)dP(Xc) (15)

En la préictica, dado que la distribucion real de los datos es desconocida, esta funcidén
se estima empiricamente utilizando el promedio de las predicciones sobre el conjunto de datos
de entrenamiento. Para un valor especifico de la variable de interés xg, la estimacion parcial se
calcula promediando las salidas del modelo al forzar xs en todas las observaciones, manteniendo

inalterados los valores de las otras variables (x(ci)):

N 1 & 4 ;
Js(xs) = - ;f(xs,x(c)) (16)

Q)

donde n es el numero total de muestras en el conjunto de validacion y x .

representa
los valores reales de las variables restantes para la muestra i. De esta manera, la ecuacién
marginaliza la influencia de X¢, aislando el efecto exclusivo de xg sobre la probabilidad de

transicion simulada.
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CAPITULO III

Metodologia de la investigacion

La metodologia del presente estudio se ha estructurado en cuatro etapas secuenciales que
abarcan desde el procesamiento de datos satelitales hasta la proyeccion del escenario tendencial
para el afio 2034. A continuacion, se describe cada etapa (Figura 16).

Figura 16
Flujo Metodologico General de la Investigacion.

Datos Satefitales

1. Adruisicion y
p'Hl'" ocasamento

Mapas LULC

!
v

3. Andlisis de Cambios
Multitemporal

4, Modelada, Validacion
& Interpretabilidad

v

.

Escenario 2034

Nota. El diagrama resume la secuencia operativa desde la adquisicion de datos hasta el
analisis del escenario futuro. Fuente: Elaboracion propia.
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3.1 Adquisicion y Preprocesamiento de Datos Geoespaciales

Se centra en la seleccion de sensores Opticos (Landsat 5, 8 y Sentinel-2) y la
delimitacién temporal en la estacion de invierno austral para minimizar la nubosidad. El
preprocesamiento incluye la correccion atmosférica, enmascaramiento de nubes, generacion
de compuestos de mediana, incorporacion de indices espectrales y variables topogréficas, asi
como la estandarizacion a una resolucién comin de 30 metros (Figura 17).

Figura 17
Flujo de Adquisicion y Preprocesamiento de Datos.

Nota. Fuente: Elaboracion propia.
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3.2 Clasificacion Supervisada de Coberturas (LULC)

Se implementa el algoritmo de aprendizaje automético Random Forest (RF) para generar
los mapas temadticos de los afios 2004, 2014 y 2024. Esta fase incluye la definicién de clases
(Urbano, Vegetacion, Suelo Desnudo), la recoleccion de muestras de entrenamiento mediante
interpretacion visual y la optimizacién de hiperparametros para maximizar la precision global
del clasificador (Figura 18).

Figura 18
Flujo Metodolégico: Fase de Clasificacion Supervisada.

Nota. Fuente: Elaboracion propia.

3.3 Analisis de Cambios Multitemporal

Una vez generados los mapas clasificados, se aplica una técnica de tabulacién cruzada
para cuantificar las ganancias, pérdidas y persistencias de cada categoria. Este andlisis no solo

describe la magnitud del cambio, sino que genera las matrices de transicién empiricas que
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alimentaran el componente temporal del modelo predictivo (Figura 19).

Figura 19
Proceso de Andlisis de Cambios Multitemporal.

Nota. Fuente: Elaboracion propia.

3.4 Simulaciéon Hibrida (MLP-CA-MC)

Se integra una red neuronal de Perceptrén Multicapa (MLP) para aprender las reglas de
transicion espacial basadas en variables conductoras (drivers), acoplada con Cadenas de Markov
(MC) para la demanda temporal y Autématas Celulares (CA) para la asignacion espacial. El
proceso incluye el andlisis de colinealidad de predictores, la biisqueda y optimizacion de
hiperpardmetros (épocas, muestras, tasa de aprendizaje, momento y arquitectura de capas)
para calibrar la red, y el entrenamiento final del modelo. Se evalda la fiabilidad del simulador
comparando el escenario proyectado al 2024 con el mapa real. Se emplean métricas categdricas
estandar, métricas de potencial (AUC-ROC), métricas espaciales (Precision Difusa y Validacion
Multiescala) y validacién espacial de la clase vegetacion. Posteriormente, se aplican técnicas
de Inteligencia Artificial Explicable mediante andlisis de dominancia por permutacién y curvas
de dependencia parcial (PDP), se identifica qué variables influyen mds en la urbanizacion y
como responde el modelo ante cambios en factores como la pendiente o la distancia a servicios

(Figura 20).



Figura 20
Simulacion Hibrida (MLP-CA-MC).

Nota. Fuente: Elaboracion propia.
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3.5 Proyeccion del Escenario Futuro 2034

Esta etapa final inicia con la recalibracion del componente temporal del modelo. Tras
validar la simulacidén histérica, se actualiza la matriz de probabilidad de transicién utilizando
la tendencia mds reciente observada (periodo 2014-2024) y se ejecuta la simulacion hibrida
(MLP-CA-MC) hacia el aio 2034. El resultado es un mapa raster que espacializa la distribucion
probable de las coberturas bajo un escenario tendencial.

Posteriormente, se procede al anélisis de cambios post-simulacién. Utilizando el mapa
real de 2024 y el escenario proyectado de 2034, se realiza una nueva tabulacién cruzada para
cuantificar las ganancias y pérdidas netas esperadas (Figura 21).

Figura 21
Flujo de Proyeccion y Andlisis del Escenario 2034.

Nota. Fuente: Elaboracion propia.
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CAPITULO IV

Desarrollo del proyecto
4.1 Area de Estudio

La provincia del Cusco, una de las trece que conforman el departamento homénimo
(Gaona Obando, 2019a), se ubica en la zona central de la region sur andina del Pert (Ttito Ocsa
& Mescco Pumasupa, 2020). Geograficamente, se localiza aproximadamente en las coordenadas
13° 30’ 45"de latitud Sur y 71° 58” 33"de longitud Oeste, emplazada principalmente en el valle
del rio Huatanay. La altitud dentro de la provincia varia considerablemente, desde los 3,128 m
s. n. m. hasta los 4,641 m s. n. m. (Figura 22).

Figura 22
Ubicacion Geogrdfica del Area de Estudio.

Nota. Fuente: Elaboracion propia.

La provincia abarca una superficie oficial de 529.21 km?, segtin la validacién realizada

en el Apéndice B. Sus limites territoriales colindan al norte con las provincias de Calca y
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Urubamba, al este con la provincia de Quispicanchi, al sur con la provincia de Paruro, y al oeste
con la provincia de Anta (M. Huaman Conza & Huaman Gaspar, 2019). Administrativamente,
la provincia se subdivide en ocho distritos: Cusco (Cercado), Ccorca, Poroy, San Jerénimo, San

Sebastidn, Santiago, Saylla y Wanchaq (Lulichac Cayhuari & Miranda Mango, 2017).

4.2 Datos Geoespaciales

Para la elaboracion de los mapas de Uso y Cobertura del Suelo (LULC) de la provincia
de Cusco, se utilizaron colecciones de imdgenes satelitales Opticas multiespectrales, procesadas
a nivel de Reflectancia Superficial (SR - Surface Reflectance para Landsat) o equivalente (BOA
- Bottom of Atmosphere para Sentinel-2), asegurando asi mediciones consistentes de la energia
reflejada por la superficie terrestre tras la correccion de efectos atmosféricos. Se accedio a estos
conjuntos de datos a través de la plataforma de computacion en la nube Google Earth Engine
(GEE), con la cual se realiz6 el filtrado, preprocesamiento y andlisis de las series temporales de
imdgenes segun el drea de interés y los criterios temporales definidos.

A continuacion, se exponen los criterios y fundamentos para la seleccion del periodo de

estudio, la ventana estacional de andlisis y los sensores remotos especificos empleados.

4.2.1 Delimitaciéon Temporal

El andlisis multitemporal se estructurd en intervalos decenales, seleccionando los afios
2004, 2014 y 2024 como puntos clave para la clasificacion LULC. Esta periodicidad de diez
afios es una prdctica recurrente en estudios de dindmica LULC, ya que permite observar
transformaciones acumuladas en el paisaje y calibrar modelos predictivos (M. Khan et al.,
2023). La eleccion especifica de estos afios se fundamenté en la disponibilidad y calidad de
las imédgenes satelitales dentro de la plataforma GEE para la ventana estacional seleccionada,
buscando garantizar una cantidad suficiente de imdgenes para generar compuestos completos,
en contraste con otras combinaciones de anos que presentaban menor cobertura de imédgenes
utiles (Figura 23).

Con el fin de asegurar la comparabilidad interanual de los datos y minimizar los efectos

de la variabilidad fenoldgica y atmosférica estacional, el estudio se restringié temporalmente
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Figura 23
Disponibilidad de Imdgenes Satelitales Invierno Austral por Sensor.

Nota. Fuente: Elaboracion propia.

a la estacion de Invierno Austral (aproximadamente del 20 de junio al 23 de septiembre). Esta

decision metodoldgica se justifica por las siguientes razones:

1. Condiciones Atmosféricas Favorables: El invierno en la regién andina del Cusco
coincide con la temporada de estiaje o seca, caracterizada por una minima precipitacion
pluviométrica (Carbajal Coronado, 2024) y baja humedad relativa atmosférica (Castillo
Alire & Gutierrez Kancha, 2019). Estas condiciones meteoroldgicas reducen la
probabilidad de cobertura nubosa, siendo la mas baja del afio entre mayo y septiembre
(Aiquipa Alosilla & Soncco Mamani, 2019), y minimizan la interferencia atmosférica
(dispersion y absorcidn por vapor de agua). Esto maximiza la obtenciéon de imédgenes

satelitales con cielos despejados.

2. Homogeneidad Ambiental Interanual: Al centrar el andlisis en la misma ventana
estacional cada afio, se busca asegurar que las condiciones ambientales generales
(temperatura, régimen hidrico, estado fenologico predominante) sean 1o més consistentes
posible entre los diferentes afios de observacion (Ayma Quispe, 2022), facilitando la
atribucion de las diferencias observadas a cambios reales en LULC en lugar de a

variaciones estacionales.
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3. Contexto del Ciclo Agricola Regional: El periodo invernal representa una fase de baja

4.2.2

actividad agricola para los cultivos predominantes de secano en la regién. Corresponde
tipicamente al periodo posterior a la cosecha principal (post-cosecha) de cultivos andinos
como la papa y la quinua (Salamanca Oviedo Cabrera, 2016) y anterior a la preparacioén
del terreno y siembra (pre-siembra) que usualmente comienza con las primeras lluvias
de primavera (septiembre-octubre) (Arce Quispe & Chavez Cahuana, 2022). Durante
el invierno, muchas tierras agricolas se encuentran en descanso o barbecho (Quispe
Quispe, 2021), lo que facilita la discriminacién espectral entre dreas agricolas inactivas
(clasificadas como suelo desnudo o con vegetacion residual seca) y dreas con vegetacion

natural persistente o plantaciones forestales activas.

Sensores Satelitales

La eleccién de los sensores satelitales especificos para cada afio del estudio se basé en

la disponibilidad histérica de datos corregidos atmosféricamente (Nivel-2) dentro de GEE, las

capacidades técnicas de cada instrumento y la necesidad de mantener la mayor consistencia

posible a lo largo del tiempo:

= Para el afio 2004: Se utilizaron imdgenes del sensor Thematic Mapper (TM) a bordo

del satélite Landsat 5. En el momento del andlisis, esta era la fuente principal de datos
de reflectancia superficial con cobertura adecuada y consistente en GEE para ese afio,

siendo indispensable para establecer la linea base historica del estudio.

Para el afio 2014: Se emplearon datos del sensor Operational Land Imager (OLI) a
bordo del satélite Landsat 8. Se prefirié Landsat 8 sobre su predecesor contemporaneo,
Landsat 7 (sensor ETM+), debido a la falla permanente del Scan Line Corrector (SLC)
de Landsat 7 desde mayo de 2003, que introduce franjas sin datos (gaps) en sus imdgenes
(M’Barek, 2024). Landsat 8, lanzado en 2013, asegura una cobertura completa y una

calidad radiométrica y espectral mejorada para el periodo de anélisis de 2014.

Para el afio 2024: Se opt6 por utilizar datos del sensor Multispectral Instrument (MSI) a

bordo de la constelacion Sentinel-2 (Sentinel-2A y Sentinel-2B). La principal ventaja de
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Sentinel-2 para el afio mds reciente es su alta frecuencia de revisita (aproximadamente 5
dias con ambos satélites operativos (Gascon et al., 2015)), mayor que la de Landsat 8/9
(16 dias (Ganjirad, 2024)). Esta mayor frecuencia temporal aumenta considerablemente
la probabilidad de adquirir imagenes libres de nubes dentro de la ventana estacional

definida.

4.2.3 Preprocesamiento de Imdgenes Satelitales

Se aplic6 un flujo de preprocesamiento estandarizado a las colecciones de imédgenes
seleccionadas para cada afio dentro de la plataforma GEE, con el objetivo de obtener imdgenes

compuestas, libres de nubes y espacialmente consistentes.

Filtrado Inicial de Colecciones. Para cada afio (2004, 2014, 2024) y sensor correspondiente
(Landsat 5 TM, Landsat 8 OLI, Sentinel-2 MSI), se filtr6 inicialmente el catdlogo de GEE para
seleccionar Unicamente las imdgenes de Nivel-2 (Reflectancia Superficial) que intersectaban el
area de estudio (provincia de Cusco) y cuya fecha de adquisicién estuviera comprendida dentro
de la ventana temporal definida (20 de junio al 23 de septiembre). El nimero de imégenes

resultantes para cada coleccion se detalla en la Tabla 5.

Tabla 5

Resumen de Imdgenes Satelitales Seleccionadas por Afio.
Sensor/Satélite Afio Periodo de Adquisicién® N° de Imégenes
Landsat5/TM 2004 20 de junio - 23 de septiembre 5
Landsat 8/ OLI 2014 20 de junio - 23 de septiembre 5
Sentinel-2 / MSI 2024 20 de junio - 23 de septiembre 19

Nota.* El periodo corresponde al intervalo que abarca las fechas variables del invierno astronémico en
el hemisferio sur (20-21 de junio a 22-23 de septiembre) (Gobierno del Pert, 2025).

Composicion de Mosaico para Imagenes Sentinel-2. A diferencia de las escenas individuales
de Landsat que cubren completamente la provincia de Cusco, las escenas de Sentinel-2 requieren
combinar multiples escenas adyacentes para lograr una cobertura espacial completa del area de
estudio en una fecha dada. Por lo tanto, se implement6 un paso adicional de preprocesamiento

para la coleccion Sentinel-2:
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1. Identificacion de Escenas: Para cada fecha de adquisicion dentro de la coleccion filtrada,
se identificaron las escenas especificas de Sentinel-2 necesarias para cubrir la totalidad

de la provincia.

2. Generacién de Mosaico por Fecha: Se utiliz6 la funcién mosaic() de GEE para
combinar los tiles correspondientes a cada fecha en una tUnica imagen compuesta

(mosaico).

3. Recorte al Area de Estudio: Cada mosaico diario fue recortado espacialmente (clip())
utilizando el poligono vectorial que define los limites de la provincia de Cusco,
asegurando que todos los andlisis posteriores se realizaran estrictamente dentro del

area de interés. Las Figuras 24 y 25 ilustran tiles individuales antes del mosaico.

Este procedimiento se aplicé a las 19 fechas disponibles en la coleccion de 2024, generando
una nueva coleccion de imédgenes diarias mosaico/recortadas.

Figura 24
Ejemplo de una escena “norte” de Sentinel-2.

Nota. Elaboracion propia a partir de datos Sentinel-2 obtenidos de Google Earth Engine.
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Figura 25
Ejemplo de una escena “sur” adyacente de Sentinel-2.

Nota. Elaboracion propia a partir de datos Sentinel-2 obtenidos de Google Earth Engine.

A efectos de concision, se presenta a continuacion una imagen representativa para cada
afio de andlisis: Landsat-5 para 2004 (Figura 26), Landsat-8 para 2014 (Figura 27) y Sentinel-2
para 2024 (Figura 28). El catdlogo completo de imagenes satelitales procesadas se encuentra
disponible en el repositorio digital descrito en el Apéndice E.

Figura 26
Imagen Landsat-5 del 21 de agosto de 2004.

Nota. Fuente: Adaptado a partir de datos de Google Earth.

Si bien es habitual seleccionar tnicamente imdgenes con un porcentaje reducido de
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Figura 27
Imagen Landsat-8 del 02 de septiembre de 2014.

Nota. Fuente: Adaptado a partir de datos de Google Earth.

Figura 28
Imagen Sentinel-2 del 22 de julio de 2024.

Nota. Fuente: Adaptado a partir de datos de Google Earth.

nubosidad, en este caso no se aplicé dicho criterio debido a la limitada disponibilidad de datos.
Por ello, se decidi6 trabajar con la totalidad del conjunto de imédgenes, quedando el tratamiento

y correccion de nubosidad como una etapa posterior del andlisis.

Enmascaramiento de Nubes y Sombras. Para eliminar pixeles contaminados por nubes,

sombras de nubes u otros efectos atmosféricos o radiométricos, se aplicaron algoritmos de
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enmascaramiento especificos para cada sensor, utilizando las bandas de calidad proporcionadas
con los datos de Nivel-2.

Landsat 5 TM y Landsat 8 OLI:. Se aplic6 un procedimiento de enmascaramiento
1déntico y consistente a ambas colecciones (2004 y 2014) basado en las bandas de calidad Pixel
Quality Assessment (QA_PIXEL) y Radiometric Saturation Quality Assessment (QA_RADSAT)

de la Coleccidén 2 Nivel-2 de USGS:

1. Enmascaramiento de Nubes y Sombras: Se utilizé la banda QA_PIXEL y mdscaras de
bits especificas para identificar y marcar como invalidos los pixeles clasificados con
alta confianza como Nube (Cloud) o Sombra de Nube (Cloud Shadow). El objetivo fue
lograr un equilibrio entre la eliminacion efectiva de contaminantes y la preservacién de

la mayor cantidad posible de pixeles vélidos.

2. Enmascaramiento de Saturacion Radiométrica: Se utiliz6 la banda QA_RADSAT para
identificar y enmascarar pixeles donde uno o mds de los sensores Opticos alcanzaron
su limite de deteccidén (saturacion), evitando asi el uso de valores de reflectancia

potencialmente incorrectos.

Sentinel-2 MSI:. Para la coleccion Sentinel-2 de 2024, se empled un enfoque basado

en la banda de probabilidad de nubes derivada del algoritmo S2 Cloud Score+:

1. Vinculacién con Cloud Score+: Cada imagen de la coleccion fue vinculada con su
correspondiente capa de probabilidad de nube (cs) de la coleccion GEE GOOGLE/

CLOUD_SCORE_PLUS/V1/S2_SR.

2. Enmascaramiento Probabilistico: Se aplic6 un umbral de probabilidad, conservando
unicamente aquellos pixeles con una probabilidad estimada de estar libres de nubes
superior a un valor determinado (50 %). Este enfoque busca ser comparable en

rigurosidad al método basado en bits de Landsat.

Se muestran a continuacion ejemplos representativos del resultado del enmascaramiento
de nubes y sombras para cada sensor: Landsat-5 en 2004 (Figura 29), Landsat-8 en 2014
(Figura 30) y Sentinel-2 en 2024 (Figura 31). La coleccién completa de imagenes procesadas y

enmascaradas se encuentra disponible para su consulta en el repositorio digital (Apéndice E).
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Figura 29
Imagen Landsat-5 enmascarada del 21 de agosto de 2004.

Nota. Fuente: Adaptado a partir de datos de Google Earth Engine.

Figura 30
Imagen Landsat-8 enmascarada del 02 de septiembre de 2014.

Nota. Fuente: Adaptado a partir de datos de Google Earth Engine.

Generacion de Compuestos de Mediana. Tras enmascarar las colecciones de imédgenes para
cada afio (2004, 2014, 2024), el siguiente paso fue reducir cada colecciéon multitemporal a una
Unica imagen compuesta, representativa de las condiciones promedio del invierno austral.

Se utilizé para ello la funcién de agregacién temporal por mediana (.median())
disponible en GEE. Esta técnica calcula, para cada banda espectral y cada ubicacion de pixel,

el valor de la mediana de todos los pixeles vdlidos (no enmascarados) correspondientes a esa
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Figura 31
Imagen Sentinel-2 enmascarada del 22 de julio de 2024.

Nota. Fuente: Adaptado a partir de datos de Google Earth Engine.

ubicacién en la coleccidon de imdgenes del afio. La mediana resulta preferible al promedio, ya
que se considera una medida mads eficiente en presencia de datos espaciales ruidosos (Dahal

et al., 2024).

Relleno de Vacios en el Compuesto de 2004. Una inspeccion cuantitativa de los pixeles
del compuesto de mediana generado para el afno 2004 (Landsat 5) revel6 la presencia de un
unico pixel sin datos (vacio o gap) dentro del drea de estudio. Aunque pequefio, este vacio
podria afectar la consistencia espacial de andlisis posteriores o la aplicacion de algoritmos de
clasificacion.

Para corregir esta discontinuidad, se implement6 un procedimiento de relleno de vacios

(gap filling) basado en interpolacion por vecindad:

1. Localizacion del Pixel Vacio: Se identificaron las coordenadas exactas del pixel sin

datos.

2. Célculo de Valor Interpolado: Para cada una de las bandas espectrales del compuesto,

se calculd el valor promedio de los pixeles vecinos validos.

3. Aplicacion del Relleno: Se creé una imagen temporal de un solo pixel con los valores

promedio calculados. Se utiliz6 la funcién unmask () de GEE para fusionar esta imagen
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de relleno con el compuesto original. La funcién mencionada reemplaza unicamente los
pixeles enmascarados (vacios) con los valores correspondientes de la imagen de relleno,

dejando intactos todos los pixeles que ya tenian datos validos.

Este procedimiento resulté en una imagen compuesta final para el aiio 2004 que era
espacialmente completa dentro del drea de estudio. Con esto, se obtuvieron tres imagenes
compuestas finales, espacialmente completas y listas para la adicién de variables auxiliares y la
clasificacion.

Las Figuras 32, 33 y 34 muestran la visualizacién en color real (RGB) de estas tres
imagenes compuestas finales. Las imdgenes utilizadas en el andlisis contienen el conjunto
completo de bandas espectrales seleccionadas: para Landsat 5, [SR_B1, SR_B2, SR_B3,
SR_B4, SR_B5, SR_B7]; para Landsat 8, [SR_B1, SR_B2, SR_B3, SR_B4, SR_BS5,
SR_B6, SR_B7];y para Sentinel-2, [B2, B3, B4, B5, B6, B7, B8, B8A, Bll, B12].

Figura 32
Compuesto de mediana (Landsat 5, invierno austral 2004).

Nota. Elaboracion propia a partir de datos Sentinel-2 obtenidos de Google Earth Engine.

4.2.4 Variables Auxiliares

Para enriquecer el conjunto de datos espectrales base y mejorar la capacidad

discriminatoria de los algoritmos de aprendizaje automatico entre las diferentes clases LULC,
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Figura 33
Compuesto de mediana (Landsat 8, invierno austral 2014).

Nota. Elaboracion propia a partir de datos Sentinel-2 obtenidos de Google Earth Engine.

Figura 34
Compuesto de mediana (Sentinel-2, invierno austral 2024).

Nota. Elaboracion propia a partir de datos Sentinel-2 obtenidos de Google Earth Engine.

se generaron y anadieron variables auxiliares a cada una de las imdgenes compuestas. Estas

variables se categorizan en indices espectrales y variables topograficas.

Indices Espectrales. Paralacaracterizacion de las coberturas, se selecciondé un conjunto de seis
indices espectrales. Esta seleccion se fundamenta en su recurrencia y efectividad documentada

en la literatura cientifica reciente para discriminar las clases de interés (vegetacion, suelo
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desnudo y drea construida) (Vahid & Aly, 2025).

Especificamente, se priorizaron indices que pudieran ser derivados consistentemente a
partir de las bandas 6pticas y del infrarrojo de onda corta (SWIR) disponibles en los tres sensores
utilizados (Landsat 5, Landsat 8 y Sentinel-2). Dado que el sensor MSI de Sentinel-2 carece
de bandas térmicas, se descartaron indices dependientes de la temperatura superficial directa,
optandose por indicadores como el NDBI y el UI que han demostrado una fuerte correlacion
con la dindmica de urbanizacién y las variaciones térmicas asociadas (Vahid & Aly, 2025).

Las formulas especificas utilizadas para calcular estos indices, adaptadas a las bandas
correspondientes de cada sensor (Landsat 5 TM, Landsat 8 OLI, Sentinel-2 MSI), se presentan
en la Tabla 6. A modo de ilustracién del procesamiento espectral realizado, se muestran en la
Figura 35 los mapas resultantes del Indice de Vegetacién de Diferencia Normalizada (NDVI)
para los tres periodos de andlisis. La coleccion completa de visualizaciones para el resto de
indices (SAVI, NDBI, NDMI, BSI, Ul) se encuentra disponible en el repositorio digital del

proyecto (Apéndice E).

(a) NDVI 2004 (b) NDVI 2014 (c) NDVI 2024

Figura 35
Distribucion espacial del Indice de Vegetacion de Diferencia Normalizada (NDVI) a lo largo
del periodo de estudio.

Variables Topograficas. Las variables topograficas, como la elevaciéon y la pendiente
derivadas de un Modelo Digital de Elevaciéon (DEM), se incorporan frecuentemente en la
modelizacion y clasificacion LULC. Se consideran factores ambientales estaticos determinantes
que pueden mejorar la precision del andlisis, especialmente en dreas con relieve complejo o
accidentado, al ayudar a discriminar clases con firmas espectrales similares pero diferente

distribucion altitudinal o de pendiente (Belay et al., 2024). En este estudio se utilizaron:
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Formulas de Indices Espectrales por Sensor.
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Tndice L5 2004 (TM) L8 2014 (OLI) S2 2024 (MSI)
SR_B4-SR_B3 SR_B5-SR_B4 B$-B4
NDVI SR_B4+SR_B3 SR_B5+SR_B4 B8+B4
SAVI (SR_B4-SR_B3)x1.5 (SR_B5-SR_B4)x1.5 (B8-B4)x1.5
SR_B4+SR_B3+0.5 SR_B5+SR_B4+05 B8+B4+0.5
NDBI SR_B5-SR_B4 SR_B6-SR_BS B11-B8
SR_B5+SR_B4 SR_B6+SR_B5 BII+BS
SR_B4-SR_B5 SR_B5-SR_B6 B8-Bl1
NDMI SR_B4+SR_B5 SR_B5+SR_B6 B8+B11
BSI (SR_B5+SR_B3)—(SR_B4+SR_B1)  (SR_B6+SR_B4)—(SR_B5+SR_B2)  (B11+B4)—(B8+B2)
R_B5+SR_B3)+(SR_B4+SR_B1 R_B6+SR_B4)+(SR_B5+SR_B BI1+B4)+(BS+B
(SR_B5+SR_B3)+(SR_B4+SR_BI)  (SR_B6+SR_B4)+(5 SR_B2) (BII+B4)+(B8+B2)
Ul SR_B7-SR_B4 SR_B7-SR_BS B12-B8
SR_B7+SR_B4 SR_B7+SR_B5 BI2+BS

Nota: Las féormulas generales se encuentran en la Tabla 4.

= Elevacion: Altitud sobre el nivel del mar, obtenida directamente del DEM (Figura 36).

= Pendiente: Grado de inclinacién del terreno, calculado a partir del DEM y expresado en

grados (Figura 37).

Ambas variables se derivaron del DEM ALOS World 3D - 30m (AW3D30), disponible en

Google Earth Engine.

Figura 36

Modelo de Elevacion Digital (DEM) de la provincia de Cusco.

Nota. Fuente: ALOS AW3D30 via GEE
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Figura 37
Mapa de Pendientes de la Provincia de Cusco.

Nota. Derivado del DEM ALOS AW3D?30.

Normalizacion de Variables. La normalizacién de las variables predictoras es un
procedimiento habitual en aprendizaje automadtico para asegurar que todas las variables
contribuyan de manera equitativa al modelo, independientemente de sus unidades o rangos

originales. En este estudio:

= Indices Espectrales: Los indices calculados (NDVI, SAVI, NDBI, NDMI, BSI, UI),
por su formulacién como diferencias normalizadas, producen valores en un rango
acotado [-1, +1]. Esta normalizacion intrinseca reduce la sensibilidad a variaciones en
las condiciones de iluminacidn (efectos solares o topograficos) y facilita la comparacién
entre diferentes sensores y fechas. Por lo tanto, no se aplic6 una normalizacion adicional

a estos indices.

= Variables Topograficas: Las variables de elevacion (metros) y pendiente (grados) se
incorporaron al conjunto de datos con sus unidades y rangos fisicos originales. No
se aplico escalado o normalizacion adicional a estas variables, dado que el algoritmo
clasificador seleccionado, Random Forest, es inherentemente insensible a la escala de

las variables de entrada.
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Caracteristicas de las Imagenes Compuestas Finales. Tras la adicién de los indices
espectrales y las variables topogréficas a las imagenes compuestas de mediana, se obtuvieron los
conjuntos de datos finales (imdgenes multibanda). Las Tablas 7 y 8 resumen las bandas incluidas
en cada compuesto final y sus respectivos rangos de valores (minimo y maximo observados
dentro del area de estudio).

Un aspecto metodoldgico importante para asegurar la validez y consistencia del analisis
multitemporal fue la estandarizacion de la resolucion espacial. Todas las bandas de entrada
para la clasificacion (bandas espectrales originales, indices calculados y variables topograficas)
fueron homogeneizadas a una resolucion espacial comin de 30 metros.

Esta decision se basé en la resolucién nativa de 30 metros de los sensores histdricos
clave utilizados (Landsat 5 TM y Landsat 8 OLI). Por consiguiente, las bandas de Sentinel-2,
que originalmente poseen resoluciones mds finas (10 m y 20 m), fueron remuestreadas a 30
metros antes de ser combinadas con las demds variables. Este paso asegura que la comparacién
de LULC entre los diferentes afios se realice sobre una base espacial coherente.

Tabla 7
Comparativa de rangos dinamicos: Landsat 5 (2004) y Landsat 8 (2014).

Landsat 5 (2004) Landsat 8 (2014)

Banda / Indice Minimo Maximo Minimo Maximo
SR_BI1 0.0051 0.3291 -0.0854 0.3769
SR_B2 0.0063 0.3879  -0.0630 0.4484
SR_B3 0.0113 0.4233  0.0031 0.5365
SR_B4 0.0135 0.4925  0.0007 0.6190
SR_B5 0.0086  0.6138  0.0108 0.6731
SR_B6 - - 0.0086 1.0236
SR_B7 0.0030  0.5849  0.0056 1.0272
NDVI -0.2656  0.8484  -0.4064  0.9650
SAVI -0.0356  0.6555 -0.0662  0.7050
NDBI -0.6207  0.5014  -0.7878  0.4667
NDMI -0.5014  0.6207 -0.4667 0.7878
BSI -0.4632 04576 -0.6716  0.4257
Ul -0.8736 0.4895 -0.8362 0.4566
Elevacion (m) 2967 4642 2967 4642

Pendiente (grados) 0.0 70.8944 0.0 70.8944

Nota. Fuente: Elaboracién propia.
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Tabla 8

Bandas y rangos Sentinel-2 (2024).
Banda / Indice Valor Minimo Valor Méximo
B2 55 3559
B3 393 6242
B4 271 7147
B5 279 5829
B6 247 5996
B7 251 5843
B8 229 7068
B8A 219 5719
Bl11 173.5 8770.5
B12 115 9708
NDVI -0.1810 0.7531
SAVI -0.2714 1.1295
NDBI -0.5388 0.4283
NDMI -0.4283 0.5388
BSI -0.4653 0.3854
Ul -0.7960 0.4357
Elevacion (m) 2967 4642
Pendiente (grados) 0.0 70.8944

Nota. Valores de compuesta invierno austral 2024. Fuente: Elaboracion propia.

4.3 Clasificacion Supervisada de Coberturas (LULC)

4.3.1 Definicion de Clases de Cobertura para el Estudio

Para el presente estudio, se defini6 un esquema de clasificacion compuesto por tres clases
temadticas principales: Urbano, Vegetacion y Suelo Desnudo. Esta agrupacion responde a dos
consideraciones principales: (i) la marcada estacionalidad del régimen climdtico en la provincia
de Cusco, caracterizada por una estacion seca pronunciada (Mamani & Cutipa, 2024), y (ii) la
semejanza espectral que presentan algunas coberturas durante dicho periodo, lo que dificulta
su separacion precisa en sensores opticos. El propdsito es obtener mapas LULC comparables

entre afios, priorizando la estabilidad espectral de las clases.

1. Vegetacion
Clase que agrupa coberturas con actividad fotosintética sostenida durante el invierno

austral, orientada a capturar formaciones vegetales con alta estabilidad espacial y



82

espectral entre los afios analizados, y con persistencia estructural a lo largo del ciclo

anual.

Durante la estacion seca, los cultivos de secano permanecen en barbecho (Cahuana
& Pariguana, 2023), y la vegetacion herbacea estacional (como pajonales altoandinos)
reduce su actividad fotosintética por limitacion hidrica y temperatura (Carlos Rosales,
2025). Esto permite distinguir espectralmente la vegetacion persistente, que mantiene

mayor estabilidad.

. Suelo Desnudo
Clase que representa superficies sin vegetacion activa. Diversos estudios agrupan tanto
suelos expuestos naturales como superficies agricolas en descanso dentro de esta

categoria (Rotich et al., 2025b; Yadav et al., 2024).

Incluye:

= Zonas erosionadas o rocosas.
= Caminos sin pavimentar.
= Terrenos agricolas en barbecho.

= Ecosistemas herbdceos o arbustivos que reducen fuertemente su verdor en la
estacion seca (Pajonal de Puna Huimeda, Matorral Andino) (Ministerio del

Ambiente (MINAM), 2015).

Estas coberturas presentan firmas espectrales similares a la cobertura urbana, lo cual
constituye una fuente recurrente de confusion en la clasificacion LULC (Ettehadi et al.,
2019; Ganjirad, 2024). Su agrupacién contribuye a reducir la ambigiiedad espectral y

mejorar la precision del proceso de clasificacion.

. Urbano
Clase que agrupa superficies impermeables y construidas asociadas a asentamientos

humanos.

m Edificaciones residenciales, comerciales e industriales.
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» Infraestructura vial pavimentada.

= Otras superficies artificiales (plazas, losas deportivas, etc.).

Exclusion de la Clase “Agua’”. Aunque existen cuerpos de agua (principalmente rios) dentro
de la provincia de Cusco, se tomé la decisiéon metodolégica de no incluir una clase especifica
“Agua” en el esquema de clasificacion. Esta exclusion se fundamenta principalmente en la
resolucion espacial de los datos satelitales utilizados (30 metros para Landsat, homogeneizado
para Sentinel-2). Los cauces de los rios principales en la provincia se reducen durante la
temporada seca (invierno austral), no superando los 30 metros de ancho. Ademas, la presion
urbana y la ocupacién de las fajas marginales han contribuido a un angostamiento considerable
de algunos cauces en las tultimas décadas (Calvo Mamani & Polo Dolmos, 2017; Paredes
Catunta, 2019).

Como consecuencia, muchos tramos de los rios representan elementos lineales cuyo
ancho es frecuentemente inferior a la dimension de un pixel de 30 metros, convirtiéndolos en
caracteristicas sub-pixel. Intentar clasificar estos elementos como una clase separada resultaria
en una representacion cartografica inconsistente y fragmentada. Ademds, la presencia de
pixeles mixtos (agua/suelo/vegetacion) a lo largo de los bordes de los rios podria introducir
ruido espectral y afectar negativamente la precision de la clasificacion de las otras tres clases

principales. Por estas razones, se optd por no mapear explicitamente la clase Agua.

4.3.2 Recopilacion de Datos de Entrenamiento y Validacion

La seleccion de muestras de referencia (datos de entrenamiento y validacion), también
conocida como obtencidon de verdad terreno (ground truth), es una etapa importante en cualquier
proceso de clasificacion supervisada de imdgenes de teledeteccion para cartografia LULC (K. C.
Roy etal., 2024). La calidad, cantidad y representatividad de estas muestras influye directamente
en el rendimiento del clasificador entrenado. La mayoria de los estudios LULC se basan en la
interpretacion visual de imagenes de referencia para delimitar espacialmente dreas homogéneas
representativas de cada clase de interés (Sarif & Gupta, 2024).

Para la recoleccion de las muestras en este estudio, se utiliz6 como fuente principal
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de referencia las imagenes histdricas de alta resolucion disponibles en la plataforma Google
Earth Pro. Esta herramienta es ampliamente utilizada en la literatura cientifica para la seleccion
manual interactiva de puntos o poligonos de entrenamiento y validacién en estudios LULC
(Ganjirad, 2024; Giindiiz, 2025; Zafar, Zubair, Zha, Fahd & Nadeem, 2024). El proceso de
muestreo se adapt6 a la disponibilidad temporal de estas imagenes de alta resolucién para cada

uno de los afios de estudio:

= Afio 2024: Se utilizaron imagenes de alta resolucion correspondientes a mayo de 2024,

préximas al periodo de invierno austral y coherentes con la ventana temporal de andlisis.

= Afio 2014: Se emplearon imdgenes de alta resolucién disponibles para junio de 2014,

igualmente alineadas con la estacion seca y adecuadas para la comparacion interanual.

= Afio 2004: Debido a la ausencia de imdgenes de alta resolucion directamente asociadas
al afio 2004 en Google Earth Pro, se utiliz6 como referencia principal el mosaico més
cercano disponible, correspondiente a agosto de 2002. Para garantizar la validez temporal
de la interpretacion, especialmente en dreas urbanas en expansion, esta referencia visual
fue complementada con el Mapa de Peligros de la ciudad del Cusco del 2004, que
documenta la configuracién urbana hasta 2004 (y PNUD, 2004). Este procedimiento
de validacion cruzada con cartografia auxiliar es consistente con estrategias adoptadas
en estudios LULC con limitaciones similares en la disponibilidad de datos histéricos

(Pham & Ali, 2024).

Con el objetivo de mitigar los problemas de clasificacion errénea (misclassification)
asociados al fendmeno del pixel mixto, donde un unico pixel de la imagen satelital abarca
multiples tipos de cobertura del suelo (Ganjirad, 2024), se adopt6 una estrategia de muestreo
conservadora. El etiquetado de las muestras (asignacion de la clase LULC) se realiz6 aplicando
criterios estrictos, seleccionando unicamente puntos ubicados en el centro de dreas que
presentaban una alta homogeneidad espectral y textural en la imagen de alta resolucién de
referencia (Brown et al., 2022). Este enfoque, centrado en identificar pixeles “puros’, es

particularmente importante en zonas de transicidn entre coberturas o en dreas conocidas
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por su alta confusion espectral, buscando garantizar que cada punto de muestra represente
inequivocamente una tnica clase LULC (Youssef, 2024).

Mediante un procedimiento de interpretacion visual y seleccién en Google Earth Pro, se
recolectd un conjunto de puntos de muestra para las tres clases definidas: Urbano, Vegetacion
y Suelo Desnudo. La cantidad de puntos recolectados para cada clase se presentan en la Tabla

9y en las figuras 38, 39,40y 41.

Tabla 9

Distribucion de los puntos de muestra recolectados
Clase 2004 2014 2024 Total por clase
Urbano 500 500 500 1500
Vegetacion 500 500 500 1500
Suelo desnudo 511 510 500 1521

Total por afio 1511 1510 1500

Nota. El area de estudio contiene un total de 589,049 pixeles.

Figura 38
Distribucion espacial de los puntos de muestra 2004.

Nota. Fuente: Elaboracion propia.
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Figura 39
Puntos de muestra sobre Mapa de Peligros (2004).

Nota. Fuente: Elaboracion propia.

Figura 40
Distribucion espacial de los puntos de muestra 2014.

Nota. Fuente: Elaboracion propia.

4.3.3 Optimizacion de Hiperparametros y Entrenamiento del Modelo

Para la generacion de los mapas LULC correspondientes a los afios 2004, 2014 y 2024,
se implement6 un flujo de trabajo metodolégico consistente dentro de la plataforma Google
Earth Engine (GEE). A continuacién, se detalla el proceso aplicado de forma independiente

para cada afio.
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Figura 41
Distribucion espacial de los puntos de muestra 2024.

Nota. Fuente: Elaboracion propia.

Preparacion de Datos de Entrenamiento y Validacion. Se integraron en GEE los conjuntos
de puntos de muestra para cada afio. El total de puntos se dividié aleatoriamente en dos
subconjuntos mutuamente excluyentes: el 70 % se utiliz6 para entrenar el clasificador y el 30 %
restante para la validacién independiente de la precision. Esta proporcién (70/30) es una practica
estdndar en estudios de clasificacién supervisada en teledeteccion (Badshah et al., 2024; Yasin,
2024, Zafar, Zubair, Zha, Fahd & Nadeem, 2024).

Luego, tanto para los puntos del conjunto de entrenamiento como para los de validacion,
se extrajeron los valores de todas las variables predictoras (bandas espectrales, indices
espectrales y variables topograficas) directamente desde la imagen compuesta correspondiente
a cada ano. Estos valores constituyeron la matriz de atributos utilizada como entrada para el

modelo Random Forest.

Optimizacion de Hiperparametros del Clasificador Random Forest. Los hiperparametros
de un modelo de aprendizaje automético son pardmetros de configuracion que no se aprenden
directamente de los datos durante el entrenamiento, sino que deben establecerse previamente.
Controlan aspectos importantes del proceso de aprendizaje y pueden influir en el rendimiento
(precisién) y la complejidad del modelo resultante (B. Roy, 2021). Para el algoritmo Random

Forest (RF), dos de los hiperpardmetros con mayor influencia son el nimero de drboles en el
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bosque y la fraccién de muestras utilizada para entrenar cada 4rbol individual.

Para identificar la configuracién de hiperparametros que ofreciera el mejor rendimiento
predictivo para cada ano, se implement6 un procedimiento de ajuste sistemadtico (bisqueda en
cuadricula). Se definié un espacio de biisqueda para ambos hiperpardmetros: el nimero de
arboles se varié desde 10 hasta 150 (en incrementos de 10), y la fraccién de muestreo por bolsa
se varid desde 0.1 hasta 0.9 (en incrementos de 0.1).

Para cada combinacién posible de (numTrees, bagFraction) dentro de esta cuadricula, se
entren6 un modelo RF utilizando el conjunto de entrenamiento y se evalud su precision (Overall

Accuracy) utilizando el conjunto de validacion independiente.

Seleccion y Entrenamiento del Modelo RF ()ptimo. Para cada afio, se selecciond la
combinacién de hiperparametros (numTrees, bagFraction) que produjo la mayor Precision
Global (OA) en el conjunto de validaciéon durante la fase de optimizacién (detallada en la
Seccion 5.1.1). Utilizando estos pardmetros 6ptimos identificados, se procedid a entrenar el
modelo Random Forest final para cada afo, empleando el conjunto de entrenamiento. Este
procedimiento sigue las practicas recomendadas en la literatura para la calibracién y seleccion

de modelos de clasificacion supervisada (Giindiiz, 2025).

Generacion y Validacion de los Mapas LULC. Elmodelo RF 6ptimo entrenado para cada afio
fue aplicado a la imagen compuesta correspondiente (incluyendo todas las bandas predictoras)
para generar los mapas clasificados LULC. La calidad y fiabilidad de cada uno de estos mapas
clasificados se evalué cuantitativamente utilizando el conjunto de validacién independiente.
Se construy6 la matriz de confusion para cada afio y se calcularon las métricas de precision
estdndar derivadas: Precision Global (OA), Coeficiente Kappa («), Precision del Productor (PA

o Recall) por clase, y Precision del Usuario (UA o Precision) por clase.

4.3.4 Exportacion de Mapas Clasificados y Andlisis de Cambios

Los mapas LULC clasificados 42, 43 y 44 fueron exportados desde Google Earth
Engine en formato raster. La imagénes (.tif) se encuentra disponible en el repositorio digital

(Apéndice E).



89

Figura 42
Mapa LULC clasificado (2004).

Nota. Mapa de Coberturas y Usos del Suelo (LULC) clasificado para el aiio 2004. Fuente:
Elaboracion propia.

Figura 43
Mapa LULC clasificado (2014).

Nota. Mapa de Coberturas y Usos del Suelo (LULC) clasificado para el aiio 2014. Fuente:
Elaboracion propia.

4.4 Analisis de Cambios Multitemporal

El andlisis cuantitativo de los cambios en la cobertura del suelo permite identificar las
transformaciones ocurridas en el drea de estudio. El método consiste en procesar los mapas

de cobertura del suelo clasificados (Figuras 42, 43 y 44) mediante tabulacion cruzada (cross-
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Figura 44
Mapa LULC clasificado (2024).

Nota. Mapa de Coberturas y Usos del Suelo (LULC) clasificado para el aiio 2024. Fuente:
Elaboracion propia.
tabulation).

Este procedimiento permite cuantificar las transiciones entre clases, identificando para
cada periodo las dreas de ganancia, pérdida y persistencia. Los resultados cuantitativos de este

analisis se detallan en la Seccidn 5.1.2.

4.5 Simulaciéon Hibrida (MLP-CA-MC)

4.5.1 Modelado de la Simulacion Hibrida (MLP-CA-MC)

Preparacion de Variables Predictoras. La seleccién de las variables predictoras (factores
impulsores) es una etapa determinante que define la capacidad del modelo para simular la
dindmica territorial. Las variables empleadas en este estudio fueron seleccionadas con base en
su uso documentado en la literatura. Se incorporan factores topograficos y biofisicos, como la
pendiente (Belay et al., 2024; Bendechou et al., 2024), el aspecto (Maddah et al., 2025; Rotich
etal., 2025b), la elevacion (Alam & Maiti, 2025; Chaulagain et al., 2025) y la proximidad a lared
hidroldgica (Danso et al., 2025; Rotich et al., 2025a). Asimismo, se consideran los principales
impulsores de accesibilidad y atraccién antrépica, incluyendo la distancia a carreteras (Al-

Kordi et al., 2025; Y. Liu et al., 2024b), vias férreas (G. Liu et al., 2024; Zhou et al., 2025), el
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aeropuerto, poblaciones dispersas (Ishtiaque et al., 2021; Khan Academy, 2024), poblaciones
grandes (centros urbanos) (Y. Liu et al., 2024b; Sarfo et al., 2024), centros educativos (T. Xu
et al., 2022) y hospitales (T. Xu et al., 2022). Finalmente, se incluyé la distancia a atractivos
turisticos. Aunque otros estudios mencionan su influencia (M. Khalid et al., 2023; Senthilkumar
etal., 2025), en esta investigacion se agrega un raster de proximidad para capturar el rol potencial
del turismo como un factor impulsor de cambio.

Para la preparacion de las variables espaciales predictoras se aplic6 un flujo de trabajo
estandarizado en QGIS. Este procedimiento garantizé la homogeneidad espacial de todos los
datos, asegurando una misma resolucion (30 metros), sistema de referencia cartografica (WGS
84 / UTM Zona 19S, EPSG:32719) y extension espacial. La extension fue definida por un
poligono vectorial, y fue configurada explicitamente para todos los rasteres resultantes con la
siguiente definicion espacial: 157140, 196380, 8488950, 8513400 [EPSG:32719].

El proceso comprendié la recopilacidn, delimitacién y estandarizacién de los datos
vectoriales y réster originales, asi como la generacion de variables derivadas. Adicionalmente,
se realiz6 un proceso de depuracién y filtrado de datos para asegurar la calidad de los factores
impulsores para las capas asociadas a instituciones educativas y centros de salud. Se partié de
bases tabulares con informacion a nivel nacional, de las cuales se seleccionaron inicamente los
registros ubicados dentro del departamento y la provincia del Cusco, verificando la existencia de
datos de coordenadas (latitud y longitud) y la disponibilidad de la fecha de inicio de actividades.
Este proceso permitié construir tres versiones temporales de cada conjunto de datos (hasta 2004,
hasta 2014 y hasta 2024), preservando la consistencia temporal requerida para el modelado.
Las etapas de limpieza y estructuraciéon de la base de datos se llevaron a cabo en Google
Colab usando la biblioteca Pandas, para posteriormente integrarse en la generacion de mapas
de proximidad en QGIS.

El procedimiento metodoldgico detallado para la construccion de las variable predictora
se presenta en el repositorio virtual Apéndice E, mientras que la visualizacion de los mapas
raster finales se muestra en el Apéndice C.

Andlisis de Multicolinealidad. El andlisis de multicolinealidad es una etapa esencial

en la preparacion de variables predictoras para modelos estadisticos y de aprendizaje automatico,
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incluyendo aquellos utilizados para modelar la susceptibilidad a cambios o la prediccion
LULC (Hanh et al., 2025). Su propésito es identificar la presencia de altas correlaciones
lineales entre pares o grupos de variables predictoras independientes (Z. Xu et al., 2025). La
multicolinealidad severa puede introducir inestabilidad en la estimacion de los pardmetros del
modelo, dificultar la interpretacién de la influencia individual de cada variable y reducir la
capacidad de generalizacion del modelo (Hanh et al., 2025).

En este estudio, se evaluo de colinealidad para el siguiente conjunto inicial de variables

predictoras:

1. Aspecto (orientacion de la ladera, derivado del DEM Copernicus de 30 m)

2. Pendiente (grado de inclinacién, derivada del DEM Copernicus de 30 m)

3. Distancia a la red hidrol6gica

4. Distancia a atractivos turisticos mds ofertados (Apéndice D).

5. Distancia a poblaciones dispersas

6. Distancia a poblaciones grandes (centros urbanos)

7. Elevacion (DEM)

8. Distancia a Instituciones Educativas (IIEE) (2004, 2014, 2024)

9. Distancia a Establecimientos de Salud (RENIPRESS) (2004, 2014, 2024)

10. Distancia a Vias Férreas

11. Distancia al Aeropuerto

12. Distancia a Vias (Carreteras)

El método seleccionado fue el cédlculo de las matrices de correlacién de Pearson (p)
entre todas las variables predictoras para cada periodo temporal.
Se establecié como criterio de decisién que cualquier par de variables que presentara

una alta correlacion, definida por un umbral de |p| > 0.8 (Buthelezi et al., 2024; Tayyab et al.,
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2024), seria evaluado para la exclusion de una de las variables. El objetivo de este procedimiento
metodolégico es reducir la redundancia de informacion.

Los resultados visuales se presentan en las Figuras 69, 70 y 71.

= Exclusion de variables de transporte: Se detectd una alta multicolinealidad (|p| > 0.83)
entre distancia a vias, distancia al aeropuerto 'y distancia a las vias ferreas. Se decidio
excluir las variables de aeropuerto y vias férreas, conservando inicamente distancia a

vias como el indicador principal de accesibilidad.

= Exclusién de variables de servicios: Se identificé una correlacion elevada (p ~ 0.82)
entre Instituciones Educativas y RENIPRESS. Se opt6 por mantener Instituciones

Educativas como el indicador de servicios.

Arquitectura de Clases Implementada en Colab. Todas las clases utilizadas en el
procesamiento geoespacial, el andlisis de transicion temporal, el aprendizaje de reglas espaciales
y simulacién fueron implementadas en Google Colab. La Figura 45 resume la arquitectura

general del sistema, mostrando las clases principales y sus relaciones.

Procesamiento de Datos Geoespaciales. La clase Raster se encarga de las operaciones
de entrada/salida y manipulacién de los datos réster utilizados por el modelo. Sus funciones
incluyen la carga de bandas, manejo de NoData, normalizacién y extraccién de vecindades

espaciales.

Andlisis de Transicion Temporal. La clase CrossTable implementa el nicleo del andlisis
de Markov. A partir de dos mapas LULC de fechas distintas (¢; y #,), calcula una matriz de
tabulacion cruzada que cuantifica el nimero de pixeles que han transicionado de cada clase en
t1 acada clase en t,. Esta matriz empirica es la base para determinar la demanda de cambio que

se utilizara en la simulacion del AC.

Aprendizaje de Reglas de Transicion Espacial. Para el modelado de la dindmica espacial,
se opté por una implementacion explicita de la arquitectura Perceptrén Multicapa utilizando

librerias de célculo numérico (NumPy). Esta decision prioriza la transparencia algoritmica
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Figura 45
Esquema general de clases.

Nota. Fuente: Elaboracion propia.

sobre la abstraccion de frameworks de alto nivel, garantizando una trazabilidad total del flujo

de informacién.

» El Sampler extrae datos de entrenamiento del periodo historico. Para cada pixel, genera
una muestra que contiene: el estado de su vecindad en el mapa inicial (#1), los valores de
los factores impulsores en su vecindad en 71, y la clase resultante de ese pixel en el mapa
final (#,). Ademads, debido a que la vecindad utilizada es de 3 x 3 pixeles, el vector de
entrada del MLP se compone de 9 valores por cada factor raster y 18 valores adicionales
provenientes del estado (codificado con one-hot truncado, donde cada pixel aporta solo

2 variables). El tamaio total del vector de entrada es 99 componentes.

* Para estimar la matriz de transicion histérica se emplearon los mapas clasificados
de 2004 y 2014, lo que permiti6 identificar la magnitud de los cambios ocurridos

entre ambas fechas y calcular el componente Markov del modelo.

* Para representar los factores impulsores del cambio se usd el conjunto de



95

variables disponibles para 2004, ya que reflejan las condiciones socioecondmicas
y geograficas iniciales que explican las transformaciones observadas una década

después.

= El Perceptron Multicapa (MLP), se entrend utilizando un conjunto de muestras obtenidas
mediante un muestreo estratificado (Stratified Sampling). Este método de muestreo
asegura una representacion proporcional de las diferentes clases o transiciones en los
datos de entrenamiento. El objetivo del entrenamiento es capacitar al modelo para
discernir la relacién no lineal entre las caracteristicas espaciales locales (estado inicial
de cobertura del suelo en la vecindad y valores de los factores impulsores) y la idoneidad

de una celda para transicionar a una clase de cobertura futura especifica.

= Para optimizar el rendimiento del MLP, se llev6 a cabo un proceso de ajuste de
hiperpardmetros, explorando diferentes valores para los coeficientes de momentum
y tasa de aprendizaje, el tamafo del conjunto de muestras, el nimero de épocas de
entrenamiento y la arquitectura de las capas ocultas. La seleccion de los rangos y
valores especificos para esta hiperparametrizacion se fundament6 en configuraciones y
resultados documentados en la literatura cientifica previa sobre modelado de cambios

de cobertura del suelo (Tabla 10).

= El modelo resultante es capaz de generar Mapas de Idoneidad para la Transicion (MIT)

para cada posible clase de destino.

Tabla 10
Hiperparametros MLP en estudios LULC.
Estudio Capas Tasa Momento Epocas  Tamafio Muestras
Ocultas  Aprend. Vecin-
dad
M. Khan et al., 2023 3 0.1 - - - -
Gilindiiz, 2025 10 0.01 0.001 1,000 3x3 -
Mazroa et al., 2024 10 0.001 0.05 10,000 3x3 -
S. K. Roy et al., 2023 10 0.1 0.5 1,000 3x3 -

Nota. La Tabla resume las configuraciones de hiperparametros utilizadas en estudios de redes
neuronales MLP aplicados a LULC. Fuente: Elaboracién propia.
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Una limitacion frecuente en la literatura es que, si bien se reporta el nimero total de
capas ocultas, a menudo no se detalla la distribucién de neuronas en cada una de ellas. Esta
omision dificulta la replicacion exacta de las arquitecturas y la comparacion de su complejidad
(Blissag, Bilal et al., 2024; Kondum et al., 2024; Penfound & Vaz, 2024; S. K. Roy et al., 2023;
Xiang, 2024). La Tabla 11 muestra arquitecturas reportadas.

Tabla 11
Arquitecturas de capas ocultas reportadas en estudios LULC con MLP.

Estudio Ng(;ifuf;;;as Neuronas por Capa
Lukas et al., 2024 2 [100, 100]

Haydar et al., 2024 2 [100, 50]

Buthelezi et al., 2024 2 [10, 5]

Tasan et al., 2025 2 [50, 50]

Tehrani et al., 2024 2 [70, 30]

Nota. Fuente: Elaboracion propia.

El proceso de busqueda de hiperpardmetros 6ptimos se realizé en dos etapas. En la
primera, se exploré un amplio rango de valores para identificar regiones prometedoras del
espacio de busqueda. Posteriormente, se llevd a cabo una segunda etapa de busqueda maés
refinada (busqueda fina) enfocada en esas regiones. En ambos procesos de busqueda se ejecutd
cada configuracion 5 veces para promediar los resultados de precision. En total, se evaluaron més
de 4700 combinaciones, de las cuales dos configuraciones destacaron (Tabla 12). Los registros
tabulares completos de rendimiento para todas las configuraciones evaluadas en ambas fases se
encuentran disponibles en el repositorio de datos (Apéndice E)

La Configuraciéon A logré la mayor precision media, pero presenté una desviacidn
estandar mas alta, lo que indica mayor variabilidad entre ejecuciones. La Configuraciéon B obtuvo
una precisiéon media ligeramente menor, con una desviacion estdndar mds baja, reflejando un
rendimiento més estable.

Dado que la diferencia en precision media fue pequefa (Au,.. = 0.0078), se eligio la

Configuracion B para entrenar el modelo MLP final en las simulaciones posteriores.

Entrenamiento Final con la Configuracion Optima. Una vez determinada la configuracién

Optima de hiperpardmetros mediante el proceso de busqueda sistemédtica descrito previamente,
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Tabla 12

Comparacion de configuraciones MLP.
Hiperpardmetro Configuraciéon A Configuracién B
Vecindad (radio) 1 (3x3) 1 (3x3)
Muestras Entrenamiento 9000 9000
Epocas Entrenamiento 11000 11000
Arquitectura Capas Ocultas [50, 50] [100, 100]
Tasa de Aprendizaje (@) 0.0007 0.0005
Momento () 0.001 0.006
Precision Media (ugcc) 0.8613 0.8535
Desviacion Estandar (o) 0.0039 0.0006

Nota. Fuente: Elaboracion propia.

se procedid a entrenar el modelo final.

= Se emplearon distintas particiones del conjunto de datos para entrenamiento y validacion,
con el fin de recoger la variabilidad del dataset y evitar que el rendimiento dependa de

una dnica division.

= Se utilizaron diferentes inicializaciones aleatorias de los pesos, considerando que el
proceso de optimizacién en redes neuronales es sensible al punto de partida en el

espacio de parametros.

Este procedimiento permitié generar un conjunto de modelos entrenados bajo las mismas
condiciones de arquitectura e hiperparametros, pero sujetos a variaciones aleatorias controladas.
Para la seleccién del modelo final, se comparé el desempeifio de todas las ejecuciones sobre
el conjunto de validacién. Conforme a pricticas comunes en la literatura, se seleccioné la
ejecucion con el mejor rendimiento en validacion, garantizando que la instancia final utilizada
en el proyecto representara el mayor nivel de desempeno alcanzado por la configuracion 6ptima
de lared neuronal. La tabla comparativa con las métricas de precision de las distintas ejecuciones
candidatas se encuentra disponible para su consulta en el repositorio de datos (Apéndice E).

El modelo final utilizado para la generacion de resultados y productos derivados
corresponde a la ejecucioén que alcanzé una exactitud del 85.70 %, valor ligeramente superior
al rendimiento promedio obtenido durante la etapa de bisqueda de hiperpardmetros (85.35 %).

Esta diferencia minima evidencia la estabilidad del comportamiento de la red neuronal y la
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consistencia de los pardmetros 6ptimos identificados.

Simulacion de Validacién - Afio 2024. Una vez entrenado y optimizado el modelo MLP
(Seccién 4.5.1), el siguiente paso consiste en ejecutar una simulacién para el periodo 2014-
2024. El objetivo de este proceso es generar un mapa LULC simulado para el afio 2024
(Lgim(t2)), utilizando el mapa real de 2014 (L,.4;(t1)) como punto de partida.

Este mapa simulado se utiliza para la validacién del modelo, ya que su posterior
comparacion con el mapa LULC real de 2024 (obtenido a partir de la clasificacion satelital)
permitird cuantificar la precision predictiva del modelo.

Carga del Modelo Predictivo (MLP). Se carga el modelo MLP que encapsula las
reglas de idoneidad espacial (la relacién entre los factores impulsores y la probabilidad de
cambio) aprendidas a partir de la dindmica historica 2004-2014.

Cuantificacion de la Demanda de Cambio (Markov). Se carga la matriz de transicion
histérica (Tabla 22), calculada en la Seccién 4.5.1. Esta matriz define la cantidad o “demanda”
de pixeles D;; que deben transicionar de una clase i a una clase j para replicar la tasa de cambio
observada en el periodo 2004-2014, bajo el supuesto de inercia tendencial.

Carga de Datos de Partida (Afio 2014). Se cargan y preparan los datos que servirdn

como estado inicial para la simulacién:

» Mapa LULC Inicial: El mapa LULC clasificado del afio 2014 (L(#; = 2014)).

= Factores Impulsores: El conjunto de factores geoespaciales y socioeconémicos
correspondientes al aio 2014 (V(¢; = 2014)). Estos factores se normalizan para coincidir

con la escala de los datos de entrenamiento.

Proceso de Simulacion Geoespacial (2014 a 2024). La clase M1pSimulator ejecuta
la simulacién combinando la 16gica del MLP y el CA.

Generacion de Mapas de Idoneidad para 2024. El modelo MLP entrenado f(x) se
aplica a cada pixel p del mapa LULC de 2014. Para cada pixel, el modelo evalia su estado, el
de su vecindad y los valores de los factores impulsores de 2014 (V(t; = 2014)).

Este proceso genera un conjunto de Mapas de Potencial (Aptitud) Sg, uno para cada

clase destino k. Estos mapas cuantifican la aptitud espacial intrinseca para el periodo 2014-
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2024 y son la base desde la cual se derivan los Mapas de Idoneidad de Transicion. La Figura 46
muestra la distribucion espacial del potencial para la clase Urbana. El conjunto completo de
mapas de aptitud (para Vegetacion y Suelo Desnudo) y los mapas de idoneidad de transicién
especificos se encuentran disponibles en el repositorio digital del proyecto (Apéndice E).

Figura 46
Potencial para Ser de Cobertura Urbana (2014-2024).

Nota. Fuente: Elaboracion propia.

Asignacion Espacial de Transiciones (CA). El Automata Celular (CA) distribuye la
demanda de cambio D;; (obtenida de la matriz de Markov 2004-2014) sobre la cuadricula,

utilizando los mapas de idoneidad S; como guia. Para cada transicién iaj:
1. Se identifica la demanda total D;;.
2. Se localizan todos los pixeles candidatos .

3. Dentro de este conjunto de candidatos, se seleccionan los D;; pixeles que tienen los

valores mds altos en el mapa de idoneidad para la clase destino j (S;(p)).
4. Se cambia el estado de estos D;; pixeles de i a j en el nuevo mapa simulado.

Este proceso se repite para todas las transiciones definidas en la matriz de demanda.
Generacion del Mapa LULC Simulado para 2024. El mapa resultante L, (t, =

2024) representa el escenario LULC simulado para el afio 2024. Este mapa (presentado en
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la Figura 47) es el producto final de la simulacién de validacion y la base para el andlisis de
precision que se detalla en la siguiente seccidn.

Figura 47
Mapa LULC simulado (2024).

Nota. Mapa de Coberturas y Usos del Suelo (LULC) simulado para la Provincia de Cusco,
anio 2024. Fuente: Elaboracion propia.

4.5.2 Validacion de la Precision del Modelo de Simulacion

La validacion se realiz6 comparando el mapa LULC simulado para el afio 2024
(Figura 47) con el mapa LULC real (clasificado a partir de imagenes satelitales) para el mismo
afio 2024 (Figura 44). Se emplearon diversas métricas para evaluar la concordancia entre ambos
mapas: a nivel categérico (pixel a pixel), mediante AUC-ROC para evaluar el desempeno del
modelo en la estimacién del potencial de transicidn, y a nivel espacial (considerando la vecindad

y agregacion).

Métricas de Precision Categorica Estandar. Se construyé una matriz de confusién, que
permitid calcular métricas de precision categdrica pixel a pixel, incluyendo la exactitud del
productor, la exactitud del usuario y el Fl-score por clase, asi como métricas globales de
desempefio tales como la exactitud global, el acuerdo esperado por azar (P,) y el coeficiente
Kappa estandar. Adicionalmente, se incorporé la descomposiciéon del Kappa mediante el Kappa

de histograma (K}, ) para evaluar la correspondencia en términos de cantidad entre las clases
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simuladas y observadas.

Validacion del Potencial de Transicion mediante AUC-ROC. Para determinar la capacidad
del modelo MLP-CA-MC de discriminar correctamente entre categorias de transicion, se
implementé un procedimiento de evaluacién basado en la Curva ROC. A diferencia de las
métricas de clasificacién dura (como Kappa), esta etapa se enfoca en medir la calidad de las
probabilidades de transicidon generadas por la red neuronal.

Generaciéon del Conjunto de Validacion.

1. Muestreo Estratificado: Para garantizar la representatividad estadistica de todas las
categorias de transicidn, se configur6 un muestreo estratificado (Stratified Sampling).
Se fij6 una semilla aleatoria (SEED = 42) para asegurar la reproducibilidad exacta de

la seleccion de muestras.

2. Construccion de la Matriz de Caracteristicas (X): Para cada pixel muestreado, se
reconstruyo el vector de entrada concatenando el estado de la vecindad y los valores de

los factores conductores (drivers) normalizados (DEM, Pendiente, Distancias, etc.).

Calculo de Probabilidades y Métrica AUC Global. Una vez estructurada la matriz de

entrada X y el vector de etiquetas reales y, se ejecuto el siguiente flujo de cdlculo:

1. Se ingresé la matriz X completa al modelo MLP pre-entrenado, obteniendo los valores

de salida no normalizados de la ultima capa neuronal.

2. Dado que el cdlculo del AUC requiere probabilidades, las salidas del modelo fueron
transformadas mediante la funcién Softmax. Esta transformacion permitié obtener una

distribucién de probabilidad por pixel, necesaria para la evaluacion del rendimiento.

3. Debido a la naturaleza multiclase del problema, se implement6 el célculo del Area Bajo
la Curva ROC para cada clase y se promediaron sus dreas para obtener una métrica

global unificada (AU Cpgse)-
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Analisis de la Precision Posicional y Espacial. Para cuantificar y caracterizar la naturaleza de
los errores de localizacion espacial, se aplicaron métricas de validacion espacialmente explicitas,
disefiadas para gestionar los “casi aciertos” inherentes al modelado espacial:

Precision Difusa (Fuzzy Accuracy). Esta métrica evalda la concordancia permitiendo
una tolerancia espacial. Se definié una ventana de vecindad mévil de 3 x 3 pixeles. Bajo esta
l6gica, si el pixel central del mapa simulado no coincide con el real, pero la clase correcta se
encuentra dentro de esa ventana de 3x3 en el mapa simulado, se contabiliza como un “acierto
difuso”. Esta métrica permite cuantificar los “casi aciertos”, pixeles clasificados correctamente
en tipo (clase LULC), pero con un ligero desplazamiento espacial (error de localizacién < 30
metros).

Andlisis de Validacion Multiescala. Finalmente, se aplicé una técnica de validacion
multiescala para evaluar como cambia la concordancia al agregar espacialmente los mapas
simulado y real a resoluciones progresivamente mds gruesas (Tabla 26). El objetivo es observar
si los errores de localizacién a escala fina se anulan, lo que indicaria que los patrones espaciales
generales son correctos. Se analizé la tendencia del Coeficiente Kappa (Figura 73) y la
descomposicién de los errores (en cantidad y localizacion) en cada escala de agregacion.

Andlisis de Patron Clase Vegetacién . La generacion de los diagramas de rosa de
los vientos se realizé mediante un procedimiento de andlisis que integra la informacién de
orientacion de ladera con la distribucién espacial de la clase Vegetacion. En primer lugar, se
extrajo el raster de aspecto y se discretizé en ocho clases direccionales (N, NE, E, SE, S, SW,
W y NW), cada una asociada a un rango angular especifico. Posteriormente, se generd una
madscara binaria para la clase Vegetacion, tanto para el mapa real como para el mapa simulado,
identificando tnicamente los pixeles pertenecientes a dicha cobertura.

Sobre esta base, el algoritmo contabiliz6 la frecuencia de pixeles de vegetacion en cada
clase de orientacion, normalizando los conteos para obtener porcentajes relativos. Finalmente,
estos valores se representaron graficamente mediante diagramas polares tipo rosa de los vientos,
permitiendo una comparacion directa entre la distribucién direccional observada y la simulada

para el afio 2024.
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4.5.3 Interpretabilidad del Modelo (XAI)

Dado que las Redes Neuronales Artificiales, como el Perceptron Multicapa, son
consideradas tradicionalmente como ‘“‘cajas negras” debido a la complejidad de sus pesos
internos, se implementé un médulo de Inteligencia Artificial Explicable (XAI). El objetivo fue
identificar los factores conductores (drivers) del cambio de uso de suelo y entender la relacion
funcional entre estos y la probabilidad de cada cobertura de estudio.

Andlisis de Dominancia de Variables. Para identificar los predictores con mayor
influencia en el desempeiio del modelo, se aplic6 el método de Importancia por Permutacién
(Permutation Feature Importance). Este enfoque permite evaluar la sensibilidad del modelo ante
la perturbacion de cada variable sin necesidad de reentrenar la red neuronal.

El procedimiento aplicado consisti6 en:
1. Calcular el AUC de referencia (AU Cp4se) con el conjunto de validacién original.

2. Permutar aleatoriamente los valores de un predictor X;, rompiendo su relacion con la

variable objetivo.

3. Generar nuevas predicciones con el conjunto permutado y obtener el desempefio

degradado (AUCperm).

4. Cuantificar la importancia de la variable como la disminucién del AUC respecto al valor

base.

Curvas de Respuesta. Para analizar el comportamiento no lineal de cada factor, se
generaron Graficos de Dependencia Parcial (PDP). Esta técnica aisla el efecto de una variable
X sobre la probabilidad de salida, manteniendo constantes el resto de las variables en su valor
promedio. Se simularon pixeles sintéticos variando X; a lo largo de su rango de distribucion

observado, permitiendo visualizar si la relacion con las clases de estudio es positiva o negativa.

4.6 Proyeccion del Escenario Futuro 2034

Una vez validado el modelo y analizadas sus reglas internas para interpretar el

funcionamiento del MLP, se procedié a la proyeccién del escenario futuro de LULC para
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el afio 2034. Este proceso utiliza el mismo modelo MLP entrenado (que contiene las reglas de
idoneidad), y lo aplica al estado mds reciente (2024) y utiliza la matriz de demanda de cambio

mas reciente (2014-2024).
4.6.1 Fases Preparatorias
Carga del Modelo Predictivo (MLP). Se carga el modelo MLP f(x) entrenado y optimizado

que se utilizé en la simulacion de validacion.

Cuantificacion de la Demanda de Cambio (Markov). Para definir la magnitud de las
transiciones esperadas entre 2024 y 2034, se calcula la matriz de demanda basada en el periodo

historico mas reciente (2014 a 2024).
1. Se cargaron los mapas LULC clasificados para los afios 1 = 2014 y ¢, = 2024.

2. Se calcul6 la matriz de tabulacion cruzada (D) y la matriz de probabilidad de transicion
(P’, mostrada en la Tabla 23) para el periodo 2014 - 2024, siendo esta la “demanda de
cambio” para la simulacién 2024 - 2034.

4.6.2 Proceso de Simulacion Geoespacial 2024 - 2034

Generacion de Mapas de Potencial e Idoneidad para 2034. Para la proyeccion al afo 2034,
se determina la aptitud espacial de cada pixel a partir del estado de cobertura del afio 2024. El

procedimiento es el siguiente:

1. Se emplea el mapa LULC clasificado L(¢, = 2024) como estado inicial, junto con el

conjunto correspondiente de factores impulsores V(z, = 2024).
2. Los factores impulsores V(7;) son normalizados.

3. El modelo MLP f(x) se aplica a cada pixel p del area de estudio. Esta operacion genera

un conjunto de Mapas de Potencial/Aptitud S’ , uno para cada clase k.

4. A partir de estos mapas de potencial, se derivan los Mapas de Idoneidad de Transicion.
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La Figura 48 presenta el mapa de potencial para la cobertura Urbana (2024-2034). La
coleccion completa de mapas de aptitud (para Vegetacién y Suelo Desnudo) y los mapas de
idoneidad para todas las transiciones especificas se encuentran disponibles en el repositorio
digital del proyecto (Apéndice E).

Figura 48
Potencial para Ser de Cobertura Urbana (2024-2034).

Nota. Fuente: Elaboracion propia.

Asignacion Espacial de Transiciones (CA). Utilizando los mapas de idoneidad S” y la matriz

de demanda DY, el simulador CA asigna espacialmente las transiciones proyectadas.
1. Se itera a través de las transiciones i a j.
2. Para cada transicion, se identifica la demanda D’ : (de la matriz 2014-2024).
3. Se seleccionaron los D ; pixeles con los valores mds altos en el mapa de idoneidad S;..

4. Se cambi6 de i a j el estado de estos pixeles seleccionados.

4.6.3 Generacion del Mapa LULC Proyectado para 2034

Una vez completada la asignacion espacial para todas las transiciones definidas por la
demanda D’, el mapa resultante representa el escenario LULC proyectado para el aio 2034.

Este mapa final se presenta en la Figura 49.
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Figura 49
Mapa LULC proyectado (2034).

Nota. Mapa de Coberturas y Usos del Suelo (LULC) proyectado para la Provincia de Cusco,
ano 2034, bajo un Escenario Tendencial. Fuente: Elaboracion propia.



107

CAPITULO V

Resultados y Discusion
5.1 Resultados

5.1.1 Desempeiio de la Clasificacion Supervisada

Configuraciéon Optima del Modelo de Clasificacion. Las Figuras 50 a 55 muestran los mapas
de rendimiento obtenidos durante la optimizacion de hiperpardmetros.

Figura 50
Resultados de optimizacion de hiperparametros (2004).

Nota. Precision de validacion (OA) en funcion del niimero de drboles para diferentes
fracciones de muestreo para el aiio 2004. Fuente: Elaboracion propia.

Figura 51
Mapa de calor de precision de validacion (OA) 2004.

Nota. Mapa de calor de precision de validacion (OA) para cada combinacion de niimero de
arboles y fraccion de muestreo, resultado de la optimizacion de hiperparametros para el aiio
2004. Fuente: Elaboracion propia.
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Figura 52
Resultados de optimizacion de hiperparametros (2014).

Nota. Precision de validacion (OA) en funcion del niimero de drboles para diferentes
fracciones de muestreo para el aiio 2014. Fuente: Elaboracion propia.

Figura 53
Mapa de calor de precision de validacion (OA).

Nota. Mapa de calor de precision de validacion (OA) para cada combinacion de niimero de
drboles y fraccion de muestreo, resultado de la optimizacion de hiperparametros para el aiio
2014. Fuente: Elaboracion propia.

Figura 54
Resultados de optimizacion de hiperparametros (2024).

Nota. Precision de validacion (OA) en funcion del niimero de drboles para diferentes
fracciones de muestreo para el aiio 2024. Fuente: Elaboracion propia.
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Figura 55
Mapa de calor de precision de validacion (OA).

Nota. Mapa de calor de precision de validacion (OA) para cada combinacién de niimero de
drboles y fraccion de muestreo, resultado de la optimizacion de hiperparametros para el aiio
2024. Fuente: Elaboracion propia.

Los hiperpardmetros seleccionados para cada periodo y la precisiéon global (OA)

resultante se resumen en la Tabla 13.

Tabla 13
Precision global e hiperparametros optimos

Afio Precision ~ N° (?ptimo Fracciér/l de
Global (OA) de Arboles Muestreo Optima

2004 0.948 90 0.9

2014 0.953 50 0.7

2024 0.950 110 0.9

Nota. Fuente: Elaboracion propia.

Métricas de Precision de la Clasificacion.

Precisién de Clasificacion — Aiio 2004 (Landsat 5 TM). El modelo de clasificacion
para el afio 2004 alcanz6 una precisién global (OA) del 94.83 % y un coeficiente Kappa de
0.922 (Tablas 14 y 15).

Precision de Clasificacion — Afio 2014 (Landsat 8 OLI). La clasificacion de 2014
reportd una precision global de 95.29 % y un coeficiente Kappa de 0.929 (Tablas 16 y 17).

Precision de Clasificacion — Aiio 2024 (Sentinel-2 MSI). En el periodo 2024, la
precision global fue de 95.03 % con un coeficiente Kappa de 0.925 (Tablas 18 y 19).

Las Figuras 56 a 61 muetran la clasficacion LULC. Los datos .tif e imdgenes

complementarios estdn disponibles en el repositorio del proyecto (Apéndice E).



Tabla 14

Matriz de confusion de la clasificacion LULC 2004.

Clase Clasificada (Mapa)

Clase de Referencia Urbano Vegetacion Suelo Total Ref.

Urbano 163 13 176
Vegetacion 0 1 146
Suelo 6 151 162
Total Clasificado 169 165 484

Nota. La matriz muestra la validacion de la clasificacion supervisada para el aiio 2004.

Fuente: Elaboracion propia.

Tabla 15

Métricas de precision de la clasificacion LULC 2004.

Clase LULC Exactitud del Productor Exactitud del Usuario F1-Score
1. Urbano 92.61 % 96.45 % 0.9449
2. Vegetacion 99.32 % 96.67 % 0.9797
3. Suelo 93.21 % 91.52 % 0.9235
Meétricas Globales
Exactitud Global (Overall Accuracy) 94.83 %
Acuerdo esperado por azar (P,) 0.3346
Coeficiente Kappa Estandar (Kqndara) 0.9224
Kappa de Histograma (Kj;s:0) 0.9783

Nota. Resumen de las métricas de precision por clase y globales obtenidas del proceso de

clasificacion. Fuente: Elaboracion propia.

Tabla 16

Matriz de confusion de la clasificacion LULC 2014.

Clase Clasificada (Mapa)

Clase de Referencia Urbano Vegetacion

Suelo Total Ref.

Urbano 119 15 134
Vegetacion 0 2 164
Suelo 4 164 169
Total Clasificado 123 181 467

Nota. La matriz muestra la validacion de la clasificacion supervisada para el aiio 2014.

Fuente: Elaboracion propia.
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Tabla 17
Meétricas de precision de la clasificacion LULC 2014.

Clase LULC Exactitud del Productor Exactitud del Usuario F1-Score
1. Urbano 88.81 % 96.75 % 0.9261
2. Vegetacion 98.78 % 99.39 % 0.9908
3. Suelo 97.04 % 90.61 % 0.9371
Métricas Globales
Exactitud Global (Overall Accuracy) 95.29 %
Acuerdo esperado por azar (P,) 0.3384
Coeficiente Kappa Estandar (K andard) 0.9288
Kappa de Histograma (Kj;s:0) 0.9612

Nota. Resumen de las métricas de precision por clase y globales obtenidas del proceso de

clasificacion. Fuente: Elaboracion propia.

Tabla 18
Matriz de confusion de la clasificacion LULC 2024.

Clase Clasificada (Mapa)

Clase de Referencia Urbano Vegetacion Suelo Total Ref.

Urbano 134 0 16 150
Vegetacion 0 168 0 168
Suelo 8 0 157 165
Total Clasificado 142 168 173 483

Nota. La matriz muestra la validacion de la clasificacion supervisada para el aiio 2024.

Fuente: Elaboracion propia.

Tabla 19

Meétricas de precision de la clasificacion LULC 2024.
Clase LULC Exactitud del Productor Exactitud del Usuario F1-Score
1. Urbano 89.33 % 94.37 % 0.9178
2. Vegetacion 100.00 % 100.00 % 1.0000
3. Suelo 95.15 % 90.75 % 0.9290

Meétricas Globales

Exactitud Global (Overall Accuracy) 95.03 %
Acuerdo esperado por azar (P,) 0.3346
Coeficiente Kappa Estandar (K andard) 0.9253
Kappa de Histograma (Kj;s:0) 0.9751

Nota. Resumen de las métricas de precision por clase y globales obtenidas del proceso de

clasificacion. Fuente: Elaboracion propia.
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Figura 56
Mapa LULC clasificado (Sector Oeste Cusco 2004).

Nota. Superposicion del mapa LULC clasificado del aiio 2004 sobre la imagen de referencia
de alta resolucion (Mayo 2002). Fuente: Elaboracion propia.

Figura 57
Mapa LULC clasificado (Sector Este Cusco 2004).

Nota. Superposicion del mapa LULC clasificado del aiio 2004 sobre la imagen de referencia
de alta resolucion (Mayo 2002). Fuente: Elaboracion propia.
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Figura 58
Mapa LULC clasificado (Sector Oste Cusco 2014).

Nota. Superposicion del mapa LULC clasificado del anio 2014 sobre la imagen de referencia
de alta resolucion. Fuente: Elaboracion propia.

Figura 59
Mapa LULC clasificado (Sector Este Cusco 2014).

Nota. Superposicion del mapa LULC clasificado del anio 2014 sobre la imagen de referencia
de alta resolucion. Fuente: Elaboracion propia.
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Figura 60
Mapa LULC clasificado (Sector Oeste Cusco 2024).

Nota. Superposicion del mapa LULC clasificado del aiio 2024 sobre la imagen de referencia
de alta resolucion. Fuente: Elaboracion propia.

Figura 61
Mapa LULC clasificado (Sector Este Cusco 2024).

Nota. Superposicion del mapa LULC clasificado del aiio 2024 sobre la imagen de referencia
de alta resolucion. Fuente: Elaboracion propia.
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Importancia Relativa de las Variables Predictoras. La importancia relativa de las variables

predictoras para los tres periodos se presenta en las Figuras 62, 63 y 64.

Figura 62
Importancia relativa de variables predictoras (2004).

Nota. Fuente: Elaboracion propia.

Figura 63
Importancia relativa de variables predictoras (2014).

Nota. Fuente: Elaboracion propia.

Figura 64
Importancia relativa de variables predictoras (2024).

Nota. Fuente: Elaboracion propia.
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5.1.2 Cambios Espaciales y Temporales del LULC (2004-2024)

Evolucion de Superficies y Cambios Netos de Cobertura. La distribucion de las coberturas
de suelo estudiadas en la provincia de Cusco para los afios 2004, 2014 y 2024 se presenta en las

Tablas 20, 21 y la Figura 65.

Tabla 20

Cambios netos de drea por clase LULC durante el periodo 2004 - 2014.
Clase 2004 (km?) 2014 (km?) A (km?) 2004 (%) 2014 (%) A (%)
Urbano 21.13 33.61 +12.48 3.99 6.34  +2.35
Vegetacion 70.62 62.80 -7.82 13.32 11.85 -1.47
Suelo Desnudo 438.39 433.73 -4.66 82.69 81.81 -0.88

Nota. Fuente: Elaboracion propia.

Tabla 21

Cambios netos de drea por clase LULC durante el periodo 2014 - 2024.
Clase 2014 (km?) 2024 (km?) A (km?) 2014 (%) 2024 (%) A (%)
Urbano 33.61 50.28  +16.67 6.34 048 +3.14
Vegetacion 62.80 5196  -10.85 11.85 9.80 -2.05
Suelo Desnudo 433.73 42791 -5.82 81.81 80.72  -1.10

Nota. Fuente: Elaboracion propia.

Figura 65
Tendencia de evolucion de coberturas.

Nota. La figura muestra la tendencia de la evolucion de las coberturas de suelo del 2004 hasta
el ario 2024. Fuente: Elaboracion propia.
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Matrices de Transicion y Probabilidades de Markov. Las matrices de probabilidad de
transicion (derivadas del andlisis de Markov, Tablas 22, 23 y Figura 66) contienen las tasas de

estabilidad y conversion bruta entre clases.

Tabla 22
Matriz de probabilidad de transicion estimada para el periodo 2004 - 2014.
De A
Urbano Vegetaciéon Suelo Desnudo
Urbano 0.8645 0.0017 0.1337
Vegetacion 0.0179 0.6931 0.2890
Suelo Desnudo  0.0321 0.0315 0.9364

Nota. Fuente: Elaboracion propia.

Tabla 23
Matriz de probabilidad de transicion estimada para el periodo 2014 - 2024.
De A
Urbano Vegetaciéon Suelo Desnudo
Urbano 0.8278 0.0272 0.1451
Vegetacion 0.0219 0.6223 0.3558
Suelo Desnudo  0.0486 0.0276 0.9238

Nota. Fuente: Elaboracion propia.

Figura 66
Diagrama de Sankey de la evolucion de coberturas del suelo.

Nota. El diagrama de Sankey ilustra la evolucion de las coberturas del suelo (LULC) en el
periodo estudiado. Fuente: Elaboracion propia.
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Distribucion Espacial de los Cambios de Cobertura. Las Figuras 67 y 68 presentan un
ejemplo de la transicion de Suelo Desnudo a Urbano para los periodos 2004-2014 y 2014-2024,
respectivamente. El catdlogo completo de mapas de cambio para todas las transiciones y clases
se encuentra organizado en el repositorio digital del proyecto (Apéndice E).

Figura 67
Cambio de cobertura de suelo desnudo a urbana (2004-1014).

Nota. Mapa de cambio de la cobertura de suelo desnudo a urbana entre los aiios 2004 y 2014.
Fuente: Elaboracion propia.

Figura 68
Cambio de cobertura de suelo desnudo a urbana (2014-2024).

Nota. Mapa de cambio de la cobertura de suelo desnudo a urbana entre los anios 2014 y 2024.
Fuente: Elaboracion propia.
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5.1.3 Desempeiio y Validacion del Modelo Predictivo MLP-CA-MC

Colinealidad entre Variables Predictoras. Las matrices de correlacién de Pearson para los
afios 2004, 2014 y 2024 se presentan en las Figuras 69, 70y 71.

Las variables de distancia a infraestructura (vias, aeropuerto y rieles) se situaron en el
rango de 0.84 a 0.90 durante el periodo analizado. En el bloque de equipamiento urbano, las
variables de educacion y salud presentaron valores de 0.82, 0.81 y 0.84 para los afios 2004,
2014 y 2024, respectivamente.

En el intervalo comprendido entre 2004 y 2024, el coeficiente entre la distancia a
instituciones educativas y la distancia a vias pas6 de 0.64 a 0.73 y la relacion entre la variable
educacion y la distancia al aeropuerto varié de 0.61 a 0.74.

Finalmente, los factores topogréficos de aspecto y pendiente mantuvieron coeficientes
inferiores a 0.1 en relacién con el resto de los predictores en toda la serie temporal.

Figura 69
Matriz de correlacion de variables predictoras (2004).

Nota. La figura muestra la matriz de correlacion entre las variables predictoras consideradas
para el periodo 2004. Fuente: Elaboracion propia.
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Figura 70
Matriz de correlacion de variables predictoras (2014).

Nota. La figura muestra la matriz de correlacion entre las variables predictoras consideradas
para el periodo 2014. Fuente: Elaboracion propia.

Figura 71
Matriz de correlacion de variables predictoras (2024).

Nota. La figura muestra la matriz de correlacion entre las variables predictoras consideradas
para el periodo 2024. Fuente: Elaboracion propia.
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Métricas de Validacion del Escenario Simulado 2024.

Exactitud Categorica. La validacion del modelo MLP-CA-MC para el afio 2024
se efectué mediante la comparacién entre el mapa simulado y clasificado. Se registré una
Exactitud Global (OA) de 88.90 % y un coeficiente K;qndqra de 0.6620. Respecto al F1-Score
por categoria, se obtuvieron valores de 0.9340 para la clase Suelo, 0.7160 para Urbano y 0.6841
para Vegetacion (Tabla 25). En cuanto a los componentes del acuerdo, se cuantific6 un valor de
P guantity de 0.9921 y un K40 de 0.9759. El acuerdo esperado por azar (P, ) fue de 0.6717.

Tabla 24
Matriz de confusion LULC 2024.

Clase Simulada (Prediccion)

Clase Real (Referencia) Urbano Vegetacion Suelo Total Real
Urbano 38,331 1,224 16,308 55,863
Vegetacion 1,354 40,644 15,734 57,732
Suelo 11,522 19,229 444,703 475,454
Total Simulado 51,207 61,097 476,745 589,049

Nota. La matriz muestra la comparacion entre clases simuladas y reales para el aiio 2024.
Fuente: Elaboracion propia.

Tabla 25
Meétricas de precision LULC 2024.

Clase LULC Exactitud del Productor Exactitud del Usuario F1-Score

1. Urbano 68.62 % 74.85 % 0.7160
2. Vegetacion 70.40 % 66.52 % 0.6841
3. Suelo 93.53 % 93.28 % 0.9340
Meétricas Globales
Exactitud Global (Overall Accuracy) 88.90 %
Acuerdo esperado por azar (P,) 0.6717
Coeficiente Kappa Estandar (Kandard) 0.6620
Kappa de Histograma (Kj;s:0) 0.9759

Nota. La Tabla resume las métricas de precision por clase y las métricas globales del modelo
de simulacion. Fuente: Elaboracion propia.

La matriz de confusiéon para el afio 2024 clasificado y la simulacién muestra un
intercambio entre las coberturas naturales (Suelo Desnudo y Vegetacion) de 34 963 pixeles
de diferencia. En este bloque, se registraron 19 229 pixeles de Suelo Desnudo asignados a la

clase Vegetacion 'y 15734 pixeles de Vegetacion asignados a Suelo Desnudo.
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Respecto a la categoria Urbano, se cuantificé una omisién de 16 308 pixeles (14.7 km?),
los cuales figuran en la simulacién como Suelo Desnudo. Asimismo, la comision en esta clase
fue de 11 522 pixeles, correspondientes a dreas de Suelo Desnudo en el mapa de referencia que
se encuentran integradas a la clase Urbano en el mapa simulado.

Capacidad Predictiva del Potencial de Transicion (AUC-ROC). La evaluacion de las
probabilidades de transicion mediante el andlisis ROC multiclase resulté en un valor de area
bajo la curva (AUC) de 0.9438. El trazado de la Figura 72 se ubica hacia el sector superior
izquierdo del espacio de la gréifica.

Figura 72
Curva ROC Global (Macro-Average) del modelo MLP-CA-MC.

Nota. El desemperio del modelo (linea azul) se compara con un clasificador aleatorio (linea
punteada gris). El AUC resultante es de 0.9438. Fuente: Elaboracion propia.

Precisién Posicional y Multiescala. 1a precision global con una ventana de tolerancia
de 3 x 3 pixeles fue de 97.05 %, frente al 88.90 % obtenido en la escala original. El coeficiente
Ktandara registré valores de 0.6620 en la resolucion de 30m y de 0.7861 en el nivel de agregacion
de 960m (Tabla 26). El desacuerdo por cantidad se mantuvo en un valor de 0.09 en todas
las escalas evaluadas. Por su parte, el desacuerdo por localizacion varié desde 0.3394 en la

resolucion nativa hasta 0.3233 en la escala de 960m.
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Tabla 26
Validacion multiescala LULC 2024.

Iteracién Escale} Kappa Desacue.rdo Desacu.erd(?
(Agregacién)  (Kgrandard) por Cantidad  por Localizacion
0 1x (30m) 0.6620 0.0979 0.3394
1 2x (60m) 0.6597 0.0973 0.3380
2 4x (120m) 0.6718 0.0966 0.3369
3 8x (240m) 0.6765 0.0955 0.3336
4 16x (480m) 0.6935 0.0907 0.3249
5 32x (960m) 0.7861 0.0874 0.3233

Nota. La Tabla muestra los resultados de la validacion multiescala comparando mapas
simulados y reales de 2024 a distintos niveles de agregacion espacial. Fuente: Elaboracion

propia.

Figura 73
Validacion multiescala.

Nota. Fuente: Elaboracion propia.

Las Figuras 74 y 75 presentan las vistas comparativas de la simulacién LULC 2024

versus la realidad, para los sectores Oeste y Este, respectivamente.
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Figura 74
Mapa LULC Simulado 2024 (Oeste) superpuesto en Alta Resolucion.

Nota. Fuente: Elaboracion propia.

Figura 75
Mapa LULC Simulado 2024 (Este) superpuesto en Alta Resolucion.

Nota. Fuente: Elaboracion propia.
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Patrones Espaciales de la Clase Vegetacion. La distribucion de la vegetaciéon por
orientacion de ladera para el afio 2024 se detalla en la Tabla 27 y Figura 76. En la orientacién
Suroeste (SW) se registré un valor de 27.50 % en el mapa real y de 28.37 % en la simulacién.
Las diferencias porcentuales entre ambos mapas se situaron en un rango de -2.01 % (NW) a
+2.23 % (S).

Figura 76
Diagramas de frecuencia direccional de la cobertura vegetal (2024).

(a) Distribucion Real (b) Distribucion Simulada

Nota. Los diagramas de Rosa de los Vientos muestran la orientacion predominante de la
cobertura vegetal observada (Real) frente a la simulada por el modelo (Simulada) para el aiio
2024. Fuente: Elaboracion propia.

Tabla 27
Vegetacion por orientacion de ladera (2024).

Orientacion % Real (2024) % Simulado (2024) Diferencia

Norte (N) 5.45 Y% 4.17 %o -1.28 %
Noreste (NE) 4.35 % 3.43 % -0.92 %
Este (E) 5.00 % 4.44 %o -0.56 %
Sureste (SE) 10.34 % 11.70 % +1.36 %
Sur (S) 20.42 % 22.65 %o +2.23 %
Suroeste (SW) 27.50 % 28.37 % +0.87 %o
Oeste (W) 17.70 % 18.01 % +0.31 %
Noroeste (NW) 9.24 % 7.23 % -2.01 %

Nota. La Tabla muestra la comparacion porcentual de la vegetacion segiin orientacion de
ladera en 2024. Fuente: Elaboracion propia.

Potencial de Cobertura Vegetacion. Mapa de potencial de ser de cobertura Vegetacion

generados por el modelo hibrido (Figura 77).
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Figura 77
Mapa de Potencial de Vegetacion (2014-2024).

Nota. Potencial de Vegetacion para el periodo de validacion (2014-2024). Fuente:
Elaboracion propia.
Factores Impulsores del Cambio (XAI).

Contribucion Relativa de los Predictores. Los valores obtenidos en el andlisis de
importancia por permutacion se detallan en las Figuras 78, 79 y Tabla 28.

Figura 78
Ranking de importancia de variables basado en el impacto en el AUC.

Nota. Importancia de las variables predictoras. Fuente: Elaboracion propia.



Figura 79

Impacto de la permutacion de variables en Curvas ROC.
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Nota. Se ilustra el impacto de la permutacion de las variables predictoras en las Curvas ROC

generadas por el modelo. Fuente: Elaboracion propia.

Tabla 28
Ranking de Importancia (Permutacion)

Variable Predictora AUC Permutado Caida (A AUC) Imp. Relativa ( %)
1. Elevacién (DEM) 0.8957 0.0481 54.70
2. Inst. Educativas (IIEE) 0.9296 0.0143 16.21
3. Pendiente (Slope) 0.9367 0.0071 8.12
4. Turismo 0.9377 0.0061 6.97
5. Vias 0.9396 0.0043 4.84
6. Pob. Grandes 0.9413 0.0026 2.93
7. Hidrografia 0.9416 0.0023 2.56
8. Pob. Dispersas 0.9422 0.0016 1.84
9. Aspecto 0.9422 0.0016 1.82
AUC Base del Modelo: 0.9438

Nota. Fuente: Elaboracion propia.

La aleatorizacion de la variable Elevacion (DEM) resulté en un AUC permutado de

0.8957, lo que representa una variacion de A = 0.0481 respecto al valor base y una importancia

relativa del 54.70 %. Para la variable Instituciones Educativas, se registr6 un AUC de 0.9296

(A = 0.0143) y un peso del 16.21 %. En el caso de las variables Pendiente, Turismo y Vias,

los valores se situaron en 0.0071, 0.0061 y 0.0043, respectivamente. Los factores restantes

(Poblaciones, Hidrografia y Aspecto) presentaron variaciones en el AUC inferiores a 0.003,

con valores de importancia relativa entre el 1.82 % y el 2.93 %.



128

Dindamica de Respuesta Espacial (PDP). Caracteriza la relaciéon marginal entre los
predictores y la probabilidad estimada de transicion (Figura 80). Las tablas detalladas se

encuentran disponibles en el repositorio digital del estudio (Apéndice E).

= Elevacion (DEM). Los valores de probabilidad urbana se sitdan entre 0.4801 y 0.1412,

mientras que el Suelo Desnudo oscila entre 0.2189 y 0.6433.

= Pendiente (Slope). La probabilidad urbana varia de 0.4187 a 0.2287.

= Aspecto e Hidrografia. El rango de respuesta para el aspecto se ubica entre 0.3801 y

0.2960. El intervalo de probabilidad urbana se mantiene entre 0.3389 y 0.3278.

= Instituciones Educativas (IIEE). Se registraron valores de 0.4189 y 0.2159 para la clase

urbana, con un cambio en la probabilidad de Suelo hasta 0.5133.

= Turismo. La probabilidad de transicion urbana se sitia en 0.3996 en el origen y en

0.2294 en la distancia maxima evaluada.

= Vias. El vector de salida para la clase urbana varia entre 0.3666 y 0.2783, mientras que

la Vegetacion se ubica entre 0.2928 y 0.3990.

= Poblaciones Grandes. La probabilidad urbana registra un cambio de 0.3286 a 0.2987.

= Poblaciones Dispersas. Se obtuvo un rango de 0.2865 a 0.3317 para la categoria urbana.

Figura 80
Curvas de respuesta PDP

(a) Elevacion (DEM). (b) Pendiente.
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Figura 80

Curvas de respuesta PDP (continuacion)

(c) Aspecto. (d) Red Hidrogrdfica.

(e) Instituciones Educativas. () Turismo.

(g) Poblaciones Grandes. (h) Poblaciones Dispersas.

(i) Red Vial.

Nota. Las curvas de dependencia parcial (PDP) muestran la influencia marginal de cada
variable predictora en el modelo. Fuente: Elaboracion propia.
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5.1.4 Proyeccion del LULC para el Periodo 2024-2034

Cuantificacion de Cambios Proyectados. La Tabla 29 detalla los cambios netos proyectados
para cada clase al afio 2034. Complementariamente, la Figura 81 muestra la continuidad de

estas tendencias respecto a la serie historica 2004 - 2024.

» La cobertura Urbana alcanzé una superficie proyectada de 66.95 km? representando un

incremento neto de 16.67 km? y el 12.63 % del 4rea total del estudio.

= La clase Vegetacion se proyectd en 41.11 km?, estableciendo una reduccién neta de

10.85 km? respecto al afio 2024 y una pérdida de 2.05 % en la configuracién del paisaje

= El Suelo Desnudo presenté una transicién de 427.91 km? a 422.09 km? durante el
horizonte proyectado, con un diferencial negativo de 5.82 km? y una ocupacién final

del 79.62 Y% del territorio

Tabla 29

Proyeccion de drea por clase LULC 2024-2034.
Clase 2024 (km?) 2034 (km?) A (km?) 2024 (%) 2034 (%) A (%)
Urbano 50.28 66.95 +16.67 9.48 1263 +3.14
Vegetacién 51.96 41.11  -10.85 9.80 7.76  -2.05
Suelo Desnudo 42791 422.09 -5.82 80.72 79.62  -1.10

Nota. Estadisticas de drea proyectadas por clase LULC para el periodo 2024-2034. Fuente:
Elaboracion propia.

La Figura 82 ilustra la transicién de Suelo Desnudo a Urbano proyectada para el periodo
2024-2034, mostrando las zonas que el modelo proyecta expansion. El catdlogo completo de
mapas de cambio simulados, incluyendo todas las transiciones y persistencias proyectadas, se

encuentra organizado en el repositorio digital del proyecto (Apéndice E).
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Figura 81
Tendencia de evolucion de coberturas (Proyeccion 2034).

Nota. Tendencia de la evolucion de las coberturas de suelo proyectada para el periodo 2024 a
2034. Fuente: Elaboracion propia.

Figura 82
Simulacion de cambio de cobertura de suelo desnudo a urbana (2024 - 2034).

Nota. Fuente: Elaboracion propia.

Dinamica de Transiciones Proyectada. La dindmica de cambios esperada para el periodo

2024-2034 se muestra en la Tabla 30 y el diagrama de Sankey (Figura 83).

= Laclase Suelo Desnudo (Clase 3) presenta una probabilidad de permanencia del 95.07 %

(P33), la cobertura Urbana con 88.49 % (P1) y la Vegetacion con 79.13 %o (P23).
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» La transicién de Suelo Desnudo a Urbano (P31) se cuantifica en 4.93 %, mientras que la

conversion de Vegetacion a Urbano (P;1) alcanza el 2.64 %.

= [a cobertura vegetal muestra una probabilidad de conversion hacia Suelo Desnudo (P»3)

del 18.23 %.

= Se registré una probabilidad nula (P3, = 0.00) para la transicién de Suelo Desnudo

hacia Vegetacion. Por otro lado, la transicién de Urbano a Suelo Desnudo (Pq3) fue de

11.51 %.

Tabla 30

Matriz de probabilidad de transicion utilizada para la proyeccion 2024 - 2034.
De (Clase) A (Clase)

Urbano Vegetacion Suelo Desnudo

Urbano 0.8849 0.0000 0.1151
Vegetacion 0.0264 0.7913 0.1823
Suelo Desnudo  0.0493 0.0000 0.9507

Fuente: Elaboracion propia a partir del andlisis de cambio 2014 - 2024.

Figura 83
Diagrama de Sankey de la evolucion de coberturas del suelo (2020 - 2034).

Nota. El diagrama ilustra la evolucion y estabilidad de las coberturas del suelo (LULC) en la
proyeccion al 2034. Fuente: Elaboracion propia.
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Las Figuras 84 y 85 presentan la configuracion espacial de la cobertura LULC proyectada
al afio 2034 para los sectores oeste y este de la provincia. El archivo en formato raster (.tif)
correspondiente a la proyeccidén completa para el drea de estudio se encuentra disponible en el
repositorio digital del proyecto (Apéndice E).

Figura 84
Mapa LULC Proyectado (Oeste) 2034.

Nota. Fuente: Elaboracion propia.

Figura 85
Mapa LULC Proyectado (Este) 2034.

Nota. Fuente: Elaboracion propia.



134

Consistencia de la Distribucion Clase Vegetacion Proyectada. La clase Vegetacion
proyectada al 2034 se distribuye en las laderas de umbria (S, SE, SW), las cuales integran
mads del 60 % de la superficie total de esta cobertura (Figura 86). La orientacion Suroeste (SW)
registra el 28.73 Y% de la superficie vegetal, mientras que las orientaciones de solana (N, NE)
presentan valores inferiores al 5 % (Tabla 31).

Figura 86
Diagrama de frecuencia direccional proyectada de la vegetacion (2034).

Nota. La Rosa de los Vientos muestra la orientacion predominante de la cobertura vegetal
proyectada por el modelo para el aiio 2034. Fuente: Elaboracion propia.

Tabla 31

Distribucion proyectada de la vegetacion segiin orientacion (2034).
Orientacién % Vegetacion 2034
Norte (N) 4.54 %
Noreste (NE) 3.64 %
Este (E) 4.33 %
Sureste (SE) 10.22 %
Sur (S) 21.04 %
Suroeste (SW) 28.73 %
Oeste (W) 18.62 %
Noroeste (NW) 8.90 %

Nota. Fuente: Elaboracion propia.
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Figura 87
Mapa de Potencial de Vegetacion (Proyeccion 2024-2034).

Nota. El mapa muestra el Potencial de Vegetacion proyectado por el modelo para el periodo
2024-2034. Fuente: Elaboracion propia.

5.2 Discusion

5.2.1 Fiabilidad de la Clasificacion y Confusiéon Espectral

Interpretacion del Desempeiio de Clasificacion. Las precisiones globales obtenidas (94.8 Y-
95.3 %) y los coeficientes Kappa (0.922-0.929) se sitian dentro de los rangos reportados en la
literatura reciente. El estudio de K. C. Roy et al. (2024) se limit6 al uso de indices espectrales
obteniendo un OA méximo de 90.73 %, la inclusién de variables topogréficas (elevaciéon y
pendiente) en el trabajo de Belay et al. (2024) permiti6 elevar la precision global hasta un
94.84 %. Esto sugiere que estos datos topograficos son factores discriminantes que mejoran la
clasificacién de coberturas. Sin embargo, los resultados fueron inferiores a los reportados por
Giindiiz (2025) (OA de 98 %). Este resultado se atribuye principalmente a la resolucion espacial.
Mientras que en esta investigacion los sensores fueron homogenizados a 30 m, Giindiiz trabaj6
exclusivamente con la resolucidn nativa de Sentinel-2, lo que sugiere que una mayor resolucion
espacial favorece la separacion de coberturas.

Interpretacion de los Patrones de Acierto. La exactitud del productor en el presente
andlisis varia entre 88.81 % y 100 %, mientras que la exactitud del usuario se sitiia en el rango

de 90.61 % a 100 %. Estos valores son comparables con los reportados por estudios previos,
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donde la exactitud del productor oscila entre 91.1 % y 100 % y la exactitud del usuario entre
99.1% y 100 % (B. Roy, 2021). Si bien en este trabajo se registran ligeras disminuciones en
la exactitud del usuario para las clases Urbano y Suelo en determinados afios, los resultados
globales confirman una elevada fiabilidad de la clasificacion.

La clase Vegetacion fue la mejor identificada en los tres afios. Se observa una mejora
progresiva en su Recall (99.3 % en 2004, 98.8 % en 2014, 100 % en 2024), lo que muestre
la efectividad de las variables topograficas e indices espectrales para discriminar vegetacion
persistente activa durante el invierno austral.

Los modelos RF para cada afio registraron precisiones globales (OA) superiores a 0.91
incluso con configuraciones de 10 drboles y una fraccion de muestreo de 0.1. Este desempefio,
alcanzado con configuraciones simples, contrasta con redes neuronales (CNN o ANN), las
cuales, a pesar de capturar relaciones no lineales complejas, demandan mayores recursos de
procesamiento y volimenes de datos mds extensos (Hussain et al., 2025; Khosravi, 2025).

Anadlisis de los Patrones de Error.

1. Las matrices de transicion muestran confusion entre las categorias Urbano (Clase 1) y
Suelo Desnudo (Clase 3), con valores de transicion (P3) que oscilan entre el 0.13 y 0.14
en ambos periodos. Este patrén de error se debe a la similitud espectral entre ciertos
materiales de construccién como arcilla y adobe en viviendas (Yafie Zuiiga, 2019) y
las superficies de suelo desnudo en el espectro optico (Ettehadi et al., 2019; Krivoguz,
2024). Dicha dificultad se ve acentuada por la presencia de pixeles mixtos, los cuales
integran contribuciones de asfalto, vegetacion y estructuras dentro de una misma unidad
(Tasan et al., 2025). La literatura cientifica valida estos hallazgos, reportando tasas de
confusién similares en rangos de 0.07 a 0.27 (Badshah et al., 2024; Bendechou et al.,
2024; Duan et al., 2025; Kamran et al., 2024), lo que confirma que esta imprecision es

un desafio inherente y esperado en la clasificacién LULC.

2. La clase Suelo Desnudo presentd la Precision del Usuario mds baja de las tres
clases (91.5% en 2004, 90.6% en 2014, 90.7% en 2024). Esto indica que los
pixeles etiquetados como “’Suelo Desnudo” en los mapas clasificados tienen una mayor

probabilidad de incluir errores de comisidn, principalmente pixeles que en realidad son
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Urbanos pero que el modelo no logroé identificar correctamente.

3. La clase Urbano tuvo los valores mds bajos de Precisién del Productor (92.6 % en
2004, 88.8% en 2014, 89.3% en 2024). Esto significa que el principal fallo del
modelo es la omisién de una fraccién de los pixeles urbanos reales, confundiéndolos

predominantemente con Suelo Desnudo.

La comparacion del rendimiento entre los diferentes sensores sugiere que las variaciones
en las caracteristicas radiométricas y espectrales entre Landsat 5 TM, Landsat 8 OLI y Sentinel-
2 MSI no introdujeron sesgos, ni degradaron el desempefio del clasificador RF. Esto respalda
la viabilidad de utilizar estos sensores de forma combinada para andlisis multitemporales,

consecuente con estudios que usaron distintos sensores (Buthelezi et al., 2024; Khosravi, 2025)

Sinergia de Variables Espectrales y Topograficas. Los resultados de importancia relativa
indican que la clasificacién no depende de un tnico predictor, sino de la interaccion entre datos
espectrales y fisicos. El peso de la topografia es el factor mas determinante, lo que responde a la
configuracion geogréfica del valle del Cusco. En este entorno andino, la altitud y la inclinacién
del terreno dictan la distribucién de las coberturas, mientras el crecimiento urbano se concentra
en el fondo del valle, la vegetacion y los suelos descubiertos ocupan principalmente las laderas
(Figuras 80b, 80a). Mientras que los indices espectrales capturan la firma de los materiales

(Vahid & Aly, 2025).

5.2.2 Analisis de la Dinamica Temporal y Secuencialidad del Cambio

La expansion urbana en la provincia de Cusco muestra una aceleracion entre los dos
periodos analizados. El cambio neto de la superficie urbana subi6 de 12.48 km? en el primer
decenio a 16.67 km? en el segundo. Este ritmo mas rapido coincide con el aumento en la
probabilidad de transicion desde el suelo desnudo (P31), que pasé de 3.21 % a 4.86 %, siendo
el principal flujo de suelo hacia cobertura urbana.

El andlisis de las matrices de Markov revela un proceso de cambio secuencial en dos
etapas. En la primera, la Vegetacion actia como la fuente primaria de cambio hacia el Suelo

Desnudo. Esta transicion (P23) es la mds alta y se intensificé del 28.9 % al 35.6 % entre
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periodos. En la segunda etapa, este suelo desnudo (nuevo y preexistente) funciona como la
reserva inmediata para la urbanizacién final. Esta secuencia explica por qué la Vegetacion
registra la mayor pérdida neta de drea natural, a pesar de que el Suelo Desnudo transfiere mas
superficie a la clase urbana.

La vulnerabilidad de las coberturas también es desigual. Mientras que el Suelo
Desnudo es la clase méds estable del paisaje (P33 > 92 %), la Vegetacion es la mds inestable
(P = 69.3% y 62.2 %). Las transiciones directas de Vegetacién a Urbano (Py; < 2.2 %) son
minimas, lo que confirma que el proceso de urbanizacién en Cusco no ocurre directamente

sobre vegetacion, sino sobre terrenos despejados.

5.2.3 Validez del Modelo Predictivo MLP-CA-MC

Implicancias de la Colinealidad en el Modelamiento. La fuerte correlacion (0.84-0.90) entre
las distancias a vias, aeropuerto y rieles evidencia que el crecimiento se concentra sobre un eje
comun. Este patron se extiende a los servicios publicos, donde la asociacién entre centros de
salud e instituciones educativas se mantuvo estable (p = 0.82, p = 0.81 y p = 0.84), indicando
una concentracion del equipamiento urbano en sectores especificos de la provincia.

Se cuantificé un incremento en la correlacion entre el acceso educativo y las variables
de transporte. La asociacion con la distancia a vias ascendi6 de 0.64 a 0.73, mientras que con
la distancia al aeropuerto subi6 de 0.61 a 0.74 entre 2004 y 2024.

La elevacion (DEM) mostr6 coeficientes moderados (p ~ 0.67) respecto a las variables
de educacion y salud. Asimismo, se hall una correlacion de p = 0.60 entre la elevacion y las
poblaciones de mayor densidad.

La independencia estadistica de la pendiente y el aspecto (|p| < 0.1) respecto a los
conductores antropicos valida su inclusién como predictores, permitiendo al modelo capturar

restricciones fisicas no ligadas al desarrollo de infraestructura.

Interpretacion de las Métricas de Acuerdo.
Acuerdo Categorico. La diferencia observada entre la Exactitud Global (OA =
88.90 %) y el coeficiente Kqnaara (0.6620) se explica por la estructura del paisaje en el

area de estudio, donde la clase Suelo Desnudo ocupa aproximadamente el 80 % del territorio.
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Esta marcada dominancia incrementa el acuerdo esperado por azar (P, ), reduciendo el margen
de mejora del indice Kappa. El valor obtenido indica que el modelo MLP-CA-MC explica el
66.2 Y% del potencial de cambio mds all4 de una asignacion aleatoria.

La precision global (OA) obtenida supera alareportada por Pham y Ali (2024) (79.58 %),
cuyo modelo se basé en un conjunto mds restringido de variables predictoras, principalmente
topograficas y algunos indices espectrales. Esta diferencia sugiere que la incorporacion de un
conjunto mas amplio y diverso de predictores contribuye a mejorar el desempeiio del modelo.
Asimismo, los resultados son comparables a los reportados por W. Khalid et al. (2024) (85.39 %),
lo cual puede explicarse por la similitud en el enfoque metodoldgico, ya que ambos trabajos
integran variables topograficas junto con factores antrépicos y de accesibilidad. Sin embargo,
la precision alcanzada es inferior a la reportada por Blissag, Bilal et al. (2024) (92.63 %), quien
incorporé variables dindmicas como la densidad de poblacién. Este contraste indica que la
inclusion de factores dindmicos con fuerte incidencia en los procesos de cambio del uso del
suelo resulta determinante para alcanzar mayores niveles de desempefio predictivo.

Los valores de Pguanicy = 0.9921 y Kpisio = 0.9759 validan el uso de las matrices
de transicion histdricas. La simulacién reproduce las magnitudes totales de superficie, lo que
indica que la demanda de cambio calculada mediante Cadenas de Markov es precisa y no
induce sesgos. Estos resultados concuerdan con investigaciones previas que reportaron valores
de Kpisro de 0.95 (Ahmad et al., 2025) y 0.9 (Al Kafy et al., 2024).

El andlisis del F1-Score evidencia diferencias en el desempeiio del modelo de prediccion
seglin la cobertura simulada. La clase Suelo presenta un valor elevado (F1 = 0.93), asociado
a su alta representatividad espacial y a la adecuada reproduccion de su patrén de ocupacion.
En contraste, las clases Urbano y Vegetacion registran valores mas moderados (F1 = 0.72 y
0.68, respectivamente), lo que indica que la Exactitud Global se encuentra influenciada por la
predominancia de la clase mayoritaria.

El menor F1-Score de la clase Vegetacion refleja dificultades en la asignacidn espacial de
las transiciones entre vegetacion y suelo desnudo. La mayor incertidumbre de las proyecciones
se concentra en dreas periféricas sometidas a presion urbana, donde los modelos presentan

limitaciones para simular crecimientos fragmentados o espontineos en comparacién con
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patrones de expansion concéntrica (Duan et al., 2025). Esta dindmica irregular dificulta la
prediccion precisa de la localizaciéon de nuevos desarrollos urbanos, afectando la exactitud
espacial del mapeo de cambios (Y. Liu et al., 2024a; Tiamgne et al., 2025).

La subestimacion de la expansion construida se manifiesta en la asignacion de pixeles
urbanos como Suelo Desnudo, 1o que reduce la exactitud del productor para la clase Urbano y
conduce a una representacion de menor extension de las dreas de transicion urbano-periurbanas
respecto a la realidad observada (Duan et al., 2025). De forma complementaria, la comision de
pixeles en la clase Urbano se asocia a probabilidades de transicién superiores a la ocupacion
real registrada en el mapa de referencia, lo que afecta la exactitud del usuario.

Capacidad Discriminante de Potencial de Cambio. El valor de AUC obtenido
(0.9438) se situa en el rango calificado como excelente por la literatura especializada
(AUC > 0.90), lo que ratifica que la combinaciéon de variables conductoras y el modelo
hibrido explican la complejidad de las dindmicas de cambio en la provincia de Cusco. Este
resultado es equivalente al 0.88 reportado en estudios previos sobre modelado de crecimiento
(Badshah et al., 2024).

AUC es superior a la Exactitud Global (OA), esto sugiere que, aunque existan errores
de asignacion final en pixeles con probabilidades muy préximas, el modelo ordena y prioriza
correctamente las zonas con mayor susceptibilidad de cambio. En consecuencia, se valida el
uso de estas superficies de probabilidad como insumo base para los Autématas Celulares,
asegurando que la asignacién espacial de la expansion urbana proyectada se fundamenta en
reglas de transicion estadisticamente sélidas.

Sensibilidad Espacial y Multiescala. El aumento de la precisién global al 97.05 %
bajo una tolerancia difusa de 3 X 3 indica que las discrepancias de asignacidén representan,
predominantemente, desplazamientos espaciales inferiores a 30 metros respecto a la referencia.
Al obtenerse un coeficiente Kr, ., superior al de los datos base, se confirma la validez técnica
del modelo de simulacién (Hagen, 2003). Este comportamiento se refuerza con los resultados
de la validacion multiescala, el incremento sostenido del K ;4,444 cOnforme aumenta la unidad
de agregacion (alcanzando 0.7861 a 960m) demuestra que los errores de localizacién a escala

de celda se compensan al evaluar el sistema en escalas geogréficas mayores. El uso de escalas
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tan diversas en la literatura técnica dificulta la comparacién directa entre estudios (Marey et al.,
2025).

Coherencia Simulacion de la Clase Vegetacion. lLa Tabla 27 muestra una
correspondencia entre los valores reales y simulados para la distribucion porcentual por
orientacion. Las diferencias se mantienen dentro de un rango con desviaciones negativas en las
orientaciones N, NE, E y NW, y desviaciones positivas en SE, S, SW y W.

La orientacion suroeste presenta el mayor porcentaje tanto en los datos reales (27.50 %)
como en los simulados (28.37 %), con una diferencia reducida de 0.87 %. Mientras que la mayor
subestimacion corresponde a la orientacién noroeste (-2.01 %).

Los datos muestran que la simulacién reproduce la distribucién porcentual con errores
reducidos, lo que indica una buena concordancia entre los valores reales y los simulados.

Los mapas de potencial de ser de cobertura Vegetacion generados por el MLP (Figura 77)
refuerzan esta interpretacion. Las zonas clasificadas con potencial positivo coinciden con las

laderas de menor exposicion solar, mientras que las dreas més secas son penalizadas.

Interpretacion de los Factores Impulsores del Cambio.

Jerarquia y Contribucién de las variables predictoras. A partir del andlisis de
importancia por permutacion (Tabla 28), se evidencia una contribucién desigual de las variables
al desempefio del modelo (AUC base = 0.9438).

En el modelo MLP la elevacion (DEM) es la variable més influyente, con una caida del
AUC de 0.0481, equivalente al 54.7 % de la importancia relativa. En un segundo nivel se sitdan
las instituciones educativas (IIEE), con una reduccién del AUC de 0.0143 (16.21 %).

Las variables pendiente, turismo y vias presentan una importancia intermedia, con
disminuciones del AUC entre 0.0043 y 0.0071. En contraste, poblaciones grandes, hidrografia,
poblaciones dispersas y aspecto muestran efectos marginales, con caidas del AUC inferiores a
0.003 y aportes relativos menores al 3 %.

Andlisis de Dependencia no Lineal de las Variables Predictoras. La elevacion y la
pendiente presentan el impacto mds claro sobre las probabilidades. La clase urbana es mdxima
en terrenos bajos y planos, disminuyendo de forma constante a medida que aumenta la altitud y

la inclinacién. El aspecto, por su parte, muestra una influencia menor con cambios leves en la
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tendencia.

La probabilidad de expansion urbana es mds alta en dreas cercanas a instituciones
educativas, vias y zonas turisticas, reduciéndose progresivamente conforme aumenta la
distancia. En el caso de las vias, este descenso urbano se compensa con un incremento en
la probabilidad de vegetacion en zonas alejadas.

La cercania a poblaciones grandes favorece la probabilidad de la clase urbana. En
contraste, el efecto de las poblaciones dispersas es moderado y muestra un comportamiento
donde la probabilidad urbana se estabiliza después de alcanzar valores intermedios.

La hidrografia presenta probabilidades constantes en todo su rango. Esto indica que la
cercania a rios no actda como un factor que permita diferenciar entre las coberturas de suelo,

urbano o vegetacion.

5.2.4 Dinamica Territorial 2034

Anadlisis de Cambios Proyectados. La proyeccion al afio 2034 confirma la persistencia de
las tendencias observadas en las tltimas dos décadas. El incremento del 33 % en la cobertura
urbana muestra una aceleracion en la presion sobre el territorio, sugiriendo que los procesos
de consolidacion y densificacion continuardn en torno a los nicleos existentes y sus periferias
inmediatas.

La contraccién proyectada de la Vegetacion (—10.85 km?) resulta significativa, siendo

la clase con la pérdida mas alta.

Dinamica de Transiciones al 2034. El andlisis de las probabilidades de transicion proyectadas
revela un patron de cambio territorial, el cual guarda una estrecha coherencia con las dindmicas
histdricas analizadas en fases previas de esta investigacion. Esta 16gica de cambio se explica a
través de los siguientes ejes interpretativos:

Presion y Degradacion de la Vegetacion Remanente. El modelo muestra una
persistencia de 79.1 % para la Vegetacion (P»;), este valor aunque mayor a de los anteriores
afios de estudio, se aplica sobre una superficie cada vez mas pequefia (9.8 %). La secuencia
de transformacién observada en periodos anteriores continia, donde la vegetacion es sometida

primero a una conversion a Suelo Desnudo (P23 = 18.2%), y el suelo desnudo nuevo y
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preexistente transita hacia cobertura Urbana (P = 2.64 %). La estabilidad del Suelo Desnudo
(P33 = 0.95), evidencia que el modelo incorpora restricciones de aptitud que frenan una
transformacion masiva de las laderas del valle, manteniendo la expansién urbana confinada a
los lugares de mayor potencial.

Irreversibilidad de las Tendencias Proyectadas (Vegetacion). Se proyecta una
probabiliad nula de regeneracion de vegetacion a partir de suelo desnudo (P3; = 0.0) bajo
las tendencias actuales. La ausencia de este flujo en la simulacién implica que cada hectarea
de vegetacion perdida se considera una reduccion definitiva del patrimonio natural dentro del
horizonte de proyeccién al 2034.

Interpretacion de Anomalias Metodolégicas y Confusion Espectral. El escenario
proyectado al 2024 y 2034 presenta dos anomalias espaciales localizados que requieren una
interpretacion detallada.

La “Desurbanizacion” (Efecto Pi3):.

1. El ruido de clasificacion (pixeles que “oscilan” entre Urbano y Suelo Desnudo) se
cuantifica en la matriz de transicién como un cambio real. Este fendmeno genera un
incremento artificial en la probabilidad Py3 (Urbano a Suelo Desnudo), asignandole un

valor que es l6gicamente improbable para una ciudad en crecimiento.
2. La cadena de Markov determina la probabilidad de cambio P;3 a Suelo Desnudo.

3. El MLP, al entrenarse con los datos ruidosos, aprende a identificar las caracteristicas de

los pixeles que “cambiaron” de Urbano a Suelo asignando potencial de transicion Pj3.

4. El autémata celular (CA) aplica la demanda de Markov (P;3) en las ubicaciones de

mayor potencial del MLP, resultando en una aparente desurbanizacion.

La “Urbanizacion” de Intersticios Urbanos (Efecto P3;). Esta anomalia sigue una
l6gica de modelo diferente, relacionada con la transicién P3; (Suelo Desnudo a Urbano), la cual

constituye un proceso real en la dindmica de la provincia.

1. La conversién de Suelo Desnudo a Urbano (P3; = 4.93 %) es la principal dindmica de

crecimiento esperada por el modelo. El error observado no radica en la magnitud de
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la transicidn, sino en su asignacion espacial preferente hacia el interior de la ciudad

consolidada.

2. EI MLP asigna un potencial de transicion (P3) alto al suelo desnudo ubicados dentro de
la cobertura urbana (intersticios). Esto ocurre porque dichos espacios son ideales para
las variables jerdrquicamente dominantes, se ubican en el rango de Elevacion predilecto

(54.7 %) y maximizan la cercania a Instituciones Educativas (16.2 %).

3. Al ejecutar la simulacion, el Automata Celular (CA) canaliza parte de la demanda de
crecimiento (P3;) hacia estos vacios internos, generando un efecto de densificacion.
Esto resulta en una mancha urbana simulada mucho mas compacta que la real y produce
fenomenos funcionalmente inviables, como la urbanizacién alrededor de las pistas de

aterrizaje.

Coherencia Proyeccion de la Clase Vegetacion. El modelo proyecta la mayor densidad de la
clase Vegetacion en las laderas Sur y Suroeste, esto demuestra que el modelo hibrido reproduce
correctamente las restricciones biofisicas de la provincia. Al observar los graficas de influencia
del aspecto (Figuras 80c, 78) en el MLP, se puede inferir que este fendmeno no proviende del

predictor aspecto, si no de las tendencias historicas.
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Conclusiones

1. La proyeccion del escenario tendencial al 2034 cuantifica una expansion urbana neta
de 16.67 km?, sostenida por la reduccién simultdnea de las coberturas de Vegetacion
(-10.85 km?) y Suelo Desnudo (-5.82 km?). La simulacién estima una probabilidad nula
de regeneracion de Vegetacion a partir de Suelo Desnudo (P3; = 0.0), estableciendo la

irreversibilidad de la pérdida de cobertura vegetal bajo las tendencias histdricas.

2. El clasificador Random Forest demostr6 una alta precisién y consistencia para los tres
periodos (2004, 2014 y 2024), alcanzando precisiones globales superiores al 94.8 % y
coeficientes Kappa mayores a 0.92. Se concluye que la metodologia es robusta para la
clasificacién LULC. La principal fuente de error residual identificada es la confusién

espectral sistemdtica entre las clases Suelo Desnudo y Urbano.

3. Se cuantific6é una expansion urbana acelerada impulsada por un proceso secuencial. El
4rea urbana pasé de 21.13 km? en 2004 a 50.28 km? en 2024. El analisis de transiciones
identificé una dindmica encadenada como el proceso dominante de transformacion: la
Vegetacion es convertida a Suelo Desnudo y esta reserva de Suelo Desnudo (nuevo y
preexistente) actia como la fuente bruta inmediata para la expansion final de la clase

Urbano.

4. La simulacién alcanzé una Exactitud Global (Overall Accuracy) de 0.8890, respaldada
por una capacidad discriminante del analisis AUC-ROC = 0.9438. Su principal fortaleza
es la alta fidelidad para simular la cantidad de cambio (Khisto ~ 0.98) y los patrones
espaciales generales (Precision Difusa > 97 % y Anadlisis Multiescala (960 m) > 78 %).

Su debilidad principal es la precision de la localizacion exacta a nivel de pixel.
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Recomendaciones

= Se sugiere explorar el uso de imégenes satelitales de mayor resolucién espacial para
los periodos mas recientes disponibles. Esto permitiria mejorar la segmentacion de
superficies construidas y reducir la incertidumbre en la estimacién de las tasas de

cambio, refinando la precision de la clasificacion base.

= Dado que el modelo actual se fundamenta en variables estdticas, se recomienda enri-
quecer el espacio de caracteristicas mediante la integracién de datos socioeconémicos
dindmicos, como la densidad poblacional o la valoracién del suelo, para capturar con

mayor fidelidad la complejidad de los factores que impulsan la urbanizacion.

= Se propone desarrollar un flujo de trabajo automatizado que incorpore y procese nuevas
imdgenes satelitales de forma periddica. Esto permitiria el reentrenamiento automatico
de los pesos del Perceptron Multicapa y la actualizacion de las matrices de transicion,
transformando el modelo estdtico en un sistema de monitoreo continuo y adaptable a

nuevas tendencias.

= Se sugiere la implementacién de un médulo de software para la identificacion de la
transicion de vegetacion a suelo desnudo. Este sistema permitiria monitorear la aparicién
de nuevas dreas expuestas y generar notificaciones automadticas sobre zonas con alta

probabilidad de expansion urbana no planificada.

= Aprovechando las proyecciones generadas para el horizonte 2034, se recomienda el
desarrollo de algoritmos de optimizacién de ubicacidn-asignacién (Location-Allocation
Algorithms) que utilicen la distribucién simulada de la poblacién como dato de entrada.
Estos algoritmos permitirfan calcular las coordenadas 6ptimas para nuevos nodos de
servicios, buscando minimizar los costos de desplazamiento y maximizar la cobertura

de atencidn a la poblacion.
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Apéndices

Apéndice A

Mapa de Peligros de la Ciudad del Cusco 2004

Figura 88
Mapa de Peligros de la Ciudad del Cusco 2004
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Apéndice B

Validacion de Fuente de Datos Geograficos: El Caso de la Provincia de Cusco

La determinaciéon de la superficie oficial de la Provincia del Cusco presenta
inconsistencias notables en la literatura técnica y académica. Si bien la cifra de 617 km?
es la més frecuente en compendios estadisticos del INEI y antecedentes académicos (Ccopa
Barrionuevo, 2019; Condori Juarez, 2019; Gaona Obando, 2019a, 2019b; M. Huaman Conza
& Huaman Gaspar, 2019; R. Huaman Conza, 2019; Ttito Ocsa & Mescco Pumasupa, 2020),
existen reportes divergentes. Diversas investigaciones sittan el area en 719 km? (M. Huaman
Conza, 2019; Huaman Gaspar & Visa Quispe, 2019; Sihue Huamani & Choque Sanga, 2019;
Vizcarra Olarte & Chambi Palomino, 2019), mientras que otros documentos técnicos sugieren
valores inferiores como 543.08 km? (Mesones La Rosa, 2022; Soto Oscco & Chalico Solis,
2017), 529.21 km? (Gobierno Regional del Cusco, 2022) e incluso 523 km? (Castillo Alire &
Gutierrez Kancha, 2019).

Ante esta variabilidad, se procedi6 a validar la fiabilidad de la fuente de datos primarios
(shapefile) mediante un andlisis comparativo. Se contrasto el drea geométrica calculada del
shapefile frente a datos oficiales para una muestra de 16 provincias de similar extensién (< 1000
km?).

Los resultados, resumidos en la Figura 89, evidencian una alta concordancia en la
mayoria de los casos (13 de 16 provincias presentan diferencias menores al +2 %), lo que valida
la precision general de la cartografia vectorial utilizada.

Sin embargo, el andlisis detecté anomalias criticas en las provincias de Yunguyo y
Cusco. En el caso especifico de Cusco, el valor documental frecuentemente citado (617 km?)
excede en un 14.2 % al drea geométrica real. Dado que el shapefile demostré ser preciso en
los casos de control, se concluye que los datos documentales histéricos contienen errores o
desactualizaciones. Por consiguiente, esta investigacion adopta el valor calculado de 529.208
km? como la superficie oficial del 4rea de estudio, cifra que ademads es consistente con reportes

técnicos recientes de zonificacion regional (Gobierno Regional del Cusco, 2022).
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Figura 89
Diferencias porcentuales entre el area calculada (Shapefile) y la documentada por fuentes
oficiales.

Nota. Fuente: Elaboracion propia.
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Apéndice C

Mapas de Predictores Espaciales (Drivers de Cambio)

Figura 90
Mapas de Predictores Espaciales utilizados en el modelo.

(a) Elevacion (DEM) (b) Pendiente
(¢) Aspecto (d) Red Vial
(e) Aeropuerto (f) Via Feérrea

(Continiia en la siguiente pagina...)
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Figura 90
Mapas de Predictores Espaciales (Continuacion).

(g) Atractivos Turisticos (h) Red Hidrogrdfica

(i) IIEE (2004) () 1IEE (2014)

(k) IIEE (2024)

Nota. Fuente: Elaboracion propia a partir de datos del Modelo Digital de Elevacion Copernicus
GLO-30 (European Space Agency, 2021), red vial e infraestructura de GeoGPS Perii (GeoGPS Perii,
2015, 2021) y datos hidrogrdficos (GeoGPS Peru, 2020).
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Apéndice D

Principales Sitios de Interés Ofertados por Empresas en la Provincia de Cusco

Tabla 32

Fuentes de Atractivos Turisticos en la Provincia de Cusco

Nombre del Sitio

Enlaces de las Fuentes

Plaza de Armas del Cusco

inkanmilkyway.com, machu-picchu.org, expedia.com, voyagepe-

rou.info, viajeroscallejeros.com, audiala.com

Sacsayhuamaén

inkanmilkyway.com, machu-picchu.org, expedia.com,

cosituc.gob.pe, boletomachupicchu.com, viajeroscallejeros.com

Barrio de San Blas

inkanmilkyway.com, machu-picchu.org, expedia.com, voyagepe-

rou.info, viajeroscallejeros.com, boletomachupicchu.com

Qorikancha (Templo del Sol)

expedia.com, boletomachupicchu.com, freewalkingtoursperu.com,

boletomachupicchu.com, voyageperou.info, viajeroscallejeros.com

Mercado Central de San Pedro

inkanmilkyway.com, machu-picchu.org, expedia.com, voyagepe-

rou.info, viajeroscallejeros.com

Catedral del Cusco

machu-picchu.org, expedia.com, boletomachupicchu.com

Cristo Blanco

machu-picchu.org, youtube.com, voyageperou.info, viajeroscalleje-

ros.com

Piedra de los doce dngulos

expedia.com, voyageperou.info, viajeroscallejeros.com

Templo de San Blas

machu-picchu.org, expedia.com

Templo de la Compaiia de

Jesus

machu-picchu.org, voyageperou.info

Contintia en la siguiente pagina...


https://www.inkanmilkyway.com/es/blog/lugares-turisticos-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://audiala.com/it/peru/distretto-di-wanchaq
https://www.inkanmilkyway.com/es/blog/lugares-turisticos-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://cosituc.gob.pe/
https://www.boletomachupicchu.com/parques-arqueologicos-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.inkanmilkyway.com/es/blog/lugares-turisticos-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.boletomachupicchu.com/lugares-imperdibles-visita-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://www.boletomachupicchu.com/parques-arqueologicos-cusco/
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.inkanmilkyway.com/es/blog/lugares-turisticos-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.boletomachupicchu.com/museos-en-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.youtube.com/watch?v=CvFEATh_EKs
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.voyageperou.info/es/que-hacer-en-cusco/
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...viene de la pagina anterior

Nombre del Sitio

Enlaces de las Fuentes

Convento de Santa Catalina y

Museo de Arte

boletomachupicchu.com, freewalkingtoursperu.com

Museo Inka

boletomachupicchu.com, freewalkingtoursperu.com

Museo de Arte Precolombino

boletomachupicchu.com, freewalkingtoursperu.com

Tambomachay cosituc.gob.pe, viajeroscallejeros.com
Puka Pukara cosituc.gob.pe, viajeroscallejeros.com
Qenqo viajeroscallejeros.com

Museo de Arte Religioso (Pala-

cio Arzobispal)

boletomachupicchu.com, freewalkingtoursperu.com

Museo Histdérico Regional de

Cusco

boletomachupicchu.com

Acueducto Colonial de Sapan-

tiana

machu-picchu.org

Mirador de San Cristdbal

machu-picchu.org

Museo de Arte Contemporaneo

boletomachupicchu.com

Iglesia y Convento de la Mer-

ced

freewalkingtoursperu.com

Museo Machu Picchu de la

Casa Concha

boletomachupicchu.com

Centro Qosqo de Arte Nativo

cosituc.gob.pe

Farallones de Tecsecocha

scribd.com, mincetur.gob.pe



https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://cosituc.gob.pe/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://cosituc.gob.pe/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://cosituc.gob.pe/
https://es.scribd.com/presentation/400017036/Turismo-Ccorca
http://consultasenlinea.mincetur.gob.pe/fichaInventario/index.aspx?cod_Ficha=7735
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Apéndice E

Repositorio de Datos

Debido a la extension del material grafico generado, se ha dispuesto un repositorio
digital complementario. Este repositorio tiene como finalidad garantizar la reproducibilidad
técnica del estudio y permitir al lector la inspeccion detallada de los resultados intermedios y

finales en alta resolucidn, los cuales se presentan de forma sintetizada en este documento.

Acceso al Repositorio y Visualizaciéon Web
Todo el material suplementario se encuentra alojado publicamente y puede ser

consultado a través de las siguientes plataformas:

1. Repositorio de Archivos (Google Drive)

Almacena los mapas iniciales, mosaicos libres de nubes, indices espectrales, variables
predictoras y mapas de potencial de transicion para las fases de validacién y proyeccion.
Contiene los resultados de clasificacion histdrica, validacion (2024) y proyeccion (2034) en

vistas de drea completa y detalles ampliados, incluido los archivo GeoTIFF (.tif)

https://drive.google.com/drive/folders/ I WZxv24N5wEuXPruSdiYXY-Sp_dER06Du?usp=sharing

2. Plataforma Web de Visualizacioén
Se ha desarrollado un sitio web complementario que permite la visualizacién de todos los mapas

generados sin necesidad de descarga previa.

https://lulc-cusco-2034.vercel.app/

Escanee para acceder a la visualizacion web.


https://drive.google.com/drive/folders/1WZxv24N5wEuXPruSdiYXY-Sp_dER06Du?usp=sharing
https://lulc-cusco-2034.vercel.app/
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Estructura de Directorios

La informacion en el repositorio se ha organizado siguiendo la secuencia légica de los

objetivos de la tesis, distribuida en las siguientes carpetas:

00_Metodologia_y_Flujos
Contiene los diagramas de flujo detallados de los procesos de clasificacion supervisada y

modelado predictivo.

01_Insumos_Satelitales
Muestra las imdgenes compuestas finales (mosaicos libres de nubes) utilizadas para
los afios 2004, 2014 y 2024 en color real (RGB), junto con ejemplos del proceso de

enmascaramiento.

02_Indices_Espectrales
Coleccion completa de los mapas de indices calculados (NDVI, SAVI, NDBI, NDMI,

BSI, Ul) para cada afio de estudio, utilizados como variables predictoras.

03_Predictores_Espaciales
Almacena los mapas raster de las variables conductoras. Se incluye el manual visual

detallado de los geoprocesos.

Nota sobre las Fuentes de Datos: Los insumos base fueron obtenidos mediante la
solicitud de acceso a la informacion publica (Codigo: 79zh4rpnl) dirigida al INEI. Segun
la respuesta formal (Correo N°5757-2025-INEI/OTD-OEIN), la informacién utilizada
(RENIPRESS vy Directorio de Entidades) corresponde a registros administrativos de
carécter publico y portales de datos abiertos, de acuerdo con el DS N° 043-2001-PCM,

garantizando la transparencia y disponibilidad para fines de investigacion.

= Insumos Base y Correspondencia:

* INEI: Correo electrénico con informacién de: Registro Nacional de
Instituciones Prestadoras de Servicios de Salud - RENIPRESS.xlsx y

entidades.xlsx.
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* Municipalidad de San Sebastidn - Cusco: Informacion cartografica técnica

en formato CAD: PLANO BASE REFERENCIAL SAN SEBASTIAN.dwg.
Variables Generadas:

» Topografia: Elevacion (DEM), Pendiente y Aspecto.

Accesibilidad: Distancia a vias, aeropuerto y red ferroviaria.

* Socioeconomico: Distancia a instituciones educativas (temporal), centros

de salud y atractivos turisticos.

Hidrografia: Distancia a la red hidrica.

04_Resultados_LULC_Clasificados

Mapas finales de Uso y Cobertura del Suelo (Urbano, Vegetacion, Suelo Desnudo)

resultantes de la clasificacion Random Forest para 2004, 2014 y 2024, en formato de

imagen de alta calidad. Estos incluyen:

Mapas de clasificacion superpuestos sobre imdgenes de referencia de alta
resolucion (Google Earth Pro), utilizados para la verificacion visual cualitativa de

la precision espacial.

Mapas de clasificacion superpuestos sobre las imdgenes compuestas multiespec-
trales de resolucién media (utilizadas por el modelo Random Forest en la etapa
de clasificacion), lo que permite contrastar y evaluar visualmente la coherencia

espacial de los resultados.

Mapas de clasificacion teméticos (versiones “puras’), sin fondo de referencia, para

observar claramente la distribucion espacial y la continuidad de las clases.

Vistas ampliadas (zoom) de zonas de interés especificas (urbanas, vegetadas,
suelo desnudo) para cada afio, presentadas igualmente con diferentes fondos de

referencia (alta resolucién, compuesto mediano).

Mapa de Peligros para 2004 debido a la falta de imagen de alta resolucién para

este ano.
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= Archivos GeollFF (.tif) de las clasificaciones, optimizados para ser abiertos
directamente en Google Earth Pro y permitir una visualizacién detallada e

interactiva.

05_Analisis_de_Cambios
Mapas detallados de las transiciones especificas entre clases para los periodos 2004-2014

y 2014-2024.

06_Simulacion_y_Validacion

Contiene los insumos y resultados del proceso de modelado hibrido:

= Archivos tabulares (.csv) con las métricas de rendimiento de las combinaciones
evaluadas durante la busqueda de hiperpardmetros (fases amplia y fina) del modelo

MLP.

= Documento (.pdf) que detalla el rendimiento comparativo de las ejecuciones
realizadas bajo la configuracion 6ptima, utilizado para seleccionar la instancia

definitiva de la red neuronal.

= Coleccion de mapas de Idoneidad de Transicién generados por el modelo calibrado

para los periodos 2014-2024 y 2024-2034.

= Mapa simulado del afio 2024 utilizado para el cdlculo de métricas de precision

frente al mapa real.

= Mapas de validacién (2024) en formato GeollFF (.tif), optimizados para su

visualizacién detallada en Google Earth Pro.

= Resultados del Anélisis de Dependencia Parcial (PDP).

07_Proyeccion_Futura_2034
Mapa del escenario tendencial proyectado al afio 2034 y mapas de los cambios simulados
para la década 2024-2034. Se incluye también el mapa proyectado al 2034 en formato

GeoTTFF (. tif), optimizado para su apertura y exploracion en Google Earth Pro.



