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Resumen

Las transformaciones en el Uso y Cobertura del Suelo (LULC) son un desafío ambiental de

escala global; por lo que su análisis y predicción son necesarios para una planificación territorial

sostenible y la mitigación de impactos ecológicos. La provincia del Cusco, ha experimentado

un proceso de urbanización que ha transformado la cobertura natural del suelo. Este estudio

tiene como objetivo analizar los cambios históricos en el LULC durante los periodos 2004-

2014 y 2014-2024 mediante aprendizaje automático, utilizando plataformas de procesamiento

en la nube. Se utilizaron imágenes satelitales de acceso abierto, adecuadas para el análisis

multitemporal propuesto. La precisión de la clasificación se optimizó mediante el uso de

variables derivadas, incluyendo índices espectrales y capas topográficas. Para la proyección

de escenarios futuros, se aplicó un modelo híbrido de simulación que integra enfoques de

dinámica espacial con técnicas de aprendizaje automático. Se validó el modelo mediante la

proyección del año 2024 y comparándolo con datos reales. Para 2034, se prevé un incremento

de las zonas urbanas en 16.67 km2, pasando de representar el 9.48 % al 12.63 % del área total.

La arquitectura híbrida propuesta presenta un desempeño predictivo consistente, respaldado

por una Exactitud Global de 0.889,  ℎ8BC> ≈ 0.98 y Análisis Multiescala (960 m) > 78 %.

Estos resultados indican la capacidad del modelo para capturar patrones no lineales complejos

y evidencian su potencial para generar información para la gestión sostenible de los recursos

naturales y el ordenamiento territorial en la provincia de Cusco.

Palabras clave: Aprendizaje Automático, Modelos Predictivos, Teledetección, Uso y

Cobertura del Suelo.
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Abstract

Land Use and Land Cover (LULC) transformations represent a global environmental challenge;

therefore, their analysis and prediction are essential for sustainable land-use planning and

the mitigation of ecological impacts. The province of Cusco has undergone a significant

urbanization process that has transformed its natural land cover. This study aims to analyze

historical LULC changes during the 2004–2014 and 2014–2024 periods using machine learning

techniques and cloud-based processing platforms. Open-access satellite imagery suitable for the

proposed multitemporal analysis was employed. Classification accuracy was enhanced through

the incorporation of derived variables, including spectral indices and topographic layers. To

project future scenarios, a hybrid simulation model integrating spatial dynamics approaches with

machine learning techniques was implemented. Model validation was performed by projecting

conditions for 2024 and comparing the results with observed data. By 2034, an increase in

urban areas of 16.67 km2 is projected, rising from 9.48 % to 12.63 % of the total area. The

proposed hybrid architecture demonstrates robust predictive performance, supported by an

Overall Accuracy of 0.889,  ℎ8BC> ≈ 0.98, and a Multiscale Analysis (960 m) exceeding 78 %.

These results indicate the model’s ability to capture complex non-linear patterns and highlight

its potential to support sustainable natural resource management and land-use planning in the

province of Cusco.

Keywords: Machine Learning, Predictive Models, Remote Sensing, Land Use and Land

Cover.
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CAPÍTULO I

Introducción

1.1 Generalidades

La detección y predicción de cambios en el uso y cobertura del suelo (LULC) se

ha consolidado recientemente como un tema de gran relevancia dentro del ámbito de la

teledetección, captando el interés tanto de investigadores como de planificadores territoriales.

Este interés surge debido al impacto que las transformaciones en LULC ejercen sobre la

cobertura natural, el cambio climático y otros problemas ambientales asociados. A escala global,

diversas clases de cobertura terrestre han experimentado modificaciones considerables como

resultado de actividades antropogénicas crecientes, entre las que destacan la deforestación, la

expansión agrícola, la urbanización y la minería. Bajo este escenario, la actualización periódica

de mapas de LULC resulta un requisito básico para comprender y gestionar la naturaleza

dinámica del territorio.

Para el mapeo espacio-temporal de LULC, las imágenes multiespectrales obtenidas

mediante sensores remotos son una fuente de información esencial. Entre las plataformas

satelitales más utilizadas se encuentran MODIS, SPOT, SAR, la serie Landsat, las misiones

Sentinel-2 y RapidEye. De estas, las series Landsat y Sentinel-2 han sido ampliamente

empleadas en estudios de LULC debido a su disponibilidad y características técnicas. Se

recomienda particularmente el uso de composiciones libres de nubes, generadas a partir de

series temporales de imágenes, en lugar de depender de imágenes individuales, para mitigar

distorsiones atmosféricas. No obstante, los métodos tradicionales para la búsqueda, filtrado,

enmascaramiento de nubes, composición, descarga y clasificación de estos grandes volúmenes

de datos demandan una considerable capacidad computacional y de almacenamiento. Frente a

estos desafíos, la plataforma Google Earth Engine (GEE) permite procesar datos de teledetección

a gran escala de manera óptima.

En el entorno de GEE se encuentran disponibles diversos algoritmos de clasificación

supervisada, tales como Árbol de Decisión (DT), Bosque Aleatorio (RF), Naive Bayes
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(NB), Distancia Mínima (MD) y CART. Entre ellos, el algoritmo RF ha sido extensamente

recomendado en la literatura científica por ofrecer una alta exactitud en la clasificación y por

su capacidad intrínseca para manejar datos de alta dimensionalidad con un número reducido de

parámetros a ajustar. Asimismo, se ha demostrado que la incorporación de factores topográficos

(como elevación y pendiente) e índices espectrales derivados puede mejorar la precisión de la

clasificación LULC.

Además de la clasificación histórica de LULC, la predicción de cambios futuros resulta

relevante para simular escenarios proyectados del paisaje y comprender los factores impulsores

de la transformación del suelo. Existen diversos modelos de predicción, categorizados como

temporales y espaciales, así como enfoques híbridos que combinan elementos de ambos.

Recientemente, los modelos híbridos, como el modelo CA-Markov, han demostrado ser

especialmente efectivos al integrar las capacidades de simulación espacial del CA con la

predicción temporal de la Cadena de Markov. Numerosos investigadores han aplicado el modelo

CA-Markov para predecir la dinámica futura de LULC en diversos contextos geográficos.

Este estudio analiza la dinámica histórica del uso y cobertura del suelo (LULC) en la

provincia del Cusco para los años 2004, 2014 y 2024, empleando el algoritmo Random Forest

dentro de Google Earth Engine para generar clasificaciones. A partir de estas cartografías, se

identifican y cuantifican los cambios ocurridos en el territorio a lo largo de las dos décadas

evaluadas. Además, se desarrolla una proyección para el año 2034 mediante un modelo híbrido

que combina Perceptrón Multicapa, Cadenas de Markov y Autómatas Celulares, incorporando

variables topográficas (altitud, pendiente y aspecto) junto con factores de proximidad (red

hidrográfica, Instituciones Educativas, vías nacionales y provinciales, atractivos turísticos,

poblaciones dispersas, poblaciones grandes). La propuesta metodológica integra información

espectral y topográfica para incrementar la precisión de las clasificaciones y por aplicar un

enfoque predictivo avanzado para anticipar la evolución espacio-temporal del paisaje.

La presente investigación tiene como finalidad aportar información cuantitativa y

espacialmente explícita para comprender la magnitud y los patrones del crecimiento urbano

y su impacto en las coberturas naturales de la provincia del Cusco. Se aspira a que los resultados

obtenidos, incluyendo los mapas históricos, mapas de transición espacial, mapas de pontencial



3

y el escenario proyectado, constituyan una base de información para el análisis y la planificación

urbana en el marco de la gestión sostenible del territorio.

1.2 Justificación

La justificación principal para emprender esta investigación reside en la necesidad de

gestionar la tierra y los recursos naturales de manera sostenible ante la compleja dinámica

del Uso y Cobertura del Suelo (LULC) (Lin & Peng, 2024; Setiawan, 2024; Taloor, 2024). Se

justifica el desarrollo de modelos predictivos y análisis espaciales para anticipar y mitigar riesgos

ambientales y prevenir el deterioro ecológico. Este estudio busca ofrecer un sustento técnico

riguroso para que los planificadores urbanos y los responsables de políticas públicas puedan

formular estrategias de desarrollo sostenible y gestionar recursos no renovables (Kondum et

al., 2024). La cuantificación del LULC y su predicción son determinantes para optimizar los

patrones de uso del suelo con el fin de contribuir a los objetivos de reducción de emisiones de

carbono y protección de ecosistemas (H. D. Nguyen et al., 2024; Wang et al., 2024).

1.3 Planteamiento del problema

El acelerado proceso de expansión urbana, particularmente marcado en los países

en desarrollo, constituye un fenómeno complejo impulsado principalmente por la migración

hacia las ciudades en busca de mejores oportunidades, actuando como un motor demográfico

determinante (Huaraca Yucra & Surco Vega, 2019). Si bien esta migración puede dinamizar la

economía mediante la incorporación de una fuerza laboral flexible, también introduce desafíos

que afectan negativamente la sostenibilidad ambiental y urbana (Huarcaya Fernandez Baca &

Villalba Velasque, 2016; Sharma et al., 2024). En paralelo, el incremento del turismo intensifica

la presión sobre el territorio, generando una mayor demanda de infraestructura y servicios

urbanos, lo que a menudo excede la capacidad planificada (Condori Juarez, 2019; B. Roy,

2021).

La expansión urbana no planificada produce impactos adversos en el uso del suelo y

la vivienda (Trujillo, 2019), profundizando desigualdades socioeconómicas al limitar el acceso

equitativo a servicios básicos, vivienda y oportunidades de empleo (Gündüz, 2025; Trujillo,
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2019). Como consecuencia, los procesos de urbanización no regulada generan transformaciones

aceleradas del territorio que comprometen tanto la calidad ambiental como la cohesión social.

La provincia de Cusco presenta la mayor concentración poblacional del Departamento

homónimo, superando ampliamente en densidad al resto, como se observa en la Figura 1. Este

dinamismo demográfico y turístico ha desencadenado una ocupación del territorio caracterizada

por múltiples problemáticas.

Figura 1
Cusco: densidad poblacional por provincia 2023–2024.

Nota. Fuente: Instituto Nacional de Estadística e Informática (INEI), 2024.

Se evidencia un impacto territorial y ambiental severo, la expansión descontrolada ocupa

zonas no aptas, afectando áreas de cultivo, bosques y paisajes (Trujillo, 2019). La construcción

informal avanza sobre laderas inestables, bordes de ríos y terrenos expuestos a amenazas de

inundaciones y aluviones (Huaraca Yucra & Surco Vega, 2019; Mamani & Cutipa, 2024;

Trujillo, 2019).

Adicionalmente, se observa una degradación del patrimonio cultural y urbano. Las

ocupaciones informales han invadido zonas arqueológicas y áreas de importancia histórica

(Mamani & Cutipa, 2024; Trujillo, 2019), favorecidas por la ausencia de lineamientos de
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protección (Mamani & Cutipa, 2024).

La gestión del suelo presenta altos niveles de informalidad, con proliferación de

transferencias de “derechos y acciones” sin habilitación urbana ni títulos de propiedad (Berrio

Gomez, 2017), incluyendo ocupaciones sobre terrenos estatales y privados. Estas nuevas áreas

urbanas suelen carecer de servicios básicos, sistemas de saneamiento adecuados, espacios

públicos y áreas verdes (Yañe Zuñiga, 2019), ocasionando sobrecarga de la infraestructura

existente. De manera paralela, la alta densidad no planificada incrementa la demanda eléctrica

sin considerar riesgos de incendio o explosión (Huaraca Yucra & Surco Vega, 2019).

Finalmente, la movilidad urbana presenta disfunciones. El planeamiento ha priorizado el

enfoque centrado en la vialidad, relegando el espacio público. Paradójicamente, la ampliación de

la oferta vial ha inducido mayor congestión (Trujillo, 2019), mientras que la pérdida de densidad

habitacional en ciertas zonas aumenta los costos de mantenimiento de la infraestructura urbana

(Berrio Gomez, 2017).

Todos estos procesos, además de alterar la configuración urbana y social, comprometen

la sostenibilidad de los servicios ecosistémicos, esenciales para la estabilidad económica y

ambiental a largo plazo. En este escenario, la detección eficiente del estado actual y los cambios

futuros en el uso y cobertura del suelo (LULC) adquiere un papel estratégico.

La falta de información actualizada y técnicamente sólida limita la toma de decisiones,

lo que puede derivar en una planificación urbana inadecuada y comprometer la sostenibilidad

del territorio. Por ello, las estrategias de monitoreo basadas en aprendizaje automático y

simulación espacial representan herramientas clave, capaces de generar proyecciones detalladas

que permitan apoyar el diseño de políticas y estrategias de desarrollo sostenible.

1.3.1 Formulación del problema

1.3.2 Problema general

¿En qué medida se proyectan los cambios en el uso y cobertura del suelo mediante la

implementación de un modelo predictivo, con el fin de generar información para la gestión

sostenible de los recursos naturales?
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1.3.3 Problemas específicos

1. ¿Con qué nivel de precisión se puede clasificar el uso y cobertura del suelo a partir de

imágenes satelitales históricas?

2. ¿Cuál es la magnitud de los cambios entre clases de cobertura del suelo, y cuáles son

las transiciones más relevantes durante el periodo de análisis?

3. ¿Puede un modelo basado en tendencias históricas reproducir cambios reales de uso y

cobertura de suelo?

1.4 Alcances y Limitaciones

1.4.1 Alcances del Estudio

Área de estudio y periodo temporal: El análisis se centra en la provincia de Cusco,

evaluando la dinámica de cambio de la Cobertura y Uso del Suelo (LULC) durante la

temporada de invierno de los años 2004, 2014 y 2024. El objetivo principal es identificar

transformaciones históricas y proyectar escenarios futuros.

Fuentes de datos satelitales: Se usan datos multisatélite de teledetección, utilizando

Reflectancia Superficial (SR) de las misiones Landsat 5 (TM) y Landsat 8 (OLI), así

como Reflectancia en la Base de la Atmósfera (BOA) de Sentinel-2 (MSI). El acceso,

filtrado y preprocesamiento se realizó a través de la plataforma Google Earth Engine

(GEE). Con el fin de reducir interferencias por nubosidad, se priorizaron las capturas

correspondientes a la temporada de invierno.

Infraestructura y procesamiento: El procesamiento masivo de datos (Big Data) se

realizará mediante plataformas de análisis geoespacial en la nube, específicamente

Google Earth Engine (GEE) y Google Colab.

Clasificación de cobertura terrestre: La clasificación LULC fue realizada mediante

el algoritmo Random Forest (RF), empleando bandas espectrales, índices espectrales

(NDVI, NDBI, NDMI, UI, BSI, SAVI) y variables topográficas (altitud y pendiente). La

https://earthengine.google.com/
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generación de muestras se basa en imágenes de alta resolución disponibles en Google

Earth Pro para los años 2002, 2014 y 2024 y un Mapa de Peligros del 2004 (Apéndice A).

Se considerarán tres clases principales: cobertura urbana/asentamientos, vegetación y

suelo desnudo.

Modelamiento y predicción espacial: La simulación de dinámicas de cambio se llevará

a cabo utilizando Cadenas de Markov (MC) y Autómatas Celulares (CA), integrados

con una red neuronal Perceptrón Multicapa (MLP). Se incluirán variables derivadas

del modelo digital de elevación (elevación, pendiente, aspecto), así como factores de

accesibilidad a elementos naturales (distancia a la red hidrológica), a sitios de interés

turístico y a infraestructura y servicios (distancia a poblaciones dispersas y centros

urbanos, IIEE y carreteras) para modelar los potenciales de transición y la distribución

espacial futura del LULC.

1.4.2 Limitaciones

Enfoque Disciplinario: El estudio se desarrolla principalmente desde una perspectiva

técnica, orientada por los principios y métodos del aprendizaje automático y

el modelamiento computacional. En consecuencia, el análisis se concentra en la

implementación y evaluación de herramientas de procesamiento y modelamiento de

datos espaciales, sin integrar en profundidad enfoques provenientes de otras áreas del

conocimiento.

Recursos y Reproducibilidad: El estudio emplea exclusivamente herramientas open-

source o con planes de acceso gratuito (GEE, Google Colab), lo que garantiza su

reproducibilidad. Esta elección implica trabajar con los recursos computacionales

disponibles en dichas plataformas y con imágenes satelitales de acceso libre.

Calidad y Disponibilidad de Datos: El estudio enfrenta restricciones relacionadas con

los datos satelitales. La resolución espacial de Landsat (30 m), aunque estándar para

análisis históricos, puede influir en la precisión del mapeo LULC en áreas heterogéneas

(Li et al., 2024; Setiawan, 2024). Además, la disponibilidad limitada de imágenes en
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algunos años puede afectar las composiciones generadas.

Generalización y Dependencia Histórica del Modelo: Los algoritmos de Machine

Learning (RF y ANN) basan su aprendizaje en patrones históricos. Esto puede limitar

su capacidad de generalización si emergen dinámicas de cambio futuras completamente

nuevas o no representadas en los datos de entrenamiento (Bojer, 2024; H. D. Nguyen

et al., 2024).

Exclusión de Factores Dinámicos: Como consecuencia del enfoque disciplinario,

los modelos espaciales híbridos dependen en gran medida de variables biofísicas

y de proximidad. Esto restringe la incorporación de factores socioeconómicos y

políticos dinámicos (cambios en la zonificación, establecimiento de áreas restringidas

o protegidas, fluctuaciones del mercado inmobiliario) que influyen directamente en las

proyecciones futuras (M’Barek, 2024; Zafar, Zubair, Zha, Mehmoodd et al., 2024).

Disponibilidad de Variables Predictoras: La mayoría de los rásteres utilizados

como variables predictoras (aspecto, pendiente, elevación, distancia a la red

hidrológica, poblaciones dispersas, centros urbanos, carreteras y sitios de interés

turístico) se mantuvieron constantes debido a la ausencia de información geoespacial

correspondiente a cada año. Solo las capas de distancia a Instituciones Educativas

(IIEE) pudieron desagregarse temporalmente. Esta limitación reduce la sensibilidad del

modelo para capturar cambios asociados a variaciones reales en la infraestructura y la

accesibilidad.

1.5 Objetivos

1.5.1 Objetivo General

Cuantificar los cambios proyectados en el uso y cobertura del suelo mediante un modelo

predictivo, con el fin de generar información para la gestión sostenible de los recursos naturales.
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1.5.2 Objetivos Específicos

1. Determinar el nivel de precisión de la clasificación de uso y cobertura del suelo a partir

de imágenes satelitales.

2. Cuantificar los patrones espaciales de cambio y las transiciones más relevantes entre

clases de cobertura del suelo.

3. Validar la precisión del modelo contrastando sus resultados con datos reales

correspondientes a un año clave dentro del periodo de análisis.

1.6 Antecedentes

(Gündüz, 2025), Land-Use Land-Cover Dynamics and Future Projections Using GEE,

ML, and QGIS-MOLUSCE: A Case Study in Manisa, Department of Geomatics Engineering,

Aksaray University, 68100 Aksaray, Turkey.

Se compararon cuatro algoritmos de aprendizaje automático (RF, SVM, KNN y CART) en

la plataforma Google Earth Engine para la generación de mapas LULC, donde Random

Forest obtuvo un $� de 98 % y un índice ^ de 0.97, superando el desempeño de los

modelos basados en árboles de decisión simples y vecindad.

Se aplicó un post-procesamiento mediante operaciones de moda focal para reducir el

ruido tipo salt-and-pepper en las clasificaciones, mejorando la continuidad espacial de

las categorías de cobertura terrestre.

La arquitectura CA-ANN (usando el plugin MOLUSCE) alcanzó una corrección

proporcional del 92 % ( ℎ = 0.99), permitiendo proyectar para el año 2030 un

incremento del 23.67 % en áreas urbanas y una reducción del 3.16 % en cuerpos de

agua.

Comentario: El flujo de trabajo evidencia que los algoritmos de aprendizaje por conjuntos (RF)

presentan una menor tasa de error en zonas de transición espectral en comparación con CART
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y KNN, los cuales muestran mayor confusión en clases de suelo desnudo y áreas periurbanas

debido a limitaciones en la optimización de hiperparámetros en GEE.

(B. Roy, 2021), A machine learning approach to monitoring and forecasting spatio-

temporal dynamics of land cover in Cox’s Bazar district, Bangladesh from 2001 to 2019,

Department of Geography and Environmental Science, Begum Rokeya University, Bangladesh.

Se desarrolló un flujo de trabajo de clasificación basado en el algoritmo Random Forest

aplicado a series temporales de sensores Landsat 4-5 TM y Landsat 8 OLI, alcanzando

métricas de precisión entre el 87 % y el 99.8 %.

La validación del modelo predictivo mediante matrices de confusión y estadísticos

Kappa demostró que la integración de RF con CAS permite proyectar escenarios futuros

con una fiabilidad del 93.2 %.

Comentario: La integración de clasificadores de aprendizaje por conjuntos (RF) con sistemas de

autómatas celulares parametrizados mediante redes neuronales (CA-ANN) permite la captura

de dependencias espaciales no lineales. El uso de RF para la generación de mapas LULC reduce

el ruido en la clasificación de datos, lo cual es disminuye los sesgos para el modelamiento de

transición temporal.

(Belay et al., 2024), Scenario-Based Land Use and Land Cover Change Detection and

Prediction Using the Cellular Automata-Markov Model in the Gumara Watershed, Upper Blue

Nile Basin, Ethiopia.

Se ejecutó una clasificación multitemporal utilizando el algoritmo Random Forest (RF)

integrado en la plataforma Google Earth Engine (GEE), procesando 10 variables que

incluyen bandas espectrales de Landsat, índices de vegetación (NDVI, SAVI) y factores

topográficos.

El análisis de importancia de variables identificó a la elevación como el factor de mayor

peso en la discriminación de clases. Se obtuvo una precisión general de entre 91.13 % y

94.84 % y coeficientes Kappa (^) de 0.88 a 0.94.
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Para la fase predictiva (2035-2065), se implementó el modelo de Autómatas Celulares-

Markov, validado con métricas de concordancia espacial  => (0.89) y  BC0=30A3 (0.94),

evaluando escenarios de tendencia inercial (BAU) y de gobernanza ambiental (GOV).

Comentario: El diseño computacional destaca por la integración de variables topográficas y

espectrales para lograr una mejor clasificación.

(Badshah et al., 2024), The role of random forest and Markov chain models in

understanding metropolitan urban growth trajectory.

La metodología hace uso de imágenes satelitales Landsat (1991-2021) a través de la

plataforma Google Earth Engine, utilizando el algoritmo de aprendizaje automático

Random Forest para la clasificación de coberturas terrestres e integrando variables

topográficas y de proximidad.

Para la simulación de la trayectoria de crecimiento urbano hacia los años 2031, 2041

y 2051, se implementó el modelo híbrido Cadenas de Markov y Autómatas Celulares

mediante el Land Change Modeler (LCM) en el software TerrSet.

Este sistema emplea redes neuronales de Perceptrón Multicapa para generar mapas

de potencial de transición, permitiendo modelar interacciones complejas entre factores

socioeconómicos y cambios ambientales en el área metropolitana.

La validación de la precisión espacial del modelo predictivo alcanzó un valor AUC-ROC

de 0.88.

El clasificador RF demostró una alta estabilidad con una exactitud general superior al

90 % y un coeficiente Kappa de aproximadamente 0.88.

Comentario: El estudio sugiere la eficiencia de integrar técnicas de machine learning con

modelos probabilísticos para entender la dinámica territorial.

(Kamran et al., 2024), Application of Cellular Automata and Markov Chain model for

urban green infrastructure in Kuala Lumpur, Malaysia.
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La análisis multitemporal se desarrolló a partir de imágenes satelitales Landsat (1990,

2005 y 2021) para monitorear la infraestructura verde urbana (UGI) en Kuala Lumpur,

empleando tanto el clasificador de Máxima Verosimilitud como máquinas de vectores

de soporte para categorizar el suelo en seis clases principales.

La validación de los mapas clasificados mostró una Exactitud General que progresó del

91.06 % en 1990 al 98.28 % en 2021 y coeficientes Kappa entre 0.8997 y 0.9626.

Para modelar las dinámicas de cambio y proyectar el estado del territorio hacia el año

2050, se aplicó el modelo híbrido Cadenas de Markov y Autómatas Celulares.

Se identificó que las áreas construidas (built-up area) presentaron una probabilidad de

0.2736 de transicionar hacia suelo desnudo (bare ground), mientras que la probabilidad

de permanecer como área construida fue de 0.6381.

Comentario: La integración de CA-Markov resulta fundamental para la planificación urbana,

ya que permite anticipar cómo la expansión de superficies impermeables y suelo desnudo

incrementa riesgos ambientales como las inundaciones, proporcionando una base científica

para fortalecer la resiliencia de los servicios ecosistémicos en ciduades de rápido crecimiento.

(Vahid & Aly, 2025), A Comprehensive Systematic Review of Machine Learning

Applications in Assessing Land Use/Cover Dynamics and Their Impact on Land Surface

Temperatures.

La metodología comprende una revisión sistemática de 144 publicaciones (período

2014-2024) sobre el uso de algoritmos de aprendizaje automático (Machine Learning)

para monitorear cambios en el uso y cobertura del suelo (LULC) y su impacto directo

en la temperatura de la superficie terrestre (LST).

Los hallazgos identifican a Random Forest y Support Vector Machines como los

clasificadores más utilizados y precisos para la obtención de mapas de LULC, gracias a

su alta capacidad para procesar datos no lineales y multitemporales.
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El análisis destaca la superioridad de los modelos híbridos, especialmente la

combinación de Autómatas Celulares con Redes Neuronales Artificiales o algoritmos de

optimización, para la simulación precisa de dinámicas térmicas y territoriales futuras.

Se observa una transición técnica hacia el Deep Learning, lo que permite manejar la

complejidad de los datos satelitales de alta resolución y mejorar la predictibilidad de los

servicios ecosistémicos ante el cambio climático.

Comentario: Esta revisión sistematiza la evolución de las herramientas computacionales en la

gestión territorial, evidenciando que la integración de inteligencia artificial es determinante para

modelar la relación entre urbanización y microclima. La transición hacia modelos predictivos

ofrece una base científica para el diseño de estrategias de adaptación urbana que prioricen la

restauración térmica mediante infraestructura verde.

(Toscan et al., 2025), Impact of nature-based solutions (NBS) on urban surface

temperatures and land cover changes using remote sensing and machine learning.

La metodología se fundamenta en el procesamiento de series temporales de imágenes

Landsat (1984-2023) a través de la plataforma Google Earth Engine, utilizando el

algoritmo de aprendizaje automático Random Forest para la clasificación supervisada

de la cobertura terrestre y la recuperación de la temperatura de la superficie terrestre

(LST).

El flujo de trabajo técnico integra el cálculo de índices espectrales como el NDVI y el

NDBI como variables predictoras para modelar la correlación térmica entre la expansión

de superficies impermeables y la pérdida de vegetación.

Para la simulación de la dinámica espacial hacia los años 2030, 2040 y 2050, se

implementó el modelo estocástico CA-Markov, permitiendo proyectar escenarios de

cambio de uso de suelo bajo la influencia de soluciones basadas en la naturaleza (NBS).

El modelo alcanzó un valor de validación Kappa de 0.86, los datos predichos se

compararon con la cobertura real de 2023, resultando en una exactitud general del

84.78 % y un valor Kappa general de 0.88.
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Comentario: La investigación sugiere la viabilidad de integrar modelos de machine learning

y simulaciones probabilísticas para la planificación urbana climáticamente inteligente. Al

cuantificar el impacto térmico de la urbanización, el estudio proporciona un marco metodológico

útil para evaluar escenarios de planificación urbana bajo criterios climáticos.

(Ahmad et al., 2025), How do land use changes affect temperature and groundwater in

urban areas? An integrated remote sensing, and machine learning approach.

Para la modelización de escenarios futuros, se aplicó el sistema híbrido CA-Markov,

que simula las transiciones espaciales basándose en la probabilidad histórica de cambio

de suelo.

La validación del modelo de simulación espacial demostró una alta fiabilidad técnica,

obteniendo un valor de kappa histogram: 0.9495.

El análisis de los resultados revela una correlación crítica donde la sustitución de áreas

agrícolas por zonas construidas no solo eleva la LST, sino que reduce la recarga de

los acuíferos, proyectando un descenso significativo en los niveles freáticos para el año

2038.

Comentario: Al integrar modelos predictivos de LULC con variables hidrogeológicas, la

investigación proporciona una herramienta para la gestión sostenible de recursos hídricos,

permitiendo a los planificadores urbanos anticipar y mitigar los efectos del estrés térmico y la

escasez de agua en megaciudades de rápido crecimiento.

(K. C. Roy et al., 2024), Land-use/cover change and future prediction by integrating the

ML techniques of random forest and CA-Markov chain model of the Ganges alluvial tract of

Eastern India, Weste University.

Se propone una arquitectura que fusiona RF para la extracción de características

espectrales con modelos de simulación espacio-temporal (CA-Markov).

El modelo incorpora “variables predictoras” (drivers) espaciales, como la distancia

euclidiana a redes hídricas y viales, procesadas mediante lógica difusa o reescalado para

alimentar las reglas de transición del autómata.
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La predicción a 10 y 20 años se genera iterando las probabilidades de la cadena de

Markov, ajustada por la idoneidad del terreno.

Comentario: El estudio ejemplifica la aplicación de Soft Computing en geoinformática, donde

el aprendizaje automático (RF) no solo clasifica, sino que mejora la calidad de los datos de

entrada para los modelos determinísticos y estocásticos subsiguientes, refinando la precisión de

las simulaciones a largo plazo.

(Bendechou et al., 2024), Monitoring and Predicting Land Use/Land Cover Dynamics

in Djelfa City, Algeria, using Google Earth Engine and a Multi Layer Perceptron Markov Chain

Model, Weste University.

Se aplicó el algoritmo Support Vector Machine en GEE para la clasificación supervisada,

aprovechando su capacidad de generalización en espacios de características de alta

dimensión mediante funciones kernel.

Para la predicción, se utilizó una red neuronal Multi-Layer Perceptron integrada con

Cadenas de Markov (MLP-Markov). El MLP se entrena para modelar el potencial de

transición de cada celda basándose en variables explicativas, capturando relaciones no

lineales complejas.

La validación del modelo híbrido MLP-Markov alcanzó una precisión del 83.96 %.

Comentario: El uso de perceptrones multicapa permite ponderar la influencia de múltiples

variables conductoras, superando las limitaciones de las matrices de probabilidad estáticas

propias de los modelos markovianos tradicionales.
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CAPÍTULO II

Marco teórico

2.1 La Luz y el Espectro Electromagnético

La luz es una forma de energía que se manifiesta como una onda electromagnética.

Aunque la percepción visual humana se limita a una fracción reducida de este fenómeno,

el espectro visible, la luz forma parte de un continuo más amplio denominado espectro

electromagnético. El espectro abarca desde las ondas de radio, caracterizadas por longitudes

de onda muy largas, hasta los rayos gamma, con longitudes de onda extremadamente cortas.

Cada tipo de radiación electromagnética se define por su longitud de onda y frecuencia. La

interacción de esta energía con los objetos permite obtener información sobre ellos a distancia

(Khan Academy, 2024).

Figura 2
El espectro electromagnético.

Nota. Fuente: National Institute of Standards and Technology (NIST), 2024.

2.1.1 Bandas Espectrales

Una banda espectral se define como un intervalo específico y estrecho de longitudes de

onda dentro del cual un sensor multicanal detecta la radiación electromagnética. La capacidad

de un sensor para definir y discriminar estos canales se conoce como su resolución espectral

(Ezekiel, 2017).
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Existen numerosas formas de designar estas bandas, como la de Institute of Electrical

and Electronics Engineers (IEEE), que son un estándar para radar y comunicaciones (Manning,

2018).

Figura 3
División del espectro electromagnético en bandas.

Nota. Fuente: Manning, 2018.

2.2 Sistemas de Referencia Espacial

2.2.1 WGS 84 (Sistema Geodésico Mundial de 1984)

El WGS 84 (World Geodetic System 1984) es el sistema de referencia geodésico

tridimensional estándar, ampliamente adoptado y utilizado a nivel global para aplicaciones

de geoposicionamiento y navegación. Define un marco para especificar posiciones mediante

latitud, longitud y altitud elipsoidal. Ha sido adoptado por organismos internacionales como la

Organización de Aviación Civil Internacional (OACI, ICAO por sus siglas en inglés) (National

Geospatial-Intelligence Agency, 2025).

Este sistema fue desarrollado por la National Geospatial-Intelligence Agency (NGA)

de los Estados Unidos. Se usa un elipsoide de referencia geocéntrico (el origen se ubica en

el centro de masas de la Tierra) y define un sistema de coordenadas cartesiano tridimensional

fijo a la Tierra (ECEF - Earth-Centered, Earth-Fixed). En este sistema, el eje Z apunta hacia el

Polo Norte geodésico convencional, el eje X interseca el punto donde el ecuador se cruza con

el meridiano de Greenwich (longitud 0°), y el eje Y completa un sistema ortogonal dextrógiro

(orientado a la derecha), como se ilustra en la Figura 4. WGS 84 es el datum de referencia

oficial para el Sistema de Posicionamiento Global (GPS) y es el estándar de facto en cartografía
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moderna, navegación satelital y Sistemas de Información Geográfica (SIG) (United Nations

Office for Outer Space Affairs (UNOOSA), 2012).

Figura 4
Representación del sistema de coordenadas WGS 84.

Nota. Fuente: GeneSys Elektronik GmbH, 2024.

2.2.2 Sistemas de Referencia Espacial en Perú (EPSG)

De acuerdo con (Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI),

2015), los sistemas de referencia espacial, identificados mediante códigos asignados por el

EPSG (European Petroleum Survey Group, actualmente IOGP Geomatics Committee), permiten

definir de manera unívoca cómo se representan las coordenadas geográficas y proyectadas en

los mapas. Para el territorio peruano, los códigos EPSG:32717, EPSG:32718 y EPSG:32719

corresponden a sistemas de coordenadas proyectadas bajo la Proyección Universal Transversa

de Mercator (UTM) para las zonas 17 Sur, 18 Sur y 19 Sur, respectivamente. Todos ellos utilizan

el datum WGS 84. La adopción de estos sistemas estandarizados garantiza la interoperabilidad,

consistencia y precisión en la visualización, análisis e intercambio de datos geoespaciales en el

país.

EPSG:32719. El sistema de referencia de coordenadas EPSG:32719 (Figura 5a) corresponde

a la proyección UTM Zona 19 Sur sobre el datum WGS 84. Es el sistema que cubre la mayor

extensión de la provincia de Cusco y se utiliza comúnmente para la cartografía en la región

oriental del Perú (Figura 5b).
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Las principales características del sistema se resumen en la Tabla 1.

Tabla 1
Características principales del sistema EPSG:32719

Característica Descripción

Nombre del sistema WGS 84 / UTM zone 19S
Límites geográficos (WGS 84) Longitudes entre -72.0° y -66.0°; latitudes entre -

80.0° y 0.0°

Área de uso Región comprendida entre los meridianos 72° O y
66° O en el hemisferio sur, desde el ecuador hasta
80° S; aplicable en áreas terrestres y marinas

Países incluidos Argentina, Bolivia, Brasil, Chile, Colombia y Perú
Sistema de referencia geográfico base EPSG:4326 (WGS 84)

Nota. Fuente: (Esri Support, 2025).

Figura 5
Sistema de referencia EPSG:32719.

(a) Área de cobertura del sistema EPSG:32719
(UTM Zona 19 Sur).

(b) Ubicación de la Provincia de Cusco dentro
de la zona EPSG:32719.

Nota. Fuente de la subfigura (a): EPSG.io, 2025a. Fuente de la subfigura (b): EPSG.io, 2025b.

2.3 Teledetección

La teledetección (Remote Sensing, RS) se define como el conjunto de técnicas y

procedimientos utilizados para obtener información sobre un objeto, área o fenómeno sin

establecer contacto físico directo con él (M. Khan et al., 2023). En el contexto de las ciencias

de la Tierra, la teledetección es una disciplina esencial para la captura, procesamiento y análisis

de imágenes digitales de la superficie terrestre, obtenidas principalmente a través de sensores
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montados en satélites artificiales (Valladares Herrera, 2023).

Actualmente, la teledetección se utiliza ampliamente para adquirir una comprensión

detallada de los patrones del paisaje, registrar la energía electromagnética emitida o reflejada

por la superficie, y proveer un contexto histórico fundamental para el estudio de los cambios

en la cobertura y uso del suelo (LULC) (M. Khan et al., 2023). Misiones satelitales históricas,

como la serie Landsat, y programas más recientes, como Sentinel, han sido instrumentales para

el avance de esta disciplina.

2.3.1 Sensores Satelitales

La función primordial de un sensor satelital en teledetección es detectar y medir la

radiación electromagnética (EM) reflejada o emitida por la superficie terrestre. Esta información

capturada se transforma en datos digitales que pueden ser posteriormente procesados y

analizados para extraer información temática (Ezekiel, 2017).

Existen dos categorías principales de sensores utilizados en la teledetección satelital,

clasificadas según la fuente de energía que utilizan para la observación (Ezekiel, 2017):

1. Sensores Pasivos (Ópticos/Infrarrojos):

Son los sensores más comunes para la Observación de la Tierra (EO - Earth

Observation).

Detectan la energía electromagnética natural, principalmente la radiación solar

reflejada por los objetos en la superficie terrestre, o la radiación térmica emitida

por ellos.

La información contenida en las imágenes ópticas depende de las propiedades

de reflectividad (o emisividad) espectral del objeto observado en las longitudes

de onda específicas que el sensor es capaz de registrar (bandas espectrales).

La adquisición de datos se realiza muestreando la energía en puntos discretos

a lo largo de los segmentos óptico e infrarrojo del espectro electromagnético,

almacenando esta información en diferentes bandas.
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La calidad de los datos de los sensores ópticos pasivos puede verse afectada por

las condiciones de iluminación solar (hora del día, estación, latitud), la presencia

de sombras, y las condiciones atmosféricas (aerosoles, nubes, vapor de agua).

2. Sensores Activos (Radar/LiDAR):

Estos sensores emiten su propia fuente de energía (generalmente microondas o

pulsos láser) hacia la superficie y miden la señal que retorna tras interactuar con

los objetos.

2.3.2 Programas Satelitales

Un programa satelital se refiere a una iniciativa coordinada, generalmente a largo plazo,

que involucra el diseño, desarrollo, lanzamiento y operación de uno o más satélites con objetivos

específicos, comúnmente orientados al monitoreo sistemático y la observación de la Tierra desde

el espacio (Ezekiel, 2017).

2.3.3 Programa Landsat

El programa Landsat es una de las misiones de observación de la Tierra de mayor

continuidad temporal, gestionado conjuntamente por la Administración Nacional de Aeronáutica

y el Espacio (NASA) y el Servicio Geológico de los Estados Unidos (USGS) (F. Zhao et al.,

2024). Este programa proporciona el archivo histórico más extenso de imágenes satelitales de

resolución moderada disponible a nivel global, con registros ininterrumpidos desde 1972 (Laar

et al., 2024).

Las imágenes Landsat, con una resolución espacial nominal de 30 metros para la

mayoría de sus bandas espectrales, son un recurso fundamental para estudios ecológicos,

análisis de cambios de cobertura y uso del suelo (LULC), y gestión de recursos naturales.

Aunque no permiten captar detalles muy finos, su resolución es adecuada para estudios a

escala de paisaje, evitando al mismo tiempo los altos requerimientos de almacenamiento y

procesamiento asociados a sensores de muy alta resolución. Además, la constelación Landsat

tiene una frecuencia de revisita de aproximadamente 16 días, permitiendo el análisis temporal

y fenológico del territorio (Young et al., 2017).
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Los satélites Landsat se agrupan en tres generaciones principales según la evolución de

sus plataformas e instrumentos (Figura 6). La Tabla 2 resume las bandas espectrales, rangos y

resoluciones de los sensores más representativos del programa.

Figura 6
Línea de Tiempo del Programa Landsat.

Nota. Fuente: Young et al., 2017.

Tabla 2
Bandas Espectrales de Sensores Landsat.

Banda LS 1–5 MSS LS 4–5 TM LS 7 ETM+ LS 8–9
OLI/TIRS

Pixel (m)

Coastal B1 (0.43–0.45) 30
Blue B1 (0.45–0.52) B1 (0.45–0.52) B2 (0.45–0.51) 30
Green B1 (0.50–0.60) B2 (0.52–0.60) B2 (0.52–0.60) B3 (0.53–0.59) 30 (60† MSS)
Red B2 (0.60–0.70) B3 (0.63–0.69) B3 (0.63–0.69) B4 (0.64–0.67) 30 (60† MSS)
NIR B4 (0.80–1.10) B4 (0.76–0.90) B4 (0.77–0.90) B5 (0.85–0.88) 30 (60† MSS)
SWIR 1 B5 (1.55–1.75) B5 (1.55–1.75) B6 (1.57–1.65) 30
SWIR 2 B7 (2.08–2.35) B7 (2.09–2.35) B7 (2.11–2.29) 30
Thermal B6 (10.40–

12.50)
B6‡ (10.40–
12.50)

B10/B11 (10.6–
12.5)

30†

Pan B8 (0.52–0.90) B8 (0.50–0.68) 15
Cirrus B9 (1.36–1.38) 30

Nota. Fuente: (Young et al., 2017). Los valores † indican resolución nativa de MSS.

2.3.4 Programa Sentinel

El programa Sentinel constituye la principal constelación de observación de la Tierra de

la Agencia Espacial Europea (ESA) dentro del marco del programa Copernicus (Gascon et al.,

2015). A diferencia de Landsat, Sentinel se estructura en misiones especializadas por tipo de



23

aplicación y sensor.

Sentinel-2. La misión Sentinel-2 consta de dos satélites en operación (Sentinel-2A y Sentinel-

2B), equipados con el instrumento multiespectral MSI, mediante el cual se registra información

en 13 bandas distribuidas en el visible, infrarrojo cercano y SWIR. Las resoluciones espaciales

de estas bandas son de 10 m, 20 m y 60 m, permitiendo una observación detallada de la estructura

y dinámica de la vegetación. La Tabla 3 resume las características principales de estas bandas.

Tabla 3
Bandas espectrales del instrumento MSI de Sentinel-2

Banda Escala Resolución (m) Longitud de onda (nm) Descripción

B1 0.0001 60 444 Aerosoles
B2 0.0001 10 495 Azul
B3 0.0001 10 560 Verde
B4 0.0001 10 665 Rojo
B5 0.0001 20 704 Borde rojo 1
B6 0.0001 20 740 Borde rojo 2
B7 0.0001 20 780 Borde rojo 3
B8 0.0001 10 835 NIR (ancho)

B8A 0.0001 20 865 NIR (estrecho)
B9 0.0001 60 945 Vapor de agua
B11 0.0001 20 1610 SWIR 1
B12 0.0001 20 2190 SWIR 2

Nota. Fuente: (European Union/ESA/Copernicus and Google Earth Engine, n.d.).

2.3.5 Escenas (Tiles)

En el contexto del procesamiento de datos satelitales, el término “tile” se refiere a una

subdivisión geográfica regular de la órbita del satélite. Es una unidad de archivo y procesamiento

de datos geográficos, generalmente rectangular, que forma parte de un sistema de mosaico

predefinido (tiling scheme), el cual cubre la superficie terrestre (Guth et al., 2021).

Características de los tiles:

1. Límites Geográficos: Los límites de los tiles suelen definirse en un sistema de

coordenadas proyectado (como UTM) y forman una cuadrícula regular sobre el globo.

2. Nomenclatura Estándar: Los archivos de datos distribuidos suelen nombrarse utilizando

un código que identifica unívocamente al tile, facilitando su catalogación y recuperación.
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3. Contenido y Estructura: Un tile contiene los datos de reflectancia (u otras mediciones)

para todas las bandas espectrales adquiridas por el sensor sobre esa área geográfica

específica, organizados como una matriz o array de píxeles. Facilitan la gestión y el

procesamiento distribuido de grandes volúmenes de datos.

La función principal de dividir los datos en tiles es optimizar la descarga, el

almacenamiento, el procesamiento y la visualización de los datos, permitiendo trabajar con

unidades manejables en lugar de franjas orbitales completas (Guth et al., 2021). La Figura 7

muestra un ejemplo visual de un tile de Sentinel-2 sobre el área de estudio.

Figura 7
Ejemplo de Escena (Tile) Sentinel-2 (27-06-2024).

Nota. Fuente: Elaboración propia.

2.3.6 Niveles de Procesamiento de Datos Satelitales

Los datos adquiridos por los sensores satelitales pasan por diferentes etapas de

procesamiento antes de estar listos para su análisis temático. Estos niveles estandarizados

indican el grado de corrección y calibración aplicado a los datos brutos. A continuación, se

describen los principales niveles de procesamiento relevantes para imágenes ópticas (Liang

et al., 2024):
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Nivel-0 (L0): Corresponde a los datos brutos (raw data) transmitidos desde el satélite.

Están descomprimidos y formateados, pero no presentan correcciones radiométricas ni

geométricas.

Nivel-1 (L1): Incluye los datos L0 a los que se han aplicado correcciones radiométricas

(conversión de niveles digitales a radiancia espectral) y correcciones geométricas

(georreferenciación basada en parámetros orbitales y, ocasionalmente, puntos de

control). Los productos L1 se entregan normalmente en Radiancia o Reflectancia en el

Tope de la Atmósfera (TOA), lo que significa que aún incluyen los efectos atmosféricos

como aerosoles, vapor de agua y dispersión.

Nivel-2 (L2) y superiores: Derivan de los productos L1 tras aplicar corrección

atmosférica y, en muchos casos, transformaciones adicionales para obtener variables

biofísicas o geofísicas. Incluyen la Reflectancia Superficial (SR o BOA), que representa

la reflectancia real de la superficie terrestre, libre de interferencias atmosféricas. Los

productos L2 (como Sentinel-2 L2A o Landsat Collection 2 Nivel-2) son los más

adecuados para análisis cuantitativos, clasificación LULC, cálculo de índices espectrales

y estudios multitemporales debido a su mayor consistencia entre fechas.

La Figura 8 ilustra esquemáticamente los niveles de procesamiento.

Figura 8
Niveles de procesamiento de Datos Satelitales.

Nota. Fuente: (Young et al., 2017)..
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2.3.7 Geospatial Big Data (GBD)

El concepto de Geospatial Big Data (GBD) se aplica a datos geoespaciales que

destacan por su elevado volumen, rapidez de producción, heterogeneidad y requerimientos

computacionales avanzados para su procesamiento y análisis (J. Wu et al., 2024). Entre ellos se

encuentran los archivos de imágenes satelitales multitemporales Landsat y Sentinel.

2.4 Sistemas de Información Geográfica

Un Sistema de Información Geográfica (SIG) es un sistema informático diseñado

para capturar, almacenar, manipular, analizar, administrar y presentar todo tipo de datos

geográficamente referenciados (U.S. Geological Survey, 2023). Su función principal es conectar

los datos descriptivos (atributos) a su ubicación espacial en un mapa, integrando la información

geográfica con diversos tipos de información temática. Esta integración proporciona la base para

la elaboración de mapas, el análisis espacial y la modelización, aplicable en una vasta gama

de disciplinas científicas e industrias. Mediante los SIG se visualizan y comprenden patrones

espaciales, relaciones geográficas y el contexto territorial de fenómenos diversos. Sus beneficios

incluyen la mejora en la comunicación de información espacial, el aumento de la eficiencia en

la gestión de datos territoriales y el apoyo a una toma de decisiones más informada (Esri, n.d.).

2.4.1 Google Earth Engine (GEE)

Google Earth Engine (GEE), ilustrado en la Figura 9, es una plataforma basada en la

nube que combina un catálogo de datos geoespaciales de escala planetaria con capacidades

de cómputo para el análisis científico y la visualización. Es ampliamente utilizada por la

comunidad académica, organizaciones sin fines de lucro, entidades gubernamentales y el

sector privado. GEE aloja un extenso archivo de datos públicos, incluyendo series temporales

históricas de imágenes satelitales que abarcan más de cuarenta años. Nuevas imágenes se

incorporan continuamente, poniéndolas a disposición para análisis y minería de datos a escala

global. Además del catálogo de datos, GEE ofrece Interfaces de Programación de Aplicaciones

(APIs) y un entorno de desarrollo para facilitar el análisis de estos grandes conjuntos de datos
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geoespaciales (Gorelick et al., 2017).

Figura 9
Google Earth Engine.

Nota. Fuente: Google Developers, 2023.

2.4.2 Editor de Código de Earth Engine

El Editor de Código de Google Earth Engine es un entorno de desarrollo integrado

(IDE) basado en la web, diseñado para escribir, ejecutar y depurar scripts utilizando la API de

JavaScript de Earth Engine. Facilita el desarrollo interactivo de flujos de trabajo geoespaciales

complejos de manera ágil y visual (Google Developers, 2023).

Por defecto, Google Earth Engine realiza los cómputos internamente utilizando el

sistema de coordenadas geográficas WGS 84 (EPSG:4326), aunque permite la reproyección

a otros sistemas según sea necesario, garantizando así la compatibilidad con una amplia gama

de datos espaciales globales (Google Earth Engine Developers, 2025).

2.4.3 QGIS

QGIS es un Sistema de Información Geográfica (SIG) de escritorio, libre y de código

abierto, disponible para múltiples plataformas (Windows, macOS y Linux) (Figura 11). Se utiliza

en distintas etapas del flujo de trabajo geoespacial, abarcando tareas de preprocesamiento como

la preparación de capas vectoriales (Khosravi, 2025), la manipulación y análisis de datos ráster

(Fu et al., 2024), y la extracción de información puntual a partir de capas ráster (Buthelezi

et al., 2024). Asimismo, permite la gestión y edición de datos vectoriales, la digitalización y

la elaboración de mapas temáticos, soporta análisis espaciales avanzados y la recopilación de

datos en campo (Haripavan et al., 2025).
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Figura 10
Interfaz del Editor de Código de Google Earth Engine.

Nota. Fuente: Google Developers, 2023.

Figura 11
QGIS.

Nota. Fuente: U.S. Geological Survey, 2023.

2.4.4 Google Earth Pro

Google Earth Pro es una aplicación de escritorio que permite explorar un globo terráqueo

virtual tridimensional (3D), construido a partir de imágenes satelitales, aéreas y datos SIG. Es

ampliamente utilizado como herramienta de geovisualización y, en el contexto de la clasificación

LULC supervisada, como fuente de datos de referencia (K. C. Roy et al., 2024). A diferencia

de los SIG 2D tradicionales que utilizan proyecciones cartográficas planas, Google Earth

emplea una proyección en perspectiva dinámica que simula la vista desde un punto elevado,

actualizándose interactivamente a medida que el usuario navega (desplaza, inclina, acerca/aleja)

(Sweet, 2011).

Su aplicación principal en flujos de trabajo LULC se centra en:
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Obtención de Muestras de Entrenamiento: Las imágenes de alta resolución histórica

disponibles en Google Earth Pro sirven como base para la identificación visual y

digitalización manual de puntos o polígonos de entrenamiento (ground truth). Los

investigadores interpretan visualmente la cobertura del suelo en estas imágenes para

generar los datos etiquetados necesarios para entrenar algoritmos de clasificación

supervisada como Random Forest (Ganjirad, 2024; Ishtiaque et al., 2021).

Validación y Evaluación de Precisión: De manera similar, las imágenes de alta resolución

de Google Earth Pro se utilizan como fuente independiente de datos de referencia para

validar la precisión de los mapas LULC generados a partir de imágenes satelitales de

menor resolución. Se comparan puntos o áreas del mapa clasificado con la interpretación

visual en Google Earth para construir la matriz de confusión y calcular las métricas de

precisión (Mazroa et al., 2024).

Aunque la interfaz principal es 3D, la base de datos de imágenes subyacente de Google

Earth utiliza internamente coordenadas geográficas (latitud/longitud) referidas al datum WGS

84 (EPSG:4326) (Sweet, 2011).

2.4.5 Google Colab

Google Colaboratory, comúnmente conocido como Google Colab, es un servicio

gratuito basado en la nube que proporciona entornos de ejecución de cuadernos Jupyter

(Jupyter notebooks). Se utiliza ampliamente en la comunidad científica y educativa para

la implementación, ejecución y compartición de código, especialmente en los campos del

Aprendizaje Automático (ML) y el Aprendizaje Profundo (Deep Learning, DL) (Lukas et al.,

2024).

Está diseñado para facilitar tareas de ciencia de datos, investigación y educación,

ofreciendo acceso gratuito (con ciertas limitaciones) a recursos computacionales de alto

rendimiento, como Unidades de Procesamiento Gráfico (GPUs) y Unidades de Procesamiento

Tensorial (TPUs), que son esenciales para entrenar modelos computacionalmente exigentes

(Burke, 2023; Vidhya, 2020).

Características principales (Burke, 2023; Vidhya, 2020):
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1. Integración con el Ecosistema de Google: Se integra de forma nativa con Google Drive

para el almacenamiento y acceso a cuadernos y datos. Permite la carga de datos desde

diversas fuentes.

2. Colaboración: Facilita la colaboración en tiempo real, permitiendo que varios usuarios

editen el mismo cuaderno simultáneamente, de manera similar a Google Docs o Sheets.

3. Accesibilidad y Configuración Mínima: Al ser un servicio basado en la nube, es accesible

desde cualquier dispositivo con un navegador web y conexión a internet, eliminando

la necesidad de instalar software complejo o disponer de hardware potente localmente

(Google Research, 2025). Proporciona entornos preconfigurados con librerías comunes

de ciencia de datos (NumPy, Pandas, Scikit-learn, TensorFlow, PyTorch, etc.).

2.5 Tecnologías de Procesamiento Geoespacial y Científico

El desarrollo del presente estudio requirió la integración de lenguajes de programación

de alto nivel y bibliotecas especializadas en cálculo numérico, análisis espacial y aprendizaje

automático. Estas herramientas permitieron la orquestación de flujos de trabajo complejos,

desde el preprocesamiento de imágenes satelitales hasta la modelización predictiva.

2.5.1 Lenguajes de Programación

Python. Python es un lenguaje de programación interpretado, de alto nivel y propósito general,

es actualmente el lenguaje más utilizado en la ciencia de datos y la computación científica

moderna. Su diseño prioriza la legibilidad del código y ofrece una vasta colección de bibliotecas

para el manejo de matrices y datos geoespaciales (Python Software Foundation, 2025).

JavaScript. JavaScript es un lenguaje ligero, interpretado y orientado a objetos, conocido

principalmente por su ejecución en entornos web (Mozilla Developer Network, 2025).

2.5.2 Librerías de Análisis y Procesamiento Científico

NumPy: Es la biblioteca base para la computación científica en Python. Proporciona

objetos de matriz multidimensionales (arrays) de alto rendimiento y herramientas para
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trabajar con estos arreglos.

SciPy: Construida sobre NumPy, esta librería ofrece algoritmos para optimización,

integración, interpolación, problemas de valores propios y otras tareas avanzadas.

Pandas: Proporciona estructuras de datos de alto nivel (DataFrames) para la

manipulación y análisis de datos tabulares.

2.5.3 Librerías de Análisis Geoespacial y Aprendizaje Automático

GDAL (Geospatial Data Abstraction Library): Es una biblioteca de traducción para

formatos de datos geoespaciales ráster y vectoriales.

Scikit-learn: Es una biblioteca de aprendizaje automático que integra herramientas

simples y eficientes para minería de datos y análisis.

Matplotlib, Seaborn y Plotly: Conjunto de bibliotecas para la visualización de datos.

Matplotlib y Seaborn se utilizaron para la generación de gráficos estáticos y estadísticos

de alta calidad, mientras que Plotly integró capacidades interactivas para la exploración

dinámica de los resultados.

2.6 Uso y Cobertura del Suelo (LULC)

La cobertura del suelo (Land Cover) se refiere a los elementos biofísicos observados

sobre la superficie terrestre, tales como la vegetación (bosques, pastizales), cuerpos de agua,

suelo desnudo, nieve/hielo o infraestructura construida (Saoum & Sarkar, 2024). Por otro lado,

el uso del suelo (Land Use) describe las actividades humanas o las funciones socioeconómicas

que se desarrollan sobre un área determinada, implicando a menudo la gestión, transformación

o alteración de la cobertura biofísica para la producción de bienes y servicios (agricultura,

urbanización, silvicultura, conservación, etc.).

2.6.1 Enmascaramiento y Eliminación de Nubes

El enmascaramiento de nubes es una etapa fundamental en el preprocesamiento de

imágenes satelitales ópticas, ya que la presencia de nubes y sus sombras altera la señal espectral,
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reduce la observabilidad de la superficie e introduce sesgos en los productos derivados (Garcia

et al., 2025; Liang et al., 2024). Las técnicas utilizadas para este fin pueden agruparse en dos

enfoques principales: (i) métodos basados en metadatos de calidad (QA/QC) y (ii) métodos

multitemporales y de composición.

Métodos Multi-temporales y de Composición.

Bandas de calidad (QA/QC): Muchos productos satelitales incluyen bandas especializa-

das para la identificación de píxeles como nubes, sombras, nieve, agua o saturación.

En sensores como Landsat, estas bandas codifican información binaria o multibit

(QA_PIXEL, QA_RADSAT), permitiendo enmascarar nubes, sombras y píxeles saturados

mediante operaciones lógicas (Liang et al., 2024).

Índices probabilísticos de claridad (Cloud Score+): Cloud Score+ es un método

basado en la combinación de múltiples métricas espectrales, estadísticas y físicas para

obtener un valor continuo de “claridad”. Los píxeles con valores altos se consideran

confiables, permitiendo generar máscaras más flexibles que las basadas únicamente en

clasificaciones discretas.

Composición temporal (mediana o percentiles): Es una de las técnicas más utilizadas,

ya que reduce valores atípicos asociados a nubes y sombras, y genera representaciones

más estables y realistas de la superficie terrestre (Garcia et al., 2025; Karurung et al.,

2025).

2.6.2 Remuestreo

El remuestreo (resampling) constituye una etapa de preprocesamiento ampliamente

empleada en teledetección cuando se integran múltiples conjuntos de datos con distintas

resoluciones espaciales (Luo & Chen, 2025). Este procedimiento permite unificar la resolución

espacial de las variables de entrada, con el fin de garantizar la coherencia analítica y la

compatibilidad espacial entre las distintas fuentes (Rotich et al., 2025a).

Técnicas de Remuestreo.
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Vecino más cercano (Nearest Neighbor): Es un método ampliamente utilizado por su

fácil implementación y por la conservación de la información espectral original (Ettehadi

et al., 2019).

Bilineal (Bilinear Interpolation): Utiliza el valor medio ponderado de los cuatro píxeles

circundantes. Esto da como resultado píxeles suavizados (Guth et al., 2021).

Bicúbica (Bicubic Interpolation): Es una técnica de orden superior que ofrece una

calidad de imagen mejorada en comparación con las anteriores (Guria et al., 2024).

Consecuencias del Cambio de Resolución. El remuestreo influye directamente en la calidad

de los datos:

Introducción de distorsiones: El remuestreo de un mapa casi siempre resulta en

distorsiones debido al desplazamiento de píxeles y ajustes de tamaño (Guth et al.,

2021; Zambrano-Luna et al., 2025).

Pérdida de detalle (Downscaling - Aumento de tamaño de píxel):

• La conversión de una resolución fina a una más gruesa provoca una pérdida

de detalles espaciales y un aumento en el número de píxeles mixtos (Ettehadi

et al., 2019), simplifica el análisis, pero conlleva la pérdida de detalles más finos

(Pande et al., 2024).

• El aumento del tamaño de la cuadrícula conduce a la pérdida de valores extremos

(como elevaciones altas y valles), acercando los valores a la media (Guth et al.,

2021).

Mejora potencial del detalle (Upscaling - Reducción de tamaño de píxel):

• Generalmente, se prefieren píxeles más pequeños porque tienen el potencial de

acomodar un detalle más fino (Guth et al., 2021).

• Se ha sugerido que el downscaling (hacia una resolución más fina) es más

adecuado para la clasificación de cobertura terrestre, ya que utiliza por completo

la información detallada de las bandas de alta resolución (Ettehadi et al., 2019).
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• Sin embargo, el remuestreo posterior a una resolución más pequeña (hacer un

upscaling por interpolación) siempre hará que el tamaño del píxel y la resolución

espacial intrínseca de los datos diverjan (Guth et al., 2021).

2.6.3 Índices Espectrales

Los Índices Espectrales (IE) son herramientas cuantitativas adimensionales, derivadas de

datos de teledetección, diseñadas para realzar y caracterizar propiedades biofísicas específicas

de la superficie terrestre (Ezekiel, 2017; Patle, 2024). Estos índices se calculan típicamente

mediante operaciones algebraicas que combinan los valores de reflectancia superficial (SR)

medidos en dos o más bandas espectrales (Ezekiel, 2017). Su incorporación en los procesos de

clasificación supervisada contribuye en la mejora de la precisión de los mapas temáticos de Uso

y Cobertura del Suelo (LULC) (K. C. Roy et al., 2024).

Su propósito es realzar fenómenos o características específicas de la superficie terrestre

que no son evidentes en las bandas individuales, sirviendo como indicadores útiles para modelar

o inferir dinámicas biofísicas (Patle, 2024). En el contexto de la clasificación LULC, la inclusión

de índices espectrales como variables predictoras adicionales ha demostrado consistentemente

mejorar la precisión de los mapas temáticos resultantes (Ganjirad, 2024).

La mayoría de los índices espectrales comúnmente utilizados se construyen bajo la forma

de un Índice de Diferencia Normalizada (NDI), calculado como el cociente entre la diferencia y

la suma de la reflectancia en dos bandas seleccionadas. Esta normalización produce valores que

generalmente oscilan en el rango de -1 a +1 (Dahal et al., 2024). Un valor cercano a +1 suele

indicar una alta probabilidad de presencia o una fuerte expresión de la característica biofísica

que el índice está diseñado para detectar, mientras que valores bajos o negativos indican ausencia

o baja expresión (Ezekiel, 2017). En la Tabla 4 se detallan los índices espectrales seleccionados

por su capacidad para discriminar las coberturas de interés en el área de estudio.

Índice de Vegetación de Diferencia Normalizada (NDVI): . Evalúa la presencia, vigor

y densidad de vegetación fotosintéticamente activa (K. C. Roy et al., 2024).

Valores altos: vegetación densa y saludable (Wijayanto et al., 2025).

Valores negativos: superficies sin vegetación (suelo desnudo, roca, agua, nieve) (Pham
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Tabla 4
Índices Espectrales (IE) utilizados en el estudio.

IE Nombre Completo Fórmula

NDVI Índice de Vegetación de Diferencia
Normalizada

NIR−RED
NIR+RED (Shrestha et al., 2023)

SAVI Índice de Vegetación Ajustado al Suelo (NIR−RED)
(NIR+RED+!)

× (1 + !) (Belay et al.,
2024)

NDMI Índice de Humedad de Diferencia
Normalizada

NIR−SWIR1
NIR+SWIR1 (Youssef, 2024)

NDBI Índice de Diferencia Normalizada de
Área Construida

SWIR1−NIR
SWIR1+NIR (Mhangara et al., 2024)

UI Índice Urbano SWIR2−NIR
SWIR2+NIR (M. S. Khan et al., 2021)

BSI Índice de Suelo Desnudo (Normaliza-
do)

(RED+SWIR1)−(NIR+BLUE)
(RED+SWIR1)+(NIR+BLUE) (Ganjirad,

2024)

Nota. NIR: Infrarrojo Cercano; RED: Rojo; BLUE: Azul; SWIR1: Infrarrojo de Onda Corta 1;
SWIR2: Infrarrojo de Onda Corta 2; L: Factor de ajuste del suelo para SAVI (usualmente 0.5).

& Ali, 2024).

Índice de Vegetación Ajustado al Suelo (SAVI): . Variante del NDVI que reduce

la influencia del suelo en áreas con vegetación escasa. Incluye un factor de corrección !

(típicamente ! = 0.5) (Belay et al., 2024).

Índice de Diferencia Normalizada de Área Construida (NDBI): . Utilizado para

identificar zonas urbanas o construidas (built-up) (Dahal et al., 2024; K. C. Roy et al., 2024).

Valores altos: áreas edificadas (Pham & Ali, 2024).

Valores negativos: cuerpos de agua o vegetación densa (Dahal et al., 2024).

Índice de Humedad de Diferencia Normalizada (NDMI):. Informa sobre el contenido

de humedad en la vegetación y el suelo (Ishtiaque et al., 2021; Kandulna et al., 2025).

Valores altos: alta humedad (vegetación vigorosa, agua).

Valores bajos: sequedad (suelo desnudo, vegetación estresada, zonas construidas).

Índice de Suelo Desnudo (BSI):. Destaca áreas desprovistas de vegetación (suelo

expuesto, superficies erosionadas, caminos de tierra) (Shrestha et al., 2023).

Índice Urbano (UI): . Resalta características espectrales de zonas urbanas utilizando

la diferencia entre SWIR2 y NIR (Hidalgo-García & Arco-Díaz, 2022).



36

2.6.4 Variables Topográficas

Las variables topográficas describen la forma y las características del relieve terrestre.

Son factores importantes que influyen en diversos procesos ambientales y en la distribución

espacial de las coberturas del suelo.

Modelo Digital de Elevación (DEM). Un Modelo Digital de Elevación (DEM - Digital

Elevation Model) es una representación digital y rasterizada de la topografía de una superficie

(Figura 12). Consiste en una matriz regular de celdas (píxeles), donde cada celda almacena un

valor que representa la elevación (altitud, Z) en una ubicación geográfica específica (X, Y).

Específicamente, un DEM representa la elevación del “terreno desnudo” (bare earth), es decir,

la superficie del suelo sin incluir elementos sobrepuestos como vegetación (árboles, arbustos)

o estructuras artificiales (edificios) (Equator Studios, 2023). Los DEM son utilizados en una

amplia gama de disciplinas, incluyendo geomorfología, hidrología, planificación territorial,

gestión de riesgos naturales y teledetección (Guth et al., 2021). Son producidos por diversas

entidades, como agencias cartográficas nacionales, instituciones científicas y proveedores

comerciales de datos geoespaciales (Guth et al., 2021). Proporciona directamente la Elevación

y se utiliza para derivar la Pendiente (Slope) y el Aspecto (Aspect) (Shen et al., 2024).

ALOS World 3D-30m (ALOSDEM). El ALOSDEM, proveniente del satélite Advanced Land

Observing Satellite, es una fuente de datos topográficos de alta resolución, frecuentemente

citado con una resolución de 12.5×12.5 metros (Shen et al., 2024). Los datos del sensor ALOS

PALSAR (banda L) se han integrado con datos LiDAR y climáticos para mejorar los mapas

de biomasa aérea sobre bosques secos tropicales, lo que demuestra su valor en el monitoreo

forestal de LULC (Singh et al., 2024).

Copernicus Global DEM (CGDEM). Los productos de elevación del Programa Copernicus

se utilizan tanto como fuente de variables topográficas como para fines de validación de otros

productos de cobertura terrestre, con una resolución de 30 metros (Z. Xu et al., 2025).
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Figura 12
Modelo Digital de Elevación (DEM).

Nota. Fuente: Simou et al., 2014.

2.6.5 Análisis de Cambios Multitemporal

El análisis de cambios multitemporal, también conocido como detección de cambios

(change detection), es una metodología central en teledetección y SIG que consiste en analizar

imágenes o datos geoespaciales adquiridos sobre la misma área geográfica en diferentes

momentos para identificar, cuantificar y caracterizar las transformaciones ocurridas entre esas

fechas (Duan et al., 2025). Su propósito principal es determinar qué ha cambiado, dónde ha

cambiado y cuál ha sido la magnitud de dicho cambio en un período específico (Tadesse,

2024). Este análisis permite comprender la dinámica espacio-temporal de los procesos de

transformación del paisaje (Sarif & Gupta, 2024). Además, el análisis histórico de cambios

constituye la base para la calibración y validación de modelos de simulación y predicción de

escenarios futuros de LULC (Shrestha et al., 2023).
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Matriz de Probabilidad de Transición. La Matriz de Probabilidad de Transición es una

herramienta cuantitativa fundamental derivada del análisis de cambios LULC entre dos fechas,

utilizada para describir la dinámica de las transformaciones observadas. Es un componente

clave en los modelos de Cadenas de Markov aplicados a la simulación LULC (Toscan et al.,

2025).

1. La matriz de probabilidad de transición representa las probabilidades estimadas de que

un píxel que pertenecía a la clase de cobertura 8 en el tiempo inicial (C1) transite a la

clase 9 en el tiempo final (C2) (Mansour et al., 2025).

2. Estructura e Interpretación:

Es una matriz cuadrada donde las filas representan las clases LULC en el tiempo

inicial (C1) y las columnas representan las mismas clases en el tiempo final (C2)

(Toscan et al., 2025).

Entradas Diagonales (%88): Los elementos a lo largo de la diagonal principal

representan la probabilidad de persistencia o estabilidad de cada clase. Un valor

cercano a 1 indica que una alta proporción del área de esa clase en C1 permaneció

sin cambios en C2 (Pham & Ali, 2024).

Entradas Fuera de la Diagonal (%8 9 , 8 ≠ 9): Representan las probabilidades de

transición de la clase 8 a la clase 9 . Indican la proporción del área de la clase 8

en C1 que se transformó a la clase 9 en C2 (Duan et al., 2025).

Propiedad Matemática: Cada elemento %8 9 es una probabilidad, por lo que su

valor está comprendido entre 0 y 1 (0 ≤ %8 9 ≤ 1). Además, la suma de las

probabilidades a lo largo de cada fila debe ser igual a 1 (
∑=
9=1

%8 9 = 1), indicando

que toda el área de la clase 8 en C1 debe asignarse a alguna clase (incluida ella

misma) en C2 (Mansour et al., 2025).

Consideraciones sobre la Escala Temporal. La elección de los intervalos de tiempo para

el análisis de cambios y la derivación de matrices de transición es un aspecto metodológico
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importante. Diferentes escalas temporales pueden revelar distintos aspectos de la dinámica

LULC, y una elección inadecuada puede afectar la interpretación de los resultados:

Intervalos Cortos: Un período de tiempo muy corto entre observaciones puede capturar

fluctuaciones estacionales o cambios menores, pero podría no reflejar tendencias

estructurales a largo plazo. Además, puede magnificar el impacto del “ruido” o errores

de clasificación entre fechas (Guo & Shen, 2024).

Intervalos Largos: Un período de tiempo muy extenso puede promediar u ocultar cambios

intermedios importantes y dificultar la atribución de los cambios a factores causales

específicos (Guo & Shen, 2024).

Práctica Común: En estudios de modelado y predicción LULC, es común utilizar

intervalos de análisis histórico que oscilan entre 5 y 15 años para calibrar los modelos

de transición que luego se usan para proyectar cambios futuros (Bendechou et al., 2024).

2.7 Aprendizaje Automático

El Aprendizaje Automático (Machine Learning, ML) es un subcampo de la Inteligencia

Artificial (IA) (Qamar & Zardari, 2023). Los modelos de Aprendizaje Automático comprenden

un conjunto de metodologías computacionales impulsadas por datos, diseñadas para identificar

patrones, relaciones y estructuras subyacentes en conjuntos de datos multidimensionales

(Amindin et al., 2024).

Existen diversas categorías de aprendizaje automático, siendo las principales:

Aprendizaje Supervisado: En esta modalidad, el algoritmo se entrena utilizando un

conjunto de datos previamente etiquetado, donde cada ejemplo de entrada está asociado

a una salida o etiqueta conocida. El objetivo es que el modelo aprenda una función de

mapeo que pueda generalizar a nuevos datos no vistos.

Aprendizaje No Supervisado: En contraste, este enfoque utiliza datos no etiquetados. El

algoritmo explora los datos de manera autónoma para descubrir patrones, agrupaciones

o estructuras inherentes sin guía explícita sobre las salidas correctas.
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Para tareas de clasificación, como la identificación de coberturas del suelo, la

clasificación supervisada generalmente presenta resultados con mayor precisión (accuracy)

en comparación con los métodos no supervisados (Xiang, 2024).

2.7.1 Métodos de Muestreo

Existen diversas estrategias para la selección de datos de muestra, entre ellas el Muestreo

Aleatorio Simple (Simple Random Sampling, SRS), el Muestreo Aleatorio Estratificado

(Stratified Random Sampling, STRAT) y el Muestreo Sistemático (Systematic Sampling,

SYSTEM).

Muestreo Aleatorio Estratificado (Stratified Random Sampling, STRAT). El muestreo

aleatorio estratificado (STRAT) resulta especialmente adecuado cuando se requiere garantizar

una representación equilibrada de todas las categorías presentes en el área de estudio. Al dividir

la población en grupos homogéneos reduce el sesgo, mejora la robustez de la evaluación de la

precisión y asegura una distribución proporcional de los puntos de muestra, incrementando la

fiabilidad del proceso de validación (Wijayanto et al., 2025).

Se utiliza ampliamente en mapeo LULC para la generación de muestras de entrenamiento

y prueba (Khosravi, 2025).

La estratificación asegura una representación equilibrada de todas las clases temáticas,

reduciendo el sesgo y mejorando la precisión de las evaluaciones (Wijayanto et al.,

2025).

Al asignar puntos de muestra de forma proporcional a cada categoría, se incrementa

la consistencia y fiabilidad de la validación de clasificaciones (Ahmad et al., 2025;

Wijayanto et al., 2025).

2.7.2 Clasificación Supervisada de Coberturas del Suelo

La clasificación supervisada es un método ampliamente usado en teledetección y ML

para el análisis cuantitativo y la segmentación temática de imágenes satelitales (Patel & Vyas,
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2024). Los mapas resultantes de la clasificación LULC proporcionan información que permite

identificar y cuantificar el tipo, la ubicación, el uso y la extensión de las diversas características

biofísicas (naturales) y antrópicas (creadas por el ser humano) sobre la superficie terrestre

(Figura 13).

Figura 13
Ejemplo clasificación de Coberturas del Suelo.

Nota. Fuente: Brown et al., 2022.

El proceso metodológico de la clasificación supervisada se fundamenta en las siguientes

etapas:

1. Se selecciona un conjunto de áreas o puntos de muestra representativos dentro de la

imagen, correspondientes a las distintas categorías LULC de interés (clases). La calidad

y representatividad de estas muestras son críticas para el desempeño del clasificador

(Xiang, 2024).

2. Utilizando las muestras de entrenamiento etiquetadas, el algoritmo clasificador de ML

aprende a identificar los patrones característicos (espectrales, texturales, contextuales)

asociados a cada clase (Sarif & Gupta, 2024).

3. Una vez entrenado, el modelo establece una función discriminante 5 (x) que se aplica a

cada píxel x de la imagen completa. Esta función asigna automáticamente cada píxel a
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una de las< categorías predefinidas�: , segmentando así la imagen en un mapa temático

LULC (M. Khan et al., 2023):

Píxel x ∈ R
= → �: ∈ {�1, �2, . . . , �<} (1)

donde x es el vector de características del píxel (valores de reflectancia en = bandas) y

�: es la clase asignada.

Algoritmo Bosque Aleatorio (Random Forest, RF). El Bosque Aleatorio (Random Forest,

RF) es un algoritmo de aprendizaje automático supervisado, no paramétrico, propuesto por

Breiman en 2001 (K. C. Roy et al., 2024). Es un método de aprendizaje por conjuntos (ensemble

learning) que construye y combina las predicciones de múltiples árboles de decisión (Decision

Trees, DTs) individuales para mejorar la precisión general, la robustez y la estabilidad de las

predicciones (Ganjirad, 2024; Sharma et al., 2024).

Durante el entrenamiento, se crean múltiples subconjuntos de datos mediante muestreo

aleatorio con reemplazo a partir del conjunto de entrenamiento original. Cada árbol de decisión

del bosque se entrena de forma independiente utilizando uno de estos subconjuntos (Chen, 2024).

Además, en cada nodo de cada árbol, la división óptima se busca solo sobre un subconjunto

aleatorio de las variables predictoras disponibles, lo que introduce una segunda fuente de

aleatoriedad y ayuda a decorrelacionar los árboles. La predicción final del bosque se obtiene

agregando las predicciones de todos los árboles individuales mediante el voto mayoritario en

tareas de clasificación, o calculando la media en tareas de regresión (Arunab & Mathew, 2024;

Sharma et al., 2024). Esta estrategia combinada confiere al RF una notable versatilidad para

abordar una amplia gama de problemas (DataScientest, 2025).

La estructura conceptual de un Bosque Aleatorio se puede representar como un conjunto

de árboles:

{ℎ(x,Θ: ), : = 1, . . . ,  } (2)

donde ℎ(x,Θ: ) representa el :-ésimo árbol de decisión entrenado con un vector de parámetros

aleatorios Θ: (que incluye el subconjunto de datos bootstrap y las variables consideradas en
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cada nodo), x es el vector de variables de entrada para un píxel, y  es el número total de árboles

en el bosque (K. C. Roy et al., 2024). La predicción final se basa en la agregación de las salidas

ℎ(x,Θ: ) para : = 1, . . . ,  .

El algoritmo RF presenta varias características que explican su amplio uso en

clasificación LULC:

Frecuentemente alcanza precisiones de clasificación superiores a otros algoritmos como

SVM o CART, logrando a menudo Precisiones Globales (OA) por encima del 90 % y

coeficientes Kappa (^) superiores a 0.85 en aplicaciones LULC (Zafar, Zubair, Zha,

Fahd & Nadeem, 2024).

Es inherentemente resistente al ruido en los datos, a la presencia de valores atípicos

(outliers) y exhibe una baja tendencia al sobreajuste (overfitting) comparado con un

único árbol de decisión, lo que mejora la capacidad de generalización del modelo a

datos no vistos (Amindin et al., 2024; IBM, 2025; Vahid & Aly, 2025).

Puede procesar eficazmente conjuntos de datos con un gran número de variables

predictoras (alta dimensionalidad), como los derivados de imágenes multiespectrales

con múltiples índices y variables auxiliares. Tolera adecuadamente la multicolinealidad

entre variables (Amindin et al., 2024; Zafar, Zubair, Zha, Fahd & Nadeem, 2024).

Es paralelizable y generalmente requiere menos ajuste fino de hiperparámetros en

comparación con otros métodos como SVM o redes neuronales profundas (Badshah

et al., 2024; Wahdatyar, 2024; Wahdatyar et al., 2024).

RF proporciona una medida intrínseca de la importancia relativa de cada variable

predictora en el modelo, lo cual es útil para la interpretación del modelo y la selección

de características (A et al., 2024; Chen, 2024).

2.7.3 Modelos ML para Predicción de Transiciones LULC

Redes Neuronales Artificiales (ANN). Actualmente se utiliza con frecuencia el aprendizaje

automático para derivar las reglas de transición de manera empírica a partir de datos históricos



44

de cambios en la cobertura y uso del suelo (LULC) y de sus factores impulsores. Dentro de estos

métodos, las Redes Neuronales Artificiales (ANN) resultan idóneas para modelar, debido a su

capacidad para modelar relaciones no lineales y de alta complejidad entre variables predictoras

y la probabilidad de transición LULC (Suthar et al., 2024; M. Zhang et al., 2024).

Perceptrón Multicapa (MLP). El Perceptrón Multicapa (MLP) es un modelo representativo

dentro de las Redes Neuronales Artificiales de tipo feed-forward (Bhuyan et al., 2024; G.

Liu et al., 2024; Xiang et al., 2024). Se caracteriza por su estructura sencilla, su facilidad de

entrenamiento, un costo computacional moderado y tiempos de predicción eficientes, lo que

ha favorecido su aplicación en tareas como la simulación de la expansión urbana (T. Xu et al.,

2022).

El objetivo principal del MLP es modelar relaciones complejas y no lineales entre

variables para la generación de mapas de potencial de transición entre clases de cobertura y uso

del suelo (Bendechou et al., 2024). Cada mapa expresa, para cada unidad espacial de análisis, la

aptitud relativa para transicionar hacia una clase futura específica. Estos mapas actúan como el

conjunto de reglas espaciales ( 5 ) que guían la asignación de cambios realizada por el Autómata

Celular durante la simulación del período siguiente (C2 → C3) (Naeem et al., 2025). La Figura 14

presenta una arquitectura general de una ANN.

Figura 14
Arquitectura general de una Red Neuronal Artificial.

Nota. La red está compuesta por capas de entrada, ocultas y de salida. Fuente: geeksforgeeks,
2024.
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El entrenamiento de un MLP se realiza habitualmente mediante el algoritmo de

retropropagación (backpropagation), que ajusta los pesos de la red para minimizar una función

de error (Ishtiaque et al., 2021; K. C. Roy et al., 2024).

El optimizador es responsable de la actualización de los pesos durante el entrenamiento.

El Descenso de Gradiente Estocástico (SGD) es uno de los métodos más utilizados (Chaulagain

et al., 2025). La incorporación del término de momento (U) permite acelerar la convergencia

del algoritmo en direcciones coherentes del gradiente y reducir oscilaciones, lo que mejora la

eficiencia del entrenamiento (Ishtiaque et al., 2021; K. C. Roy et al., 2024; Shen et al., 2024).

La función de activación introduce la no linealidad necesaria para que el modelo pueda

capturar relaciones complejas entre las variables (Hussain et al., 2025). La función tangente

hiperbólica (Tanh) se emplea con frecuencia en las capas ocultas, dado que transforma los valores

en el intervalo entre -1 y 1 (Alam & Maiti, 2025; Fu et al., 2024), lo que puede contribuir a

estabilizar el entrenamiento. Diversos estudios han reportado resultados favorables del uso de

Tanh en arquitecturas ANN para predicciones de transición LULC (Tasan et al., 2025).

La función Softmax se utiliza comúnmente en la capa de salida de modelos de

clasificación multiclase, ya que transforma un vector de valores no normalizados en una

distribución de probabilidad normalizada (contributors, 2025). Esta función garantiza que todas

las probabilidades se encuentren en el rango [0, 1] y que su suma sea igual a 1:

f(I8) =
4I8

∑ 
9=1
4I 9

(3)

El tamaño del lote determina cuántas muestras del conjunto de entrenamiento se procesan

antes de actualizar los pesos (Hussain et al., 2025). Un tamaño de lote igual a 1 corresponde

al aprendizaje estocástico. Este enfoque realiza una actualización de los pesos después de cada

muestra individual, lo que introduce variabilidad en el proceso de optimización y permite una

adaptación más fina de los parámetros del modelo.

2.7.4 Métodos de Búsqueda de Hiperparámetros (HPO)

La búsqueda de hiperparámetros es un paso esencial en el aprendizaje automático

(Machine Learning - ML) para lograr una alta precisión y un rendimiento óptimo de los
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modelos (B. Roy, 2021). Los hiperparámetros son propiedades o parámetros del modelo que se

configuran antes del entrenamiento y controlan el proceso de aprendizaje supervisado, afectando

directamente la precisión (B. Roy, 2021).

Búsqueda en Cuadrícula (Grid Search).

Es un enfoque sistemático diseñado para identificar los mejores hiperparámetros. Su

método consiste en evaluar cada combinación posible de valores de parámetros que han

sido predefinidos dentro de un rango específico (Hanh et al., 2025).

A pesar de su simplicidad, el método de Grid Search a menudo proporciona resultados

fiables (Hanh et al., 2025).

Este método evalúa el rendimiento del modelo (generalmente la precisión) mediante el

uso de validación cruzada (cross-validation) (Maddah et al., 2025). Después de probar

todas las combinaciones, identifica el conjunto de hiperparámetros que proporciona el

mayor rendimiento (Maddah et al., 2025).

2.8 Modelos Híbridos para Simulación Espacio - Temporal

La simulación espacio-temporal busca representar explícitamente tanto la evolución

temporal como la distribución espacial de los cambios LULC (K. C. Roy et al., 2024).

Para capturar la complejidad de las dinámicas LULC, que involucran interacciones no

lineales entre factores biofísicos y socioeconómicos a diferentes escalas, los modelos híbridos

han demostrado ser particularmente efectivos. Estos modelos integran las fortalezas de diferentes

enfoques algorítmicos (Risma, 2019). Un enfoque híbrido prominente y ampliamente utilizado

es la combinación de Autómatas Celulares (CA) y Cadenas de Markov (MC), a menudo

potenciado con técnicas de aprendizaje automático para definir las reglas de transición espacial.

2.8.1 Modelo Híbrido CA-Markov

El modelo CA-Markov es un método eficaz y frecuentemente empleado que fusiona

dos componentes metodológicos complementarios para simular la dinámica LULC de manera

integrada en el espacio y el tiempo (Duan et al., 2025).
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2.8.2 Componente Temporal: Cadenas de Markov y Matrices de Transición

Una Cadena de Markov es un proceso estocástico que modela la probabilidad de

transición entre diferentes estados a lo largo del tiempo, asumiendo que el estado futuro

depende únicamente del estado actual (propiedad Markoviana). Aplicado al análisis LULC

entre dos fechas (C1 y C2), el análisis de Markov cuantifica empíricamente la probabilidad de que

una unidad de área (píxel) perteneciente a la clase 8 en C1 transite a la clase 9 en C2 (Pham & Ali,

2024; M. Zhang et al., 2024). El resultado principal de este análisis es la Matriz de Probabilidad

de Transición (%8 9 ), la cual resume estas probabilidades y define la cantidad total de cambio

esperado (“demanda de transición”) entre cada par de clases para el siguiente intervalo de tiempo

(Mansour et al., 2025). Sin embargo, el modelo de Markov intrínsecamente carece de capacidad

espacial, predice cuánto cambio ocurrirá, pero no dónde ocurrirá, asumiendo implícitamente

una distribución espacial aleatoria de las transiciones (Kashani et al., 2025).

2.8.3 Componente Espacial: Autómatas Celulares (CA)

Para superar la limitación espacial del modelo de Markov, se integra un Autómata

Celular. Un CA es un modelo dinámico espacialmente explícito, basado en una cuadrícula

regular de celdas (píxeles). El estado futuro de una celda en el tiempo C+1 ((C+1) está determinado

por su propio estado actual ((C) y el estado de sus celdas vecinas (#), de acuerdo con un conjunto

predefinido de reglas de transición locales ( 5 ) (Z. Yang et al., 2023; X. Zhang et al., 2023).

Formalmente, su funcionamiento se puede describir como:

(C+1 = 5 ((C , #) (4)

En el modelo híbrido CA-Markov, el CA actúa como el motor de asignación espacial. Utiliza la

cantidad total de cambio por transición calculada por la Cadena de Markov (la “demanda”) y la

distribuye espacialmente sobre la cuadrícula. Esta asignación no es aleatoria, sino que se basa

en la “aptitud” o “idoneidad” de cada celda para experimentar una transición específica, la cual

se determina mediante las reglas de transición ( 5 ). Estas reglas suelen incorporar información

sobre factores locales y la influencia del vecindario (Belay et al., 2024; Kashani et al., 2025).
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2.8.4 Variables Predictoras

Las variables predictoras, también denominadas factores impulsores (driving factors o

drivers), son las variables espaciales que representan los factores biofísicos y socioeconómicos.

Estas variables sirven como entradas para entrenar el modelo de aprendizaje automático que

genera los mapas de potencial de transición (Alqadhi et al., 2024; Xiang, 2024).

Factores Topográficos: Derivados de un DEM, como la elevación, la pendiente y el

aspecto (orientación de la ladera).

Factores de Proximidad o Accesibilidad: Distancia euclidiana a elementos lineales

(carreteras, ríos) o puntuales (centros urbanos). La Figura 15 muestra ejemplos visuales

de mapas de proximidad.

Factores Socioeconómicos: Densidad de población, precio del suelo, zonificación,

políticas de uso del suelo.

Factores Ambientales: Tipo de suelo, precipitación, temperatura.

Figura 15
Ejemplos de Variables Predictoras de Proximidad.

(a) Proximidad a ríos.
(b) Distancia a centros
urbanos. (c) Proximidad a carreteras.

Nota. Mapas basados en distancia euclidiana. Fuente (a) y (c): Al-Abadi, 2015. Fuente (b):
Gharbia et al., 2016.
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2.8.5 Análisis de Colinealidad

Se refiere al fenómeno estadístico donde dos o más variables predictoras exhiben una

fuerte correlación (Z. Xu et al., 2025), lo que introduce información redundante en el modelo

(D. Zhao et al., 2025).

El objetivo principal de este análisis es asegurar la validez de la predicción (Hanh et al.,

2025). Los modelos de aprendizaje automático son sensibles a la multicolinealidad, la cual puede

distorsionar la precisión (Alam & Maiti, 2025), conducir al sobreajuste (overfitting) (Buthelezi

et al., 2024) y dificultar la interpretación de la contribución individual de cada variable (Z. Xu

et al., 2025). Si se detecta una alta correlación, es necesario eliminar una de las variables en

conflicto para evitar resultados sesgados (Danso et al., 2025).

Coeficiente de Correlación de Pearson (r). El Coeficiente de Correlación de Pearson (PCC)

es uno de los métodos más usados para medir la relación lineal entre dos variables (Hanh

et al., 2025; Naeem et al., 2025). Se considera que existe una fuerte correlación cuando el valor

absoluto |A | > 0.7 o |A | > 0.8 (Buthelezi et al., 2024; Hanh et al., 2025; Tayyab et al., 2024).

El coeficiente se calcula dividiendo la covarianza de las dos variables por el producto

de sus desviaciones estándar (Badavath & Sahoo, 2025)

A =

=
∑

8=1

(G8 − Ḡ) (H8 − H̄)

√

√

=
∑

8=1

(G8 − Ḡ)
2

√

√

=
∑

8=1

(H8 − H̄)
2

Donde A es el coeficiente de correlación, G8 y H8 son los valores de las variables G e H, Ḡ

y H̄ representan los valores promedio de cada variable, = representa el número de observaciones

para G y H (Naeem et al., 2025).
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2.9 Métricas de Evaluación de Modelos

2.9.1 Métricas de Evaluación de la Clasificación

Matriz de Confusión (Confusion Matrix, MC). La Matriz de Confusión es la herramienta

más utilizada para evaluar el desempeño de un modelo de clasificación supervisada (Patel &

Vyas, 2024).

Propósito y Estructura:

Es una matriz de tamaño = × =, donde = es el número de clases temáticas. Compara las

clases reales o de referencia (verdad de terreno, usualmente en las filas) con las clases

asignadas por el modelo (predicciones, usualmente en las columnas).

Los elementos a lo largo de la diagonal principal ("�88) representan el número de

muestras (píxeles) que fueron clasificadas correctamente, es decir, donde la clase

predicha coincide con la clase real (Ezekiel, 2017). Los elementos fuera de la diagonal

("�8 9 , 8 ≠ 9) representan las clasificaciones erróneas (confusiones entre clases).

La matriz de confusión permite derivar cuatro conteos básicos (Anzalone et al., 2024):

1. Verdadero Positivo (VP o TP - True Positive): Número de muestras positivas que fueron

correctamente clasificadas como positivas.

2. Verdadero Negativo (VN o TN - True Negative): Número de muestras negativas que

fueron correctamente clasificadas como negativas.

3. Falso Positivo (FP - False Positive): Número de muestras negativas que fueron

incorrectamente clasificadas como positivas. También se conoce como Error de Tipo I

o Error de Comisión.

4. Falso Negativo (FN - False Negative): Número de muestras positivas que fueron

incorrectamente clasificadas como negativas. También se conoce como Error de Tipo II

o Error de Omisión.
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Métricas de Precisión Derivadas de la Matriz de Confusión. La Matriz de Confusión

permite evaluar el desempeño de un clasificador (Kondum et al., 2024). Entre las más utilizadas

se encuentra la Precisión Global (Overall Accuracy, OA), que resume la proporción total de

muestras correctamente clasificadas (Tola & Deyassa, 2024; X. Wu et al., 2024). Aunque es

sencilla e intuitiva, puede resultar insuficiente cuando existe desbalance entre clases (Ezekiel,

2017).

Precisión Global (Overall Accuracy, OA). La OA se obtiene dividiendo la suma de

los elementos de la diagonal principal de la matriz por el número total de muestras evaluadas

(Ishtiaque et al., 2021). Su valor oscila entre 0 (clasificación completamente incorrecta) y 1

(clasificación perfecta), o entre 0 % y 100 %.

OA =

∑=
8=1
"�88

#
=

)% + )#

)% + �% + )# + �#
(×100 %) (5)

donde "�88 son los elementos diagonales de la matriz, # es el total de muestras, y la

expresión alternativa corresponde al caso binario (Gündüz, 2025; Shrestha et al., 2023).

Precisión del Usuario (User Accuracy, UA) o Precisión (Precision). La UA mide la

fiabilidad del mapa desde la perspectiva del usuario (Gündüz, 2025). Para una clase 8, representa

la proporción de muestras clasificadas como esa clase que realmente pertenecen a ella (Ezekiel,

2017; K. C. Roy et al., 2024). Refleja la probabilidad de que un píxel etiquetado como clase 8

sea correcto, y está inversamente asociada al Error de Comisión (falsos positivos) (Anzalone

et al., 2024).

UA (Precision) =
"�88

∑=
:=1

"�:8
=

)%

)% + �%
(×100 %) (6)

donde
∑

: "�:8 corresponde al total de muestras clasificadas como clase 8 (total de la columna).

Precisión del Productor (Producer Accuracy, PA) o Exhaustividad (Recall /

Sensibilidad). La PA evalúa qué tan bien el mapa representa la realidad para una clase

específica (Gündüz, 2025). Para la clase 8, es la proporción de muestras de referencia de

esa clase que fueron correctamente identificadas en el mapa (K. C. Roy et al., 2024). Está

inversamente asociada al Error de Omisión (falsos negativos) (Anzalone et al., 2024).
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PA (Recall) =
"�88

∑=
9=1

"�8 9
=

)%

)% + �#
(×100 %) (7)

donde
∑

9 "�8 9 corresponde al total de muestras reales de la clase 8 (total de la fila).

Puntuación F1 (F1-score). El F1 es la media armónica entre la Precisión (UA) y

la Exhaustividad (PA). Proporciona una métrica equilibrada que integra simultáneamente los

errores de comisión y omisión (Anzalone et al., 2024). Resulta especialmente útil cuando las

clases están desbalanceadas o cuando se requiere ponderar por igual ambos tipos de error

(Rotich et al., 2025b).

�1 = 2 ×
Precision × Recall
Precision + Recall

(8)

Coeficiente Kappa (K). El Coeficiente Kappa ( ) es una métrica que evalúa el grado de

concordancia entre un mapa clasificado y los datos de referencia, corrigiendo el acuerdo que

podría ocurrir por azar (B. Roy, 2021). A diferencia de la Precisión Global, Kappa incorpora

explícitamente la probabilidad de coincidencia aleatoria, lo que lo convierte en un indicador

más robusto cuando las clases son desbalanceadas.

Rango e interpretación. Kappa expresa el nivel de acuerdo más allá del azar (K. C.

Roy et al., 2024). Su valor oscila típicamente entre -1 y +1:

 > 0.80: Acuerdo casi perfecto o excelente (Tola & Deyassa, 2024).

0.61 ≤  ≤ 0.80: Acuerdo sustancial (Mhangara et al., 2024).

0.41 ≤  ≤ 0.60: Acuerdo moderado (Mhangara et al., 2024).

0.21 ≤  ≤ 0.40: Acuerdo regular o justo (Mhangara et al., 2024).

 ≤ 0.20: Acuerdo leve o pobre (Mhangara et al., 2024).

Un valor de = 1 indica concordancia perfecta; = 0 implica que el acuerdo observado

es equivalente al esperado por azar; y valores negativos reflejan un acuerdo inferior al azar.
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Cálculo del coeficiente. El Kappa se basa en la proporción de acuerdo observado (%>,

equivalente a la OA) y la proporción de acuerdo esperado por azar (%4) (Rotich et al., 2025b).

1. Fórmula conceptual:

 =
%> − %4

1 − %4
(9)

donde %> =
∑

"�88/# es la exactitud observada y %4 es la probabilidad de coincidencia

aleatoria, calculada como:

%4 =

∑=
8=1

("�8+ · "�+8)

#2
(10)

2. Fórmula matricial (Kappa de Cohen): Para el cálculo directo a partir de la matriz de

confusión, se emplea la siguiente expresión expandida:

 =
#
∑=
8=1
"�88 −

∑=
8=1

("�8+ · "�+8)

#2 −
∑=
8=1

("�8+ · "�+8)
(11)

donde: # es el número total de muestras; = es el número de clases; "�88 es el valor

diagonal (aciertos); "�8+ es la suma de la fila 8 (Total Referencia/Real); "�+8 es la

suma de la columna 8 (Total Clasificado/Mapa).

Variantes del coeficiente Kappa. Dado que el Kappa estándar penaliza tanto los errores

de ubicación como los de cantidad, se emplean variantes para descomponer el acuerdo (Pontius,

2000). Para el presente estudio se calculó el Kappa de Histograma ( ℎ8BC>), el cual evalúa el

acuerdo máximo posible dadas las proporciones marginales (totales por clase) de la matriz.

El  ℎ8BC> utiliza la concordancia máxima posible (%máx) en lugar de la observada (%>):

 ℎ8BC> =
%máx − %4

1 − %4
(12)

donde %máx se calcula sumando los mínimos de los totales marginales para cada clase:

%máx =

∑=
8=1

mı́n("�8+, "�+8)

#
(13)



54

Área Bajo la Curva ROC (AUC-ROC). El análisis de la Curva de Característica Operativa

del Receptor (ROC) y el Área Bajo la Curva (AUC) constituye una métrica para evaluar la

precisión y fiabilidad de los modelos que simulan o predicen cambios en LULC (Badshah et al.,

2024; Shrestha et al., 2023).

A diferencia de las métricas anteriores (como OA o Kappa) que evalúan una clasificación

final “dura”, el AUC-ROC determina qué tan efectivamente un modelo predice la distribución

continua de una variable booleana (probabilidad de transición), cuantificando la capacidad

de discriminar entre áreas de cambio y no cambio independientemente del umbral de corte

seleccionado (Badshah et al., 2024; Shrestha et al., 2023).

Interpretación de la Curva y el Área. La curva ROC expone el rendimiento

contrastando la Tasa de Verdaderos Positivos (Sensibilidad) en el eje Y contra la Tasa de

Falsos Positivos (1 - Especificidad) en el eje X. El valor del AUC resume este rendimiento en

un único escalar:

El valor oscila teóricamente entre 0 y 1. Un �*� = 0.5 indica un rendimiento aleatorio

(sin capacidad predictiva).

Cuanto más se aproxime el valor a 1, mayor será la capacidad del modelo para separar

correctamente las clases de transición.

Relevancia frente a otras métricas. El coeficiente Kappa presenta limitaciones para

diferenciar entre errores de cuantificación y errores de ubicación (Badshah et al., 2024). El AUC-

ROC complementa esta evaluación al validar la idoneidad de las probabilidades de transición

generadas por modelos como MLP-CA-MC, siendo una herramienta estándar en módulos de

validación de software geoespacial avanzado (Badshah et al., 2024).

2.9.2 Métricas de Evaluación de Simulación Espacio-Temporal

Las métricas de evaluación estándar, como la Precisión Global (OA) y el Coeficiente

Kappa, operan mediante una comparación estricta píxel a píxel (Ovejero-Campos, 2021). Esta

aproximación es rigurosa en el análisis geoespacial, ya que penaliza de igual manera todos

los errores sin considerar el contexto (Mas et al., 2019). Estos “casi aciertos” (near miss) son
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comunes en paisajes heterogéneos, zonas de transición (ecotonos) o al trabajar con resoluciones

moderadas (Liang et al., 2024; Robalino Trujillo, 2023).

Para obtener una evaluación más realista de la concordancia estructural, se emplean

métricas de precisión difusa (fuzzy accuracy) que relajan el criterio estricto de coincidencia,

introduciendo tolerancia espacial, temática o de escala.

Precisión Difusa por Vecindad. Este enfoque aborda la incertidumbre de localización (Hagen,

2003; Visser, 2004). En lugar de una comparación directa píxel a píxel, introduce una tolerancia

a errores de localización reconociendo el acuerdo dentro de una vecindad espacial definida,

usualmente mediante una “ventana móvil” (Esri, 2024).

Un píxel del mapa simulado se considera un “acierto difuso” si la clase correcta (según

los datos de referencia) se encuentra presente en cualquier lugar dentro de la ventana de vecindad

definida (Mas et al., 2019; Robalino Trujillo, 2023). Esta métrica cuantifica la proporción de

aciertos y “casi aciertos”, validando la capacidad del modelo para simular patrones espaciales

generales, incluso si la localización exacta a nivel de píxel presenta ligeros desplazamientos

(Ovejero-Campos, 2021).

Análisis de Validación Multiescala. El Análisis de Validación Multiescala es un enfoque

alternativo esencial para evaluar modelos LULC, dada la heterogeneidad del paisaje a diferentes

niveles de detalle (Fassnacht et al., 2014; Tiamgne et al., 2025).

El mecanismo consiste en agregar espacialmente los mapas simulado y de referencia a

resoluciones progresivamente más gruesas (H. H. Nguyen et al., 2025) y recalcular las métricas

de concordancia en cada nueva escala.

Se espera que, si el modelo captura correctamente los patrones espaciales generales, la

concordancia aumente a medida que la escala se vuelve más gruesa, ya que los pequeños errores

de localización a nivel de píxel se promedian y el acuerdo en la estructura general del paisaje

se hace evidente (Marey et al., 2025).
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2.10 Inteligencia Artificial Explicable (XAI) en la Modelización de Cobertura de Suelo

La Inteligencia Artificial Explicable (XAI) comprende procesos y métodos diseñados

para proporcionar claridad y capacidad de interpretación a los sistemas de IA, contrarrestando

la naturaleza de “caja negra” típica de modelos complejos como las redes neuronales profundas

(Mehdiyev et al., 2025a, 2025b). En el contexto de la gestión ambiental y la cartografía

de susceptibilidad, la XAI es necesaria para fomentar la confianza y validar la consistencia

ecológica de las predicciones (Pradhan et al., 2023; X. Yang et al., 2025).

2.10.1 Análisis de Dominancia de Variables mediante Permutación

Para interpretar el funcionamiento interno de este modelo de “caja negra”, se requiere

valorar la aportación específica de cada variable predictora. La Importancia de Características

por Permutación (PFI) es una técnica “agnóstica del modelo” que evalúa la influencia de cada

factor en la estabilidad predictiva (Medianovskyi et al., 2023).

El método opera bajo una premisa de ruptura de asociación, se mide la degradación en el

rendimiento del modelo cuando la relación estadística entre una variable predictora específica y

la variable objetivo es destruida mediante un reordenamiento aleatorio (shuffling) de sus valores,

manteniendo inalterada su distribución marginal (Altmann et al., 2010). Esto permite identificar

interacciones no lineales complejas entre los predictores (Díaz-Uriarte & Alvarez de Andrés,

2006).

Se define como Altmann et al. (2010):

+� 9 = (10B4 − (?4A<, 9 (14)

Donde +� 9 es la importancia de la variable 9 , (10B4 es el AUC-ROC del modelo con los

datos originales, y (?4A<, 9 es el AUC-ROC calculado tras permutar aleatoriamente el vector de

la variable 9 . Una disminución apreciable en el AUC (+� 9 ≫ 0) indica que el modelo depende

de dicha variable para discriminar las transiciones de uso de suelo.
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2.10.2 Gráficos de Dependencia Parcial

Las Curvas de Respuesta, materializadas en los Gráficos de Dependencia Parcial (PDP),

explican cómo dichas variables influyen en la predicción (X. Yang et al., 2025). Un PDP

visualiza la dependencia marginal entre una característica de interés y la variable objetivo

(susceptibilidad de cobertura de suelo), promediando el efecto de todas las demás variables del

modelo (Medianovskyi et al., 2023; Z. Yang et al., 2024). Estos gráficos son esenciales para

investigar la relación entre un factor ambiental y la cobertura de suelo, identificando umbrales

y comportamientos no lineales que los análisis de importancia global por sí solos no pueden

detectar (Mondal et al., 2023; Nam et al., 2025).

Formalmente, sea ( el subconjunto de características de interés y � el subconjunto

complemento que contiene todas las demás variables predictoras. La función de dependencia

parcial 5̂( se define teóricamente como la esperanza matemática de la salida del modelo 5̂ sobre

la distribución marginal de las características en �:

5̂( (G() = �-�
[

5̂ (G(, -�)
]

=

∫

5̂ (G(, -�)3P(-�) (15)

En la práctica, dado que la distribución real de los datos es desconocida, esta función

se estima empíricamente utilizando el promedio de las predicciones sobre el conjunto de datos

de entrenamiento. Para un valor específico de la variable de interés G(, la estimación parcial se

calcula promediando las salidas del modelo al forzar G( en todas las observaciones, manteniendo

inalterados los valores de las otras variables (G (8)
�

):

5̂( (G() ≈
1

=

=
∑

8=1

5̂ (G(, G
(8)

�
) (16)

donde = es el número total de muestras en el conjunto de validación y G (8)
�

representa

los valores reales de las variables restantes para la muestra 8. De esta manera, la ecuación

marginaliza la influencia de -� , aislando el efecto exclusivo de G( sobre la probabilidad de

transición simulada.
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CAPÍTULO III

Metodología de la investigación

La metodología del presente estudio se ha estructurado en cuatro etapas secuenciales que

abarcan desde el procesamiento de datos satelitales hasta la proyección del escenario tendencial

para el año 2034. A continuación, se describe cada etapa (Figura 16).

Figura 16
Flujo Metodológico General de la Investigación.

Nota. El diagrama resume la secuencia operativa desde la adquisición de datos hasta el
análisis del escenario futuro. Fuente: Elaboración propia.
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3.1 Adquisición y Preprocesamiento de Datos Geoespaciales

Se centra en la selección de sensores ópticos (Landsat 5, 8 y Sentinel-2) y la

delimitación temporal en la estación de invierno austral para minimizar la nubosidad. El

preprocesamiento incluye la corrección atmosférica, enmascaramiento de nubes, generación

de compuestos de mediana, incorporación de índices espectrales y variables topográficas, así

como la estandarización a una resolución común de 30 metros (Figura 17).

Figura 17
Flujo de Adquisición y Preprocesamiento de Datos.

Nota. Fuente: Elaboración propia.
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3.2 Clasificación Supervisada de Coberturas (LULC)

Se implementa el algoritmo de aprendizaje automático Random Forest (RF) para generar

los mapas temáticos de los años 2004, 2014 y 2024. Esta fase incluye la definición de clases

(Urbano, Vegetación, Suelo Desnudo), la recolección de muestras de entrenamiento mediante

interpretación visual y la optimización de hiperparámetros para maximizar la precisión global

del clasificador (Figura 18).

Figura 18
Flujo Metodológico: Fase de Clasificación Supervisada.

Nota. Fuente: Elaboración propia.

3.3 Análisis de Cambios Multitemporal

Una vez generados los mapas clasificados, se aplica una técnica de tabulación cruzada

para cuantificar las ganancias, pérdidas y persistencias de cada categoría. Este análisis no solo

describe la magnitud del cambio, sino que genera las matrices de transición empíricas que
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alimentarán el componente temporal del modelo predictivo (Figura 19).

Figura 19
Proceso de Análisis de Cambios Multitemporal.

Nota. Fuente: Elaboración propia.

3.4 Simulación Híbrida (MLP-CA-MC)

Se integra una red neuronal de Perceptrón Multicapa (MLP) para aprender las reglas de

transición espacial basadas en variables conductoras (drivers), acoplada con Cadenas de Markov

(MC) para la demanda temporal y Autómatas Celulares (CA) para la asignación espacial. El

proceso incluye el análisis de colinealidad de predictores, la búsqueda y optimización de

hiperparámetros (épocas, muestras, tasa de aprendizaje, momento y arquitectura de capas)

para calibrar la red, y el entrenamiento final del modelo. Se evalúa la fiabilidad del simulador

comparando el escenario proyectado al 2024 con el mapa real. Se emplean métricas categóricas

estándar, métricas de potencial (AUC-ROC), métricas espaciales (Precisión Difusa y Validación

Multiescala) y validación espacial de la clase vegetación. Posteriormente, se aplican técnicas

de Inteligencia Artificial Explicable mediante análisis de dominancia por permutación y curvas

de dependencia parcial (PDP), se identifica qué variables influyen más en la urbanización y

cómo responde el modelo ante cambios en factores como la pendiente o la distancia a servicios

(Figura 20).
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Figura 20
Simulación Híbrida (MLP-CA-MC).

Nota. Fuente: Elaboración propia.



63

3.5 Proyección del Escenario Futuro 2034

Esta etapa final inicia con la recalibración del componente temporal del modelo. Tras

validar la simulación histórica, se actualiza la matriz de probabilidad de transición utilizando

la tendencia más reciente observada (periodo 2014-2024) y se ejecuta la simulación híbrida

(MLP-CA-MC) hacia el año 2034. El resultado es un mapa ráster que espacializa la distribución

probable de las coberturas bajo un escenario tendencial.

Posteriormente, se procede al análisis de cambios post-simulación. Utilizando el mapa

real de 2024 y el escenario proyectado de 2034, se realiza una nueva tabulación cruzada para

cuantificar las ganancias y pérdidas netas esperadas (Figura 21).

Figura 21
Flujo de Proyección y Análisis del Escenario 2034.

Nota. Fuente: Elaboración propia.
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CAPÍTULO IV

Desarrollo del proyecto

4.1 Área de Estudio

La provincia del Cusco, una de las trece que conforman el departamento homónimo

(Gaona Obando, 2019a), se ubica en la zona central de la región sur andina del Perú (Ttito Ocsa

& Mescco Pumasupa, 2020). Geográficamente, se localiza aproximadamente en las coordenadas

13° 30’ 45"de latitud Sur y 71° 58’ 33"de longitud Oeste, emplazada principalmente en el valle

del río Huatanay. La altitud dentro de la provincia varía considerablemente, desde los 3,128 m

s. n. m. hasta los 4,641 m s. n. m. (Figura 22).

Figura 22
Ubicación Geográfica del Área de Estudio.

Nota. Fuente: Elaboración propia.

La provincia abarca una superficie oficial de 529.21 km2, según la validación realizada

en el Apéndice B. Sus límites territoriales colindan al norte con las provincias de Calca y
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Urubamba, al este con la provincia de Quispicanchi, al sur con la provincia de Paruro, y al oeste

con la provincia de Anta (M. Huaman Conza & Huaman Gaspar, 2019). Administrativamente,

la provincia se subdivide en ocho distritos: Cusco (Cercado), Ccorca, Poroy, San Jerónimo, San

Sebastián, Santiago, Saylla y Wanchaq (Lulichac Cayhuari & Miranda Mango, 2017).

4.2 Datos Geoespaciales

Para la elaboración de los mapas de Uso y Cobertura del Suelo (LULC) de la provincia

de Cusco, se utilizaron colecciones de imágenes satelitales ópticas multiespectrales, procesadas

a nivel de Reflectancia Superficial (SR - Surface Reflectance para Landsat) o equivalente (BOA

- Bottom of Atmosphere para Sentinel-2), asegurando así mediciones consistentes de la energía

reflejada por la superficie terrestre tras la corrección de efectos atmosféricos. Se accedió a estos

conjuntos de datos a través de la plataforma de computación en la nube Google Earth Engine

(GEE), con la cual se realizó el filtrado, preprocesamiento y análisis de las series temporales de

imágenes según el área de interés y los criterios temporales definidos.

A continuación, se exponen los criterios y fundamentos para la selección del período de

estudio, la ventana estacional de análisis y los sensores remotos específicos empleados.

4.2.1 Delimitación Temporal

El análisis multitemporal se estructuró en intervalos decenales, seleccionando los años

2004, 2014 y 2024 como puntos clave para la clasificación LULC. Esta periodicidad de diez

años es una práctica recurrente en estudios de dinámica LULC, ya que permite observar

transformaciones acumuladas en el paisaje y calibrar modelos predictivos (M. Khan et al.,

2023). La elección específica de estos años se fundamentó en la disponibilidad y calidad de

las imágenes satelitales dentro de la plataforma GEE para la ventana estacional seleccionada,

buscando garantizar una cantidad suficiente de imágenes para generar compuestos completos,

en contraste con otras combinaciones de años que presentaban menor cobertura de imágenes

útiles (Figura 23).

Con el fin de asegurar la comparabilidad interanual de los datos y minimizar los efectos

de la variabilidad fenológica y atmosférica estacional, el estudio se restringió temporalmente
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Figura 23
Disponibilidad de Imágenes Satelitales Invierno Austral por Sensor.

Nota. Fuente: Elaboración propia.

a la estación de Invierno Austral (aproximadamente del 20 de junio al 23 de septiembre). Esta

decisión metodológica se justifica por las siguientes razones:

1. Condiciones Atmosféricas Favorables: El invierno en la región andina del Cusco

coincide con la temporada de estiaje o seca, caracterizada por una mínima precipitación

pluviométrica (Carbajal Coronado, 2024) y baja humedad relativa atmosférica (Castillo

Alire & Gutierrez Kancha, 2019). Estas condiciones meteorológicas reducen la

probabilidad de cobertura nubosa, siendo la más baja del año entre mayo y septiembre

(Aiquipa Alosilla & Soncco Mamani, 2019), y minimizan la interferencia atmosférica

(dispersión y absorción por vapor de agua). Esto maximiza la obtención de imágenes

satelitales con cielos despejados.

2. Homogeneidad Ambiental Interanual: Al centrar el análisis en la misma ventana

estacional cada año, se busca asegurar que las condiciones ambientales generales

(temperatura, régimen hídrico, estado fenológico predominante) sean lo más consistentes

posible entre los diferentes años de observación (Ayma Quispe, 2022), facilitando la

atribución de las diferencias observadas a cambios reales en LULC en lugar de a

variaciones estacionales.
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3. Contexto del Ciclo Agrícola Regional: El período invernal representa una fase de baja

actividad agrícola para los cultivos predominantes de secano en la región. Corresponde

típicamente al período posterior a la cosecha principal (post-cosecha) de cultivos andinos

como la papa y la quinua (Salamanca Oviedo Cabrera, 2016) y anterior a la preparación

del terreno y siembra (pre-siembra) que usualmente comienza con las primeras lluvias

de primavera (septiembre-octubre) (Arce Quispe & Chavez Cahuana, 2022). Durante

el invierno, muchas tierras agrícolas se encuentran en descanso o barbecho (Quispe

Quispe, 2021), lo que facilita la discriminación espectral entre áreas agrícolas inactivas

(clasificadas como suelo desnudo o con vegetación residual seca) y áreas con vegetación

natural persistente o plantaciones forestales activas.

4.2.2 Sensores Satelitales

La elección de los sensores satelitales específicos para cada año del estudio se basó en

la disponibilidad histórica de datos corregidos atmosféricamente (Nivel-2) dentro de GEE, las

capacidades técnicas de cada instrumento y la necesidad de mantener la mayor consistencia

posible a lo largo del tiempo:

Para el año 2004: Se utilizaron imágenes del sensor Thematic Mapper (TM) a bordo

del satélite Landsat 5. En el momento del análisis, esta era la fuente principal de datos

de reflectancia superficial con cobertura adecuada y consistente en GEE para ese año,

siendo indispensable para establecer la línea base histórica del estudio.

Para el año 2014: Se emplearon datos del sensor Operational Land Imager (OLI) a

bordo del satélite Landsat 8. Se prefirió Landsat 8 sobre su predecesor contemporáneo,

Landsat 7 (sensor ETM+), debido a la falla permanente del Scan Line Corrector (SLC)

de Landsat 7 desde mayo de 2003, que introduce franjas sin datos (gaps) en sus imágenes

(M’Barek, 2024). Landsat 8, lanzado en 2013, asegura una cobertura completa y una

calidad radiométrica y espectral mejorada para el período de análisis de 2014.

Para el año 2024: Se optó por utilizar datos del sensor Multispectral Instrument (MSI) a

bordo de la constelación Sentinel-2 (Sentinel-2A y Sentinel-2B). La principal ventaja de
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Sentinel-2 para el año más reciente es su alta frecuencia de revisita (aproximadamente 5

días con ambos satélites operativos (Gascon et al., 2015)), mayor que la de Landsat 8/9

(16 días (Ganjirad, 2024)). Esta mayor frecuencia temporal aumenta considerablemente

la probabilidad de adquirir imágenes libres de nubes dentro de la ventana estacional

definida.

4.2.3 Preprocesamiento de Imágenes Satelitales

Se aplicó un flujo de preprocesamiento estandarizado a las colecciones de imágenes

seleccionadas para cada año dentro de la plataforma GEE, con el objetivo de obtener imágenes

compuestas, libres de nubes y espacialmente consistentes.

Filtrado Inicial de Colecciones. Para cada año (2004, 2014, 2024) y sensor correspondiente

(Landsat 5 TM, Landsat 8 OLI, Sentinel-2 MSI), se filtró inicialmente el catálogo de GEE para

seleccionar únicamente las imágenes de Nivel-2 (Reflectancia Superficial) que intersectaban el

área de estudio (provincia de Cusco) y cuya fecha de adquisición estuviera comprendida dentro

de la ventana temporal definida (20 de junio al 23 de septiembre). El número de imágenes

resultantes para cada colección se detalla en la Tabla 5.

Tabla 5
Resumen de Imágenes Satelitales Seleccionadas por Año.

Sensor/Satélite Año Periodo de Adquisicióna N° de Imágenes

Landsat 5 / TM 2004 20 de junio - 23 de septiembre 5
Landsat 8 / OLI 2014 20 de junio - 23 de septiembre 5
Sentinel-2 / MSI 2024 20 de junio - 23 de septiembre 19

Nota.a El período corresponde al intervalo que abarca las fechas variables del invierno astronómico en
el hemisferio sur (20-21 de junio a 22-23 de septiembre) (Gobierno del Perú, 2025).

Composición de Mosaico para Imágenes Sentinel-2. A diferencia de las escenas individuales

de Landsat que cubren completamente la provincia de Cusco, las escenas de Sentinel-2 requieren

combinar múltiples escenas adyacentes para lograr una cobertura espacial completa del área de

estudio en una fecha dada. Por lo tanto, se implementó un paso adicional de preprocesamiento

para la colección Sentinel-2:
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1. Identificación de Escenas: Para cada fecha de adquisición dentro de la colección filtrada,

se identificaron las escenas específicas de Sentinel-2 necesarias para cubrir la totalidad

de la provincia.

2. Generación de Mosaico por Fecha: Se utilizó la función mosaic() de GEE para

combinar los tiles correspondientes a cada fecha en una única imagen compuesta

(mosaico).

3. Recorte al Área de Estudio: Cada mosaico diario fue recortado espacialmente (clip())

utilizando el polígono vectorial que define los límites de la provincia de Cusco,

asegurando que todos los análisis posteriores se realizaran estrictamente dentro del

área de interés. Las Figuras 24 y 25 ilustran tiles individuales antes del mosaico.

Este procedimiento se aplicó a las 19 fechas disponibles en la colección de 2024, generando

una nueva colección de imágenes diarias mosaico/recortadas.

Figura 24
Ejemplo de una escena “norte” de Sentinel-2.

Nota. Elaboración propia a partir de datos Sentinel-2 obtenidos de Google Earth Engine.
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Figura 25
Ejemplo de una escena “sur” adyacente de Sentinel-2.

Nota. Elaboración propia a partir de datos Sentinel-2 obtenidos de Google Earth Engine.

A efectos de concisión, se presenta a continuación una imagen representativa para cada

año de análisis: Landsat-5 para 2004 (Figura 26), Landsat-8 para 2014 (Figura 27) y Sentinel-2

para 2024 (Figura 28). El catálogo completo de imágenes satelitales procesadas se encuentra

disponible en el repositorio digital descrito en el Apéndice E.

Figura 26
Imagen Landsat-5 del 21 de agosto de 2004.

Nota. Fuente: Adaptado a partir de datos de Google Earth.

Si bien es habitual seleccionar únicamente imágenes con un porcentaje reducido de
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Figura 27
Imagen Landsat-8 del 02 de septiembre de 2014.

Nota. Fuente: Adaptado a partir de datos de Google Earth.

Figura 28
Imagen Sentinel-2 del 22 de julio de 2024.

Nota. Fuente: Adaptado a partir de datos de Google Earth.

nubosidad, en este caso no se aplicó dicho criterio debido a la limitada disponibilidad de datos.

Por ello, se decidió trabajar con la totalidad del conjunto de imágenes, quedando el tratamiento

y corrección de nubosidad como una etapa posterior del análisis.

Enmascaramiento de Nubes y Sombras. Para eliminar píxeles contaminados por nubes,

sombras de nubes u otros efectos atmosféricos o radiométricos, se aplicaron algoritmos de
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enmascaramiento específicos para cada sensor, utilizando las bandas de calidad proporcionadas

con los datos de Nivel-2.

Landsat 5 TM y Landsat 8 OLI:. Se aplicó un procedimiento de enmascaramiento

idéntico y consistente a ambas colecciones (2004 y 2014) basado en las bandas de calidad Pixel

Quality Assessment (QA_PIXEL) y Radiometric Saturation Quality Assessment (QA_RADSAT)

de la Colección 2 Nivel-2 de USGS:

1. Enmascaramiento de Nubes y Sombras: Se utilizó la banda QA_PIXEL y máscaras de

bits específicas para identificar y marcar como inválidos los píxeles clasificados con

alta confianza como Nube (Cloud) o Sombra de Nube (Cloud Shadow). El objetivo fue

lograr un equilibrio entre la eliminación efectiva de contaminantes y la preservación de

la mayor cantidad posible de píxeles válidos.

2. Enmascaramiento de Saturación Radiométrica: Se utilizó la banda QA_RADSAT para

identificar y enmascarar píxeles donde uno o más de los sensores ópticos alcanzaron

su límite de detección (saturación), evitando así el uso de valores de reflectancia

potencialmente incorrectos.

Sentinel-2 MSI:. Para la colección Sentinel-2 de 2024, se empleó un enfoque basado

en la banda de probabilidad de nubes derivada del algoritmo S2 Cloud Score+:

1. Vinculación con Cloud Score+: Cada imagen de la colección fue vinculada con su

correspondiente capa de probabilidad de nube (cs) de la colección GEE GOOGLE/

CLOUD_SCORE_PLUS/V1/S2_SR.

2. Enmascaramiento Probabilístico: Se aplicó un umbral de probabilidad, conservando

únicamente aquellos píxeles con una probabilidad estimada de estar libres de nubes

superior a un valor determinado (50 %). Este enfoque busca ser comparable en

rigurosidad al método basado en bits de Landsat.

Se muestran a continuación ejemplos representativos del resultado del enmascaramiento

de nubes y sombras para cada sensor: Landsat-5 en 2004 (Figura 29), Landsat-8 en 2014

(Figura 30) y Sentinel-2 en 2024 (Figura 31). La colección completa de imágenes procesadas y

enmascaradas se encuentra disponible para su consulta en el repositorio digital (Apéndice E).
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Figura 29
Imagen Landsat-5 enmascarada del 21 de agosto de 2004.

Nota. Fuente: Adaptado a partir de datos de Google Earth Engine.

Figura 30
Imagen Landsat-8 enmascarada del 02 de septiembre de 2014.

Nota. Fuente: Adaptado a partir de datos de Google Earth Engine.

Generación de Compuestos de Mediana. Tras enmascarar las colecciones de imágenes para

cada año (2004, 2014, 2024), el siguiente paso fue reducir cada colección multitemporal a una

única imagen compuesta, representativa de las condiciones promedio del invierno austral.

Se utilizó para ello la función de agregación temporal por mediana (.median())

disponible en GEE. Esta técnica calcula, para cada banda espectral y cada ubicación de píxel,

el valor de la mediana de todos los píxeles válidos (no enmascarados) correspondientes a esa
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Figura 31
Imagen Sentinel-2 enmascarada del 22 de julio de 2024.

Nota. Fuente: Adaptado a partir de datos de Google Earth Engine.

ubicación en la colección de imágenes del año. La mediana resulta preferible al promedio, ya

que se considera una medida más eficiente en presencia de datos espaciales ruidosos (Dahal

et al., 2024).

Relleno de Vacíos en el Compuesto de 2004. Una inspección cuantitativa de los píxeles

del compuesto de mediana generado para el año 2004 (Landsat 5) reveló la presencia de un

único píxel sin datos (vacío o gap) dentro del área de estudio. Aunque pequeño, este vacío

podría afectar la consistencia espacial de análisis posteriores o la aplicación de algoritmos de

clasificación.

Para corregir esta discontinuidad, se implementó un procedimiento de relleno de vacíos

(gap filling) basado en interpolación por vecindad:

1. Localización del Píxel Vacío: Se identificaron las coordenadas exactas del píxel sin

datos.

2. Cálculo de Valor Interpolado: Para cada una de las bandas espectrales del compuesto,

se calculó el valor promedio de los píxeles vecinos válidos.

3. Aplicación del Relleno: Se creó una imagen temporal de un solo píxel con los valores

promedio calculados. Se utilizó la función unmask() de GEE para fusionar esta imagen
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de relleno con el compuesto original. La función mencionada reemplaza únicamente los

píxeles enmascarados (vacíos) con los valores correspondientes de la imagen de relleno,

dejando intactos todos los píxeles que ya tenían datos válidos.

Este procedimiento resultó en una imagen compuesta final para el año 2004 que era

espacialmente completa dentro del área de estudio. Con esto, se obtuvieron tres imágenes

compuestas finales, espacialmente completas y listas para la adición de variables auxiliares y la

clasificación.

Las Figuras 32, 33 y 34 muestran la visualización en color real (RGB) de estas tres

imágenes compuestas finales. Las imágenes utilizadas en el análisis contienen el conjunto

completo de bandas espectrales seleccionadas: para Landsat 5, [SR_B1, SR_B2, SR_B3,

SR_B4, SR_B5, SR_B7]; para Landsat 8, [SR_B1, SR_B2, SR_B3, SR_B4, SR_B5,

SR_B6, SR_B7]; y para Sentinel-2, [B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12].

Figura 32
Compuesto de mediana (Landsat 5, invierno austral 2004).

Nota. Elaboración propia a partir de datos Sentinel-2 obtenidos de Google Earth Engine.

4.2.4 Variables Auxiliares

Para enriquecer el conjunto de datos espectrales base y mejorar la capacidad

discriminatoria de los algoritmos de aprendizaje automático entre las diferentes clases LULC,
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Figura 33
Compuesto de mediana (Landsat 8, invierno austral 2014).

Nota. Elaboración propia a partir de datos Sentinel-2 obtenidos de Google Earth Engine.

Figura 34
Compuesto de mediana (Sentinel-2, invierno austral 2024).

Nota. Elaboración propia a partir de datos Sentinel-2 obtenidos de Google Earth Engine.

se generaron y añadieron variables auxiliares a cada una de las imágenes compuestas. Estas

variables se categorizan en índices espectrales y variables topográficas.

Índices Espectrales. Para la caracterización de las coberturas, se seleccionó un conjunto de seis

índices espectrales. Esta selección se fundamenta en su recurrencia y efectividad documentada

en la literatura científica reciente para discriminar las clases de interés (vegetación, suelo
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desnudo y área construida) (Vahid & Aly, 2025).

Específicamente, se priorizaron índices que pudieran ser derivados consistentemente a

partir de las bandas ópticas y del infrarrojo de onda corta (SWIR) disponibles en los tres sensores

utilizados (Landsat 5, Landsat 8 y Sentinel-2). Dado que el sensor MSI de Sentinel-2 carece

de bandas térmicas, se descartaron índices dependientes de la temperatura superficial directa,

optándose por indicadores como el NDBI y el UI que han demostrado una fuerte correlación

con la dinámica de urbanización y las variaciones térmicas asociadas (Vahid & Aly, 2025).

Las fórmulas específicas utilizadas para calcular estos índices, adaptadas a las bandas

correspondientes de cada sensor (Landsat 5 TM, Landsat 8 OLI, Sentinel-2 MSI), se presentan

en la Tabla 6. A modo de ilustración del procesamiento espectral realizado, se muestran en la

Figura 35 los mapas resultantes del Índice de Vegetación de Diferencia Normalizada (NDVI)

para los tres periodos de análisis. La colección completa de visualizaciones para el resto de

índices (SAVI, NDBI, NDMI, BSI, UI) se encuentra disponible en el repositorio digital del

proyecto (Apéndice E).

(a) NDVI 2004 (b) NDVI 2014 (c) NDVI 2024

Figura 35
Distribución espacial del Índice de Vegetación de Diferencia Normalizada (NDVI) a lo largo
del periodo de estudio.

Variables Topográficas. Las variables topográficas, como la elevación y la pendiente

derivadas de un Modelo Digital de Elevación (DEM), se incorporan frecuentemente en la

modelización y clasificación LULC. Se consideran factores ambientales estáticos determinantes

que pueden mejorar la precisión del análisis, especialmente en áreas con relieve complejo o

accidentado, al ayudar a discriminar clases con firmas espectrales similares pero diferente

distribución altitudinal o de pendiente (Belay et al., 2024). En este estudio se utilizaron:
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Tabla 6
Fórmulas de Índices Espectrales por Sensor.

Índice L5 2004 (TM) L8 2014 (OLI) S2 2024 (MSI)

NDVI SR_B4−SR_B3
SR_B4+SR_B3

SR_B5−SR_B4
SR_B5+SR_B4

B8−B4
B8+B4

SAVI (SR_B4−SR_B3)×1.5

SR_B4+SR_B3+0.5

(SR_B5−SR_B4)×1.5

SR_B5+SR_B4+0.5

(B8−B4)×1.5

B8+B4+0.5

NDBI SR_B5−SR_B4
SR_B5+SR_B4

SR_B6−SR_B5
SR_B6+SR_B5

B11−B8
B11+B8

NDMI SR_B4−SR_B5
SR_B4+SR_B5

SR_B5−SR_B6
SR_B5+SR_B6

B8−B11
B8+B11

BSI (SR_B5+SR_B3)−(SR_B4+SR_B1)
(SR_B5+SR_B3)+(SR_B4+SR_B1)

(SR_B6+SR_B4)−(SR_B5+SR_B2)
(SR_B6+SR_B4)+(SR_B5+SR_B2)

(B11+B4)−(B8+B2)
(B11+B4)+(B8+B2)

UI SR_B7−SR_B4
SR_B7+SR_B4

SR_B7−SR_B5
SR_B7+SR_B5

B12−B8
B12+B8

Nota: Las fórmulas generales se encuentran en la Tabla 4.

Elevación: Altitud sobre el nivel del mar, obtenida directamente del DEM (Figura 36).

Pendiente: Grado de inclinación del terreno, calculado a partir del DEM y expresado en

grados (Figura 37).

Ambas variables se derivaron del DEM ALOS World 3D - 30m (AW3D30), disponible en

Google Earth Engine.

Figura 36
Modelo de Elevación Digital (DEM) de la provincia de Cusco.

Nota. Fuente: ALOS AW3D30 vía GEE
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Figura 37
Mapa de Pendientes de la Provincia de Cusco.

Nota. Derivado del DEM ALOS AW3D30.

Normalización de Variables. La normalización de las variables predictoras es un

procedimiento habitual en aprendizaje automático para asegurar que todas las variables

contribuyan de manera equitativa al modelo, independientemente de sus unidades o rangos

originales. En este estudio:

Índices Espectrales: Los índices calculados (NDVI, SAVI, NDBI, NDMI, BSI, UI),

por su formulación como diferencias normalizadas, producen valores en un rango

acotado [-1, +1]. Esta normalización intrínseca reduce la sensibilidad a variaciones en

las condiciones de iluminación (efectos solares o topográficos) y facilita la comparación

entre diferentes sensores y fechas. Por lo tanto, no se aplicó una normalización adicional

a estos índices.

Variables Topográficas: Las variables de elevación (metros) y pendiente (grados) se

incorporaron al conjunto de datos con sus unidades y rangos físicos originales. No

se aplicó escalado o normalización adicional a estas variables, dado que el algoritmo

clasificador seleccionado, Random Forest, es inherentemente insensible a la escala de

las variables de entrada.
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Características de las Imágenes Compuestas Finales. Tras la adición de los índices

espectrales y las variables topográficas a las imágenes compuestas de mediana, se obtuvieron los

conjuntos de datos finales (imágenes multibanda). Las Tablas 7 y 8 resumen las bandas incluidas

en cada compuesto final y sus respectivos rangos de valores (mínimo y máximo observados

dentro del área de estudio).

Un aspecto metodológico importante para asegurar la validez y consistencia del análisis

multitemporal fue la estandarización de la resolución espacial. Todas las bandas de entrada

para la clasificación (bandas espectrales originales, índices calculados y variables topográficas)

fueron homogeneizadas a una resolución espacial común de 30 metros.

Esta decisión se basó en la resolución nativa de 30 metros de los sensores históricos

clave utilizados (Landsat 5 TM y Landsat 8 OLI). Por consiguiente, las bandas de Sentinel-2,

que originalmente poseen resoluciones más finas (10 m y 20 m), fueron remuestreadas a 30

metros antes de ser combinadas con las demás variables. Este paso asegura que la comparación

de LULC entre los diferentes años se realice sobre una base espacial coherente.

Tabla 7
Comparativa de rangos dinámicos: Landsat 5 (2004) y Landsat 8 (2014).

Landsat 5 (2004) Landsat 8 (2014)

Banda / Índice Mínimo Máximo Mínimo Máximo

SR_B1 0.0051 0.3291 -0.0854 0.3769
SR_B2 0.0063 0.3879 -0.0630 0.4484
SR_B3 0.0113 0.4233 0.0031 0.5365
SR_B4 0.0135 0.4925 0.0007 0.6190
SR_B5 0.0086 0.6138 0.0108 0.6731
SR_B6 - - 0.0086 1.0236
SR_B7 0.0030 0.5849 0.0056 1.0272

NDVI -0.2656 0.8484 -0.4064 0.9650
SAVI -0.0356 0.6555 -0.0662 0.7050
NDBI -0.6207 0.5014 -0.7878 0.4667
NDMI -0.5014 0.6207 -0.4667 0.7878
BSI -0.4632 0.4576 -0.6716 0.4257
UI -0.8736 0.4895 -0.8362 0.4566

Elevación (m) 2967 4642 2967 4642
Pendiente (grados) 0.0 70.8944 0.0 70.8944

Nota. Fuente: Elaboración propia.
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Tabla 8
Bandas y rangos Sentinel-2 (2024).

Banda / Índice Valor Mínimo Valor Máximo

B2 55 3559
B3 393 6242
B4 271 7147
B5 279 5829
B6 247 5996
B7 251 5843
B8 229 7068
B8A 219 5719
B11 173.5 8770.5
B12 115 9708

NDVI -0.1810 0.7531
SAVI -0.2714 1.1295
NDBI -0.5388 0.4283
NDMI -0.4283 0.5388
BSI -0.4653 0.3854
UI -0.7960 0.4357

Elevación (m) 2967 4642
Pendiente (grados) 0.0 70.8944

Nota. Valores de compuesta invierno austral 2024. Fuente: Elaboración propia.

4.3 Clasificación Supervisada de Coberturas (LULC)

4.3.1 Definición de Clases de Cobertura para el Estudio

Para el presente estudio, se definió un esquema de clasificación compuesto por tres clases

temáticas principales: Urbano, Vegetación y Suelo Desnudo. Esta agrupación responde a dos

consideraciones principales: (i) la marcada estacionalidad del régimen climático en la provincia

de Cusco, caracterizada por una estación seca pronunciada (Mamani & Cutipa, 2024), y (ii) la

semejanza espectral que presentan algunas coberturas durante dicho periodo, lo que dificulta

su separación precisa en sensores ópticos. El propósito es obtener mapas LULC comparables

entre años, priorizando la estabilidad espectral de las clases.

1. Vegetación

Clase que agrupa coberturas con actividad fotosintética sostenida durante el invierno

austral, orientada a capturar formaciones vegetales con alta estabilidad espacial y
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espectral entre los años analizados, y con persistencia estructural a lo largo del ciclo

anual.

Durante la estación seca, los cultivos de secano permanecen en barbecho (Cahuana

& Pariguana, 2023), y la vegetación herbácea estacional (como pajonales altoandinos)

reduce su actividad fotosintética por limitación hídrica y temperatura (Carlos Rosales,

2025). Esto permite distinguir espectralmente la vegetación persistente, que mantiene

mayor estabilidad.

2. Suelo Desnudo

Clase que representa superficies sin vegetación activa. Diversos estudios agrupan tanto

suelos expuestos naturales como superficies agrícolas en descanso dentro de esta

categoría (Rotich et al., 2025b; Yadav et al., 2024).

Incluye:

Zonas erosionadas o rocosas.

Caminos sin pavimentar.

Terrenos agrícolas en barbecho.

Ecosistemas herbáceos o arbustivos que reducen fuertemente su verdor en la

estación seca (Pajonal de Puna Húmeda, Matorral Andino) (Ministerio del

Ambiente (MINAM), 2015).

Estas coberturas presentan firmas espectrales similares a la cobertura urbana, lo cual

constituye una fuente recurrente de confusión en la clasificación LULC (Ettehadi et al.,

2019; Ganjirad, 2024). Su agrupación contribuye a reducir la ambigüedad espectral y

mejorar la precisión del proceso de clasificación.

3. Urbano

Clase que agrupa superficies impermeables y construidas asociadas a asentamientos

humanos.

Edificaciones residenciales, comerciales e industriales.
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Infraestructura vial pavimentada.

Otras superficies artificiales (plazas, losas deportivas, etc.).

Exclusión de la Clase “Agua”. Aunque existen cuerpos de agua (principalmente ríos) dentro

de la provincia de Cusco, se tomó la decisión metodológica de no incluir una clase específica

“Agua” en el esquema de clasificación. Esta exclusión se fundamenta principalmente en la

resolución espacial de los datos satelitales utilizados (30 metros para Landsat, homogeneizado

para Sentinel-2). Los cauces de los ríos principales en la provincia se reducen durante la

temporada seca (invierno austral), no superando los 30 metros de ancho. Además, la presión

urbana y la ocupación de las fajas marginales han contribuido a un angostamiento considerable

de algunos cauces en las últimas décadas (Calvo Mamani & Polo Dolmos, 2017; Paredes

Catunta, 2019).

Como consecuencia, muchos tramos de los ríos representan elementos lineales cuyo

ancho es frecuentemente inferior a la dimensión de un píxel de 30 metros, convirtiéndolos en

características sub-píxel. Intentar clasificar estos elementos como una clase separada resultaría

en una representación cartográfica inconsistente y fragmentada. Además, la presencia de

píxeles mixtos (agua/suelo/vegetación) a lo largo de los bordes de los ríos podría introducir

ruido espectral y afectar negativamente la precisión de la clasificación de las otras tres clases

principales. Por estas razones, se optó por no mapear explícitamente la clase Agua.

4.3.2 Recopilación de Datos de Entrenamiento y Validación

La selección de muestras de referencia (datos de entrenamiento y validación), también

conocida como obtención de verdad terreno (ground truth), es una etapa importante en cualquier

proceso de clasificación supervisada de imágenes de teledetección para cartografía LULC (K. C.

Roy et al., 2024). La calidad, cantidad y representatividad de estas muestras influye directamente

en el rendimiento del clasificador entrenado. La mayoría de los estudios LULC se basan en la

interpretación visual de imágenes de referencia para delimitar espacialmente áreas homogéneas

representativas de cada clase de interés (Sarif & Gupta, 2024).

Para la recolección de las muestras en este estudio, se utilizó como fuente principal
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de referencia las imágenes históricas de alta resolución disponibles en la plataforma Google

Earth Pro. Esta herramienta es ampliamente utilizada en la literatura científica para la selección

manual interactiva de puntos o polígonos de entrenamiento y validación en estudios LULC

(Ganjirad, 2024; Gündüz, 2025; Zafar, Zubair, Zha, Fahd & Nadeem, 2024). El proceso de

muestreo se adaptó a la disponibilidad temporal de estas imágenes de alta resolución para cada

uno de los años de estudio:

Año 2024: Se utilizaron imágenes de alta resolución correspondientes a mayo de 2024,

próximas al período de invierno austral y coherentes con la ventana temporal de análisis.

Año 2014: Se emplearon imágenes de alta resolución disponibles para junio de 2014,

igualmente alineadas con la estación seca y adecuadas para la comparación interanual.

Año 2004: Debido a la ausencia de imágenes de alta resolución directamente asociadas

al año 2004 en Google Earth Pro, se utilizó como referencia principal el mosaico más

cercano disponible, correspondiente a agosto de 2002. Para garantizar la validez temporal

de la interpretación, especialmente en áreas urbanas en expansión, esta referencia visual

fue complementada con el Mapa de Peligros de la ciudad del Cusco del 2004, que

documenta la configuración urbana hasta 2004 (y PNUD, 2004). Este procedimiento

de validación cruzada con cartografía auxiliar es consistente con estrategias adoptadas

en estudios LULC con limitaciones similares en la disponibilidad de datos históricos

(Pham & Ali, 2024).

Con el objetivo de mitigar los problemas de clasificación errónea (misclassification)

asociados al fenómeno del píxel mixto, donde un único píxel de la imagen satelital abarca

múltiples tipos de cobertura del suelo (Ganjirad, 2024), se adoptó una estrategia de muestreo

conservadora. El etiquetado de las muestras (asignación de la clase LULC) se realizó aplicando

criterios estrictos, seleccionando únicamente puntos ubicados en el centro de áreas que

presentaban una alta homogeneidad espectral y textural en la imagen de alta resolución de

referencia (Brown et al., 2022). Este enfoque, centrado en identificar píxeles “puros”, es

particularmente importante en zonas de transición entre coberturas o en áreas conocidas
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por su alta confusión espectral, buscando garantizar que cada punto de muestra represente

inequívocamente una única clase LULC (Youssef, 2024).

Mediante un procedimiento de interpretación visual y selección en Google Earth Pro, se

recolectó un conjunto de puntos de muestra para las tres clases definidas: Urbano, Vegetación

y Suelo Desnudo. La cantidad de puntos recolectados para cada clase se presentan en la Tabla

9 y en las figuras 38, 39, 40 y 41.

Tabla 9
Distribución de los puntos de muestra recolectados

Clase 2004 2014 2024 Total por clase

Urbano 500 500 500 1500
Vegetación 500 500 500 1500
Suelo desnudo 511 510 500 1521
Total por año 1511 1510 1500

Nota. El área de estudio contiene un total de 589,049 píxeles.

Figura 38
Distribución espacial de los puntos de muestra 2004.

Nota. Fuente: Elaboración propia.
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Figura 39
Puntos de muestra sobre Mapa de Peligros (2004).

Nota. Fuente: Elaboración propia.

Figura 40
Distribución espacial de los puntos de muestra 2014.

Nota. Fuente: Elaboración propia.

4.3.3 Optimización de Hiperparámetros y Entrenamiento del Modelo

Para la generación de los mapas LULC correspondientes a los años 2004, 2014 y 2024,

se implementó un flujo de trabajo metodológico consistente dentro de la plataforma Google

Earth Engine (GEE). A continuación, se detalla el proceso aplicado de forma independiente

para cada año.
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Figura 41
Distribución espacial de los puntos de muestra 2024.

Nota. Fuente: Elaboración propia.

Preparación de Datos de Entrenamiento y Validación. Se integraron en GEE los conjuntos

de puntos de muestra para cada año. El total de puntos se dividió aleatoriamente en dos

subconjuntos mutuamente excluyentes: el 70 % se utilizó para entrenar el clasificador y el 30 %

restante para la validación independiente de la precisión. Esta proporción (70/30) es una práctica

estándar en estudios de clasificación supervisada en teledetección (Badshah et al., 2024; Yasin,

2024; Zafar, Zubair, Zha, Fahd & Nadeem, 2024).

Luego, tanto para los puntos del conjunto de entrenamiento como para los de validación,

se extrajeron los valores de todas las variables predictoras (bandas espectrales, índices

espectrales y variables topográficas) directamente desde la imagen compuesta correspondiente

a cada año. Estos valores constituyeron la matriz de atributos utilizada como entrada para el

modelo Random Forest.

Optimización de Hiperparámetros del Clasificador Random Forest. Los hiperparámetros

de un modelo de aprendizaje automático son parámetros de configuración que no se aprenden

directamente de los datos durante el entrenamiento, sino que deben establecerse previamente.

Controlan aspectos importantes del proceso de aprendizaje y pueden influir en el rendimiento

(precisión) y la complejidad del modelo resultante (B. Roy, 2021). Para el algoritmo Random

Forest (RF), dos de los hiperparámetros con mayor influencia son el número de árboles en el
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bosque y la fracción de muestras utilizada para entrenar cada árbol individual.

Para identificar la configuración de hiperparámetros que ofreciera el mejor rendimiento

predictivo para cada año, se implementó un procedimiento de ajuste sistemático (búsqueda en

cuadrícula). Se definió un espacio de búsqueda para ambos hiperparámetros: el número de

árboles se varió desde 10 hasta 150 (en incrementos de 10), y la fracción de muestreo por bolsa

se varió desde 0.1 hasta 0.9 (en incrementos de 0.1).

Para cada combinación posible de (numTrees, bagFraction) dentro de esta cuadrícula, se

entrenó un modelo RF utilizando el conjunto de entrenamiento y se evaluó su precisión (Overall

Accuracy) utilizando el conjunto de validación independiente.

Selección y Entrenamiento del Modelo RF Óptimo. Para cada año, se seleccionó la

combinación de hiperparámetros (numTrees, bagFraction) que produjo la mayor Precisión

Global (OA) en el conjunto de validación durante la fase de optimización (detallada en la

Sección 5.1.1). Utilizando estos parámetros óptimos identificados, se procedió a entrenar el

modelo Random Forest final para cada año, empleando el conjunto de entrenamiento. Este

procedimiento sigue las prácticas recomendadas en la literatura para la calibración y selección

de modelos de clasificación supervisada (Gündüz, 2025).

Generación y Validación de los Mapas LULC. El modelo RF óptimo entrenado para cada año

fue aplicado a la imagen compuesta correspondiente (incluyendo todas las bandas predictoras)

para generar los mapas clasificados LULC. La calidad y fiabilidad de cada uno de estos mapas

clasificados se evaluó cuantitativamente utilizando el conjunto de validación independiente.

Se construyó la matriz de confusión para cada año y se calcularon las métricas de precisión

estándar derivadas: Precisión Global (OA), Coeficiente Kappa (^), Precisión del Productor (PA

o Recall) por clase, y Precisión del Usuario (UA o Precision) por clase.

4.3.4 Exportación de Mapas Clasificados y Análisis de Cambios

Los mapas LULC clasificados 42, 43 y 44 fueron exportados desde Google Earth

Engine en formato raster. La imagénes (.tif) se encuentra disponible en el repositorio digital

(Apéndice E).
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Figura 42
Mapa LULC clasificado (2004).

Nota. Mapa de Coberturas y Usos del Suelo (LULC) clasificado para el año 2004. Fuente:
Elaboración propia.

Figura 43
Mapa LULC clasificado (2014).

Nota. Mapa de Coberturas y Usos del Suelo (LULC) clasificado para el año 2014. Fuente:
Elaboración propia.

4.4 Análisis de Cambios Multitemporal

El análisis cuantitativo de los cambios en la cobertura del suelo permite identificar las

transformaciones ocurridas en el área de estudio. El método consiste en procesar los mapas

de cobertura del suelo clasificados (Figuras 42, 43 y 44) mediante tabulación cruzada (cross-
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Figura 44
Mapa LULC clasificado (2024).

Nota. Mapa de Coberturas y Usos del Suelo (LULC) clasificado para el año 2024. Fuente:
Elaboración propia.

tabulation).

Este procedimiento permite cuantificar las transiciones entre clases, identificando para

cada período las áreas de ganancia, pérdida y persistencia. Los resultados cuantitativos de este

análisis se detallan en la Sección 5.1.2.

4.5 Simulación Híbrida (MLP-CA-MC)

4.5.1 Modelado de la Simulación Híbrida (MLP-CA-MC)

Preparación de Variables Predictoras. La selección de las variables predictoras (factores

impulsores) es una etapa determinante que define la capacidad del modelo para simular la

dinámica territorial. Las variables empleadas en este estudio fueron seleccionadas con base en

su uso documentado en la literatura. Se incorporan factores topográficos y biofísicos, como la

pendiente (Belay et al., 2024; Bendechou et al., 2024), el aspecto (Maddah et al., 2025; Rotich

et al., 2025b), la elevación (Alam & Maiti, 2025; Chaulagain et al., 2025) y la proximidad a la red

hidrológica (Danso et al., 2025; Rotich et al., 2025a). Asimismo, se consideran los principales

impulsores de accesibilidad y atracción antrópica, incluyendo la distancia a carreteras (Al-

Kordi et al., 2025; Y. Liu et al., 2024b), vías férreas (G. Liu et al., 2024; Zhou et al., 2025), el
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aeropuerto, poblaciones dispersas (Ishtiaque et al., 2021; Khan Academy, 2024), poblaciones

grandes (centros urbanos) (Y. Liu et al., 2024b; Sarfo et al., 2024), centros educativos (T. Xu

et al., 2022) y hospitales (T. Xu et al., 2022). Finalmente, se incluyó la distancia a atractivos

turísticos. Aunque otros estudios mencionan su influencia (M. Khalid et al., 2023; Senthilkumar

et al., 2025), en esta investigación se agrega un ráster de proximidad para capturar el rol potencial

del turismo como un factor impulsor de cambio.

Para la preparación de las variables espaciales predictoras se aplicó un flujo de trabajo

estandarizado en QGIS. Este procedimiento garantizó la homogeneidad espacial de todos los

datos, asegurando una misma resolución (30 metros), sistema de referencia cartográfica (WGS

84 / UTM Zona 19S, EPSG:32719) y extensión espacial. La extensión fue definida por un

polígono vectorial, y fue configurada explícitamente para todos los rásteres resultantes con la

siguiente definición espacial: 157140, 196380, 8488950, 8513400 [EPSG:32719].

El proceso comprendió la recopilación, delimitación y estandarización de los datos

vectoriales y ráster originales, así como la generación de variables derivadas. Adicionalmente,

se realizó un proceso de depuración y filtrado de datos para asegurar la calidad de los factores

impulsores para las capas asociadas a instituciones educativas y centros de salud. Se partió de

bases tabulares con información a nivel nacional, de las cuales se seleccionaron únicamente los

registros ubicados dentro del departamento y la provincia del Cusco, verificando la existencia de

datos de coordenadas (latitud y longitud) y la disponibilidad de la fecha de inicio de actividades.

Este proceso permitió construir tres versiones temporales de cada conjunto de datos (hasta 2004,

hasta 2014 y hasta 2024), preservando la consistencia temporal requerida para el modelado.

Las etapas de limpieza y estructuración de la base de datos se llevaron a cabo en Google

Colab usando la biblioteca Pandas, para posteriormente integrarse en la generación de mapas

de proximidad en QGIS.

El procedimiento metodológico detallado para la construcción de las variable predictora

se presenta en el repositorio virtual Apéndice E, mientras que la visualización de los mapas

ráster finales se muestra en el Apéndice C.

Análisis de Multicolinealidad. El análisis de multicolinealidad es una etapa esencial

en la preparación de variables predictoras para modelos estadísticos y de aprendizaje automático,
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incluyendo aquellos utilizados para modelar la susceptibilidad a cambios o la predicción

LULC (Hanh et al., 2025). Su propósito es identificar la presencia de altas correlaciones

lineales entre pares o grupos de variables predictoras independientes (Z. Xu et al., 2025). La

multicolinealidad severa puede introducir inestabilidad en la estimación de los parámetros del

modelo, dificultar la interpretación de la influencia individual de cada variable y reducir la

capacidad de generalización del modelo (Hanh et al., 2025).

En este estudio, se evaluó de colinealidad para el siguiente conjunto inicial de variables

predictoras:

1. Aspecto (orientación de la ladera, derivado del DEM Copernicus de 30 m)

2. Pendiente (grado de inclinación, derivada del DEM Copernicus de 30 m)

3. Distancia a la red hidrológica

4. Distancia a atractivos turísticos más ofertados (Apéndice D).

5. Distancia a poblaciones dispersas

6. Distancia a poblaciones grandes (centros urbanos)

7. Elevación (DEM)

8. Distancia a Instituciones Educativas (IIEE) (2004, 2014, 2024)

9. Distancia a Establecimientos de Salud (RENIPRESS) (2004, 2014, 2024)

10. Distancia a Vías Férreas

11. Distancia al Aeropuerto

12. Distancia a Vías (Carreteras)

El método seleccionado fue el cálculo de las matrices de correlación de Pearson (d)

entre todas las variables predictoras para cada período temporal.

Se estableció como criterio de decisión que cualquier par de variables que presentara

una alta correlación, definida por un umbral de |d | ≥ 0.8 (Buthelezi et al., 2024; Tayyab et al.,
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2024), sería evaluado para la exclusión de una de las variables. El objetivo de este procedimiento

metodológico es reducir la redundancia de información.

Los resultados visuales se presentan en las Figuras 69, 70 y 71.

Exclusión de variables de transporte: Se detectó una alta multicolinealidad (|d | > 0.83)

entre distancia a vías, distancia al aeropuerto y distancia a las vías ferreas. Se decidió

excluir las variables de aeropuerto y vías férreas, conservando únicamente distancia a

vías como el indicador principal de accesibilidad.

Exclusión de variables de servicios: Se identificó una correlación elevada (d ≈ 0.82)

entre Instituciones Educativas y RENIPRESS. Se optó por mantener Instituciones

Educativas como el indicador de servicios.

Arquitectura de Clases Implementada en Colab. Todas las clases utilizadas en el

procesamiento geoespacial, el análisis de transición temporal, el aprendizaje de reglas espaciales

y simulación fueron implementadas en Google Colab. La Figura 45 resume la arquitectura

general del sistema, mostrando las clases principales y sus relaciones.

Procesamiento de Datos Geoespaciales. La clase Raster se encarga de las operaciones

de entrada/salida y manipulación de los datos ráster utilizados por el modelo. Sus funciones

incluyen la carga de bandas, manejo de NoData, normalización y extracción de vecindades

espaciales.

Análisis de Transición Temporal. La clase CrossTable implementa el núcleo del análisis

de Markov. A partir de dos mapas LULC de fechas distintas (C1 y C2), calcula una matriz de

tabulación cruzada que cuantifica el número de píxeles que han transicionado de cada clase en

C1 a cada clase en C2. Esta matriz empírica es la base para determinar la demanda de cambio que

se utilizará en la simulación del AC.

Aprendizaje de Reglas de Transición Espacial. Para el modelado de la dinámica espacial,

se optó por una implementación explícita de la arquitectura Perceptrón Multicapa utilizando

librerías de cálculo numérico (NumPy). Esta decisión prioriza la transparencia algorítmica
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Figura 45
Esquema general de clases.

Nota. Fuente: Elaboración propia.

sobre la abstracción de frameworks de alto nivel, garantizando una trazabilidad total del flujo

de información.

El Sampler extrae datos de entrenamiento del periodo histórico. Para cada píxel, genera

una muestra que contiene: el estado de su vecindad en el mapa inicial (C1), los valores de

los factores impulsores en su vecindad en C1, y la clase resultante de ese píxel en el mapa

final (C2). Además, debido a que la vecindad utilizada es de 3 × 3 píxeles, el vector de

entrada del MLP se compone de 9 valores por cada factor raster y 18 valores adicionales

provenientes del estado (codificado con one-hot truncado, donde cada píxel aporta solo

2 variables). El tamaño total del vector de entrada es 99 componentes.

• Para estimar la matriz de transición histórica se emplearon los mapas clasificados

de 2004 y 2014, lo que permitió identificar la magnitud de los cambios ocurridos

entre ambas fechas y calcular el componente Markov del modelo.

• Para representar los factores impulsores del cambio se usó el conjunto de
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variables disponibles para 2004, ya que reflejan las condiciones socioeconómicas

y geográficas iniciales que explican las transformaciones observadas una década

después.

El Perceptrón Multicapa (MLP), se entrenó utilizando un conjunto de muestras obtenidas

mediante un muestreo estratificado (Stratified Sampling). Este método de muestreo

asegura una representación proporcional de las diferentes clases o transiciones en los

datos de entrenamiento. El objetivo del entrenamiento es capacitar al modelo para

discernir la relación no lineal entre las características espaciales locales (estado inicial

de cobertura del suelo en la vecindad y valores de los factores impulsores) y la idoneidad

de una celda para transicionar a una clase de cobertura futura específica.

Para optimizar el rendimiento del MLP, se llevó a cabo un proceso de ajuste de

hiperparámetros, explorando diferentes valores para los coeficientes de momentum

y tasa de aprendizaje, el tamaño del conjunto de muestras, el número de épocas de

entrenamiento y la arquitectura de las capas ocultas. La selección de los rangos y

valores específicos para esta hiperparametrización se fundamentó en configuraciones y

resultados documentados en la literatura científica previa sobre modelado de cambios

de cobertura del suelo (Tabla 10).

El modelo resultante es capaz de generar Mapas de Idoneidad para la Transición (MIT)

para cada posible clase de destino.

Tabla 10
Hiperparámetros MLP en estudios LULC.

Estudio Capas
Ocultas

Tasa
Aprend.

Momento Épocas Tamaño
Vecin-

dad

Muestras

M. Khan et al., 2023 3 0.1 - - - -
Gündüz, 2025 10 0.01 0.001 1,000 3x3 -
Mazroa et al., 2024 10 0.001 0.05 10,000 3x3 -
S. K. Roy et al., 2023 10 0.1 0.5 1,000 3x3 -

Nota. La Tabla resume las configuraciones de hiperparámetros utilizadas en estudios de redes
neuronales MLP aplicados a LULC. Fuente: Elaboración propia.
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Una limitación frecuente en la literatura es que, si bien se reporta el número total de

capas ocultas, a menudo no se detalla la distribución de neuronas en cada una de ellas. Esta

omisión dificulta la replicación exacta de las arquitecturas y la comparación de su complejidad

(Blissag, Bilal et al., 2024; Kondum et al., 2024; Penfound & Vaz, 2024; S. K. Roy et al., 2023;

Xiang, 2024). La Tabla 11 muestra arquitecturas reportadas.

Tabla 11
Arquitecturas de capas ocultas reportadas en estudios LULC con MLP.

Estudio Nº de Capas
Ocultas

Neuronas por Capa

Lukas et al., 2024 2 [100, 100]
Haydar et al., 2024 2 [100, 50]
Buthelezi et al., 2024 2 [10, 5]
Tasan et al., 2025 2 [50, 50]
Tehrani et al., 2024 2 [70, 30]

Nota. Fuente: Elaboración propia.

El proceso de búsqueda de hiperparámetros óptimos se realizó en dos etapas. En la

primera, se exploró un amplio rango de valores para identificar regiones prometedoras del

espacio de búsqueda. Posteriormente, se llevó a cabo una segunda etapa de búsqueda más

refinada (búsqueda fina) enfocada en esas regiones. En ambos procesos de busqueda se ejecutó

cada configuración 5 veces para promediar los resultados de precisión. En total, se evaluaron más

de 4700 combinaciones, de las cuales dos configuraciones destacaron (Tabla 12). Los registros

tabulares completos de rendimiento para todas las configuraciones evaluadas en ambas fases se

encuentran disponibles en el repositorio de datos (Apéndice E)

La Configuración A logró la mayor precisión media, pero presentó una desviación

estándar más alta, lo que indica mayor variabilidad entre ejecuciones. La Configuración B obtuvo

una precisión media ligeramente menor, con una desviación estándar más baja, reflejando un

rendimiento más estable.

Dado que la diferencia en precisión media fue pequeña (Δ`022 ≈ 0.0078), se eligió la

Configuración B para entrenar el modelo MLP final en las simulaciones posteriores.

Entrenamiento Final con la Configuración Óptima. Una vez determinada la configuración

óptima de hiperparámetros mediante el proceso de búsqueda sistemática descrito previamente,
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Tabla 12
Comparación de configuraciones MLP.

Hiperparámetro Configuración A Configuración B

Vecindad (radio) 1 (3x3) 1 (3x3)
Muestras Entrenamiento 9000 9000
Épocas Entrenamiento 11000 11000
Arquitectura Capas Ocultas [50, 50] [100, 100]
Tasa de Aprendizaje (U) 0.0007 0.0005
Momento (V) 0.001 0.006

Precisión Media (`022) 0.8613 0.8535
Desviación Estándar (f022) 0.0039 0.0006

Nota. Fuente: Elaboración propia.

se procedió a entrenar el modelo final.

Se emplearon distintas particiones del conjunto de datos para entrenamiento y validación,

con el fin de recoger la variabilidad del dataset y evitar que el rendimiento dependa de

una única división.

Se utilizaron diferentes inicializaciones aleatorias de los pesos, considerando que el

proceso de optimización en redes neuronales es sensible al punto de partida en el

espacio de parámetros.

Este procedimiento permitió generar un conjunto de modelos entrenados bajo las mismas

condiciones de arquitectura e hiperparámetros, pero sujetos a variaciones aleatorias controladas.

Para la selección del modelo final, se comparó el desempeño de todas las ejecuciones sobre

el conjunto de validación. Conforme a prácticas comunes en la literatura, se seleccionó la

ejecución con el mejor rendimiento en validación, garantizando que la instancia final utilizada

en el proyecto representara el mayor nivel de desempeño alcanzado por la configuración óptima

de la red neuronal. La tabla comparativa con las métricas de precisión de las distintas ejecuciones

candidatas se encuentra disponible para su consulta en el repositorio de datos (Apéndice E).

El modelo final utilizado para la generación de resultados y productos derivados

corresponde a la ejecución que alcanzó una exactitud del 85.70 %, valor ligeramente superior

al rendimiento promedio obtenido durante la etapa de búsqueda de hiperparámetros (85.35 %).

Esta diferencia mínima evidencia la estabilidad del comportamiento de la red neuronal y la
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consistencia de los parámetros óptimos identificados.

Simulación de Validación - Año 2024. Una vez entrenado y optimizado el modelo MLP

(Sección 4.5.1), el siguiente paso consiste en ejecutar una simulación para el período 2014-

2024. El objetivo de este proceso es generar un mapa LULC simulado para el año 2024

(!B8< (C2)), utilizando el mapa real de 2014 (!A40; (C1)) como punto de partida.

Este mapa simulado se utiliza para la validación del modelo, ya que su posterior

comparación con el mapa LULC real de 2024 (obtenido a partir de la clasificación satelital)

permitirá cuantificar la precisión predictiva del modelo.

Carga del Modelo Predictivo (MLP). Se carga el modelo MLP que encapsula las

reglas de idoneidad espacial (la relación entre los factores impulsores y la probabilidad de

cambio) aprendidas a partir de la dinámica histórica 2004-2014.

Cuantificación de la Demanda de Cambio (Markov). Se carga la matriz de transición

histórica (Tabla 22), calculada en la Sección 4.5.1. Esta matriz define la cantidad o “demanda”

de píxeles �8 9 que deben transicionar de una clase 8 a una clase 9 para replicar la tasa de cambio

observada en el período 2004-2014, bajo el supuesto de inercia tendencial.

Carga de Datos de Partida (Año 2014). Se cargan y preparan los datos que servirán

como estado inicial para la simulación:

Mapa LULC Inicial: El mapa LULC clasificado del año 2014 (! (C1 = 2014)).

Factores Impulsores: El conjunto de factores geoespaciales y socioeconómicos

correspondientes al año 2014 (V(C1 = 2014)). Estos factores se normalizan para coincidir

con la escala de los datos de entrenamiento.

Proceso de Simulación Geoespacial (2014 a 2024). La clase MlpSimulator ejecuta

la simulación combinando la lógica del MLP y el CA.

Generación de Mapas de Idoneidad para 2024. El modelo MLP entrenado 5 (x) se

aplica a cada píxel ? del mapa LULC de 2014. Para cada píxel, el modelo evalúa su estado, el

de su vecindad y los valores de los factores impulsores de 2014 (V(C1 = 2014)).

Este proceso genera un conjunto de Mapas de Potencial (Aptitud) S: , uno para cada

clase destino : . Estos mapas cuantifican la aptitud espacial intrínseca para el período 2014-
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2024 y son la base desde la cual se derivan los Mapas de Idoneidad de Transición. La Figura 46

muestra la distribución espacial del potencial para la clase Urbana. El conjunto completo de

mapas de aptitud (para Vegetación y Suelo Desnudo) y los mapas de idoneidad de transición

específicos se encuentran disponibles en el repositorio digital del proyecto (Apéndice E).

Figura 46
Potencial para Ser de Cobertura Urbana (2014-2024).

Nota. Fuente: Elaboración propia.

Asignación Espacial de Transiciones (CA). El Autómata Celular (CA) distribuye la

demanda de cambio �8 9 (obtenida de la matriz de Markov 2004-2014) sobre la cuadrícula,

utilizando los mapas de idoneidad S: como guía. Para cada transición 80 9 :

1. Se identifica la demanda total �8 9 .

2. Se localizan todos los píxeles candidatos .

3. Dentro de este conjunto de candidatos, se seleccionan los �8 9 píxeles que tienen los

valores más altos en el mapa de idoneidad para la clase destino 9 (S 9 (?)).

4. Se cambia el estado de estos �8 9 píxeles de 8 a 9 en el nuevo mapa simulado.

Este proceso se repite para todas las transiciones definidas en la matriz de demanda.

Generación del Mapa LULC Simulado para 2024. El mapa resultante !B8< (C2 =

2024) representa el escenario LULC simulado para el año 2024. Este mapa (presentado en
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la Figura 47) es el producto final de la simulación de validación y la base para el análisis de

precisión que se detalla en la siguiente sección.

Figura 47
Mapa LULC simulado (2024).

Nota. Mapa de Coberturas y Usos del Suelo (LULC) simulado para la Provincia de Cusco,
año 2024. Fuente: Elaboración propia.

4.5.2 Validación de la Precisión del Modelo de Simulación

La validación se realizó comparando el mapa LULC simulado para el año 2024

(Figura 47) con el mapa LULC real (clasificado a partir de imágenes satelitales) para el mismo

año 2024 (Figura 44). Se emplearon diversas métricas para evaluar la concordancia entre ambos

mapas: a nivel categórico (píxel a píxel), mediante AUC-ROC para evaluar el desempeño del

modelo en la estimación del potencial de transición, y a nivel espacial (considerando la vecindad

y agregación).

Métricas de Precisión Categórica Estándar. Se construyó una matriz de confusión, que

permitió calcular métricas de precisión categórica píxel a píxel, incluyendo la exactitud del

productor, la exactitud del usuario y el F1-score por clase, así como métricas globales de

desempeño tales como la exactitud global, el acuerdo esperado por azar (%4) y el coeficiente

Kappa estándar. Adicionalmente, se incorporó la descomposición del Kappa mediante el Kappa

de histograma ( ℎ8BC>) para evaluar la correspondencia en términos de cantidad entre las clases



101

simuladas y observadas.

Validación del Potencial de Transición mediante AUC-ROC. Para determinar la capacidad

del modelo MLP-CA-MC de discriminar correctamente entre categorías de transición, se

implementó un procedimiento de evaluación basado en la Curva ROC. A diferencia de las

métricas de clasificación dura (como Kappa), esta etapa se enfoca en medir la calidad de las

probabilidades de transición generadas por la red neuronal.

Generación del Conjunto de Validación.

1. Muestreo Estratificado: Para garantizar la representatividad estadística de todas las

categorías de transición, se configuró un muestreo estratificado (Stratified Sampling).

Se fijó una semilla aleatoria ((��� = 42) para asegurar la reproducibilidad exacta de

la selección de muestras.

2. Construcción de la Matriz de Características (-): Para cada píxel muestreado, se

reconstruyó el vector de entrada concatenando el estado de la vecindad y los valores de

los factores conductores (drivers) normalizados (DEM, Pendiente, Distancias, etc.).

Cálculo de Probabilidades y Métrica AUC Global. Una vez estructurada la matriz de

entrada - y el vector de etiquetas reales H, se ejecutó el siguiente flujo de cálculo:

1. Se ingresó la matriz - completa al modelo MLP pre-entrenado, obteniendo los valores

de salida no normalizados de la última capa neuronal.

2. Dado que el cálculo del AUC requiere probabilidades, las salidas del modelo fueron

transformadas mediante la función Softmax. Esta transformación permitió obtener una

distribución de probabilidad por píxel, necesaria para la evaluación del rendimiento.

3. Debido a la naturaleza multiclase del problema, se implementó el cálculo del Área Bajo

la Curva ROC para cada clase y se promediaron sus áreas para obtener una métrica

global unificada (�*�10B4).
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Análisis de la Precisión Posicional y Espacial. Para cuantificar y caracterizar la naturaleza de

los errores de localización espacial, se aplicaron métricas de validación espacialmente explícitas,

diseñadas para gestionar los “casi aciertos” inherentes al modelado espacial:

Precisión Difusa (Fuzzy Accuracy). Esta métrica evalúa la concordancia permitiendo

una tolerancia espacial. Se definió una ventana de vecindad móvil de 3 × 3 píxeles. Bajo esta

lógica, si el píxel central del mapa simulado no coincide con el real, pero la clase correcta se

encuentra dentro de esa ventana de 3x3 en el mapa simulado, se contabiliza como un “acierto

difuso”. Esta métrica permite cuantificar los “casi aciertos”, píxeles clasificados correctamente

en tipo (clase LULC), pero con un ligero desplazamiento espacial (error de localización ≤ 30

metros).

Análisis de Validación Multiescala. Finalmente, se aplicó una técnica de validación

multiescala para evaluar cómo cambia la concordancia al agregar espacialmente los mapas

simulado y real a resoluciones progresivamente más gruesas (Tabla 26). El objetivo es observar

si los errores de localización a escala fina se anulan, lo que indicaría que los patrones espaciales

generales son correctos. Se analizó la tendencia del Coeficiente Kappa (Figura 73) y la

descomposición de los errores (en cantidad y localización) en cada escala de agregación.

Análisis de Patrón Clase Vegetación . La generación de los diagramas de rosa de

los vientos se realizó mediante un procedimiento de análisis que integra la información de

orientación de ladera con la distribución espacial de la clase Vegetación. En primer lugar, se

extrajo el raster de aspecto y se discretizó en ocho clases direccionales (N, NE, E, SE, S, SW,

W y NW), cada una asociada a un rango angular específico. Posteriormente, se generó una

máscara binaria para la clase Vegetación, tanto para el mapa real como para el mapa simulado,

identificando únicamente los píxeles pertenecientes a dicha cobertura.

Sobre esta base, el algoritmo contabilizó la frecuencia de píxeles de vegetación en cada

clase de orientación, normalizando los conteos para obtener porcentajes relativos. Finalmente,

estos valores se representaron gráficamente mediante diagramas polares tipo rosa de los vientos,

permitiendo una comparación directa entre la distribución direccional observada y la simulada

para el año 2024.
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4.5.3 Interpretabilidad del Modelo (XAI)

Dado que las Redes Neuronales Artificiales, como el Perceptrón Multicapa, son

consideradas tradicionalmente como “cajas negras” debido a la complejidad de sus pesos

internos, se implementó un módulo de Inteligencia Artificial Explicable (XAI). El objetivo fue

identificar los factores conductores (drivers) del cambio de uso de suelo y entender la relación

funcional entre estos y la probabilidad de cada cobertura de estudio.

Análisis de Dominancia de Variables. Para identificar los predictores con mayor

influencia en el desempeño del modelo, se aplicó el método de Importancia por Permutación

(Permutation Feature Importance). Este enfoque permite evaluar la sensibilidad del modelo ante

la perturbación de cada variable sin necesidad de reentrenar la red neuronal.

El procedimiento aplicado consistió en:

1. Calcular el AUC de referencia (�*�10B4) con el conjunto de validación original.

2. Permutar aleatoriamente los valores de un predictor - 9 , rompiendo su relación con la

variable objetivo.

3. Generar nuevas predicciones con el conjunto permutado y obtener el desempeño

degradado (�*�?4A<).

4. Cuantificar la importancia de la variable como la disminución del AUC respecto al valor

base.

Curvas de Respuesta. Para analizar el comportamiento no lineal de cada factor, se

generaron Gráficos de Dependencia Parcial (PDP). Esta técnica aísla el efecto de una variable

- 9 sobre la probabilidad de salida, manteniendo constantes el resto de las variables en su valor

promedio. Se simularon píxeles sintéticos variando - 9 a lo largo de su rango de distribución

observado, permitiendo visualizar si la relación con las clases de estudio es positiva o negativa.

4.6 Proyección del Escenario Futuro 2034

Una vez validado el modelo y analizadas sus reglas internas para interpretar el

funcionamiento del MLP, se procedió a la proyección del escenario futuro de LULC para
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el año 2034. Este proceso utiliza el mismo modelo MLP entrenado (que contiene las reglas de

idoneidad), y lo aplica al estado más reciente (2024) y utiliza la matriz de demanda de cambio

más reciente (2014-2024).

4.6.1 Fases Preparatorias

Carga del Modelo Predictivo (MLP). Se carga el modelo MLP 5 (x) entrenado y optimizado

que se utilizó en la simulación de validación.

Cuantificación de la Demanda de Cambio (Markov). Para definir la magnitud de las

transiciones esperadas entre 2024 y 2034, se calcula la matriz de demanda basada en el período

histórico más reciente (2014 a 2024).

1. Se cargaron los mapas LULC clasificados para los años C1 = 2014 y C2 = 2024.

2. Se calculó la matriz de tabulación cruzada (D′) y la matriz de probabilidad de transición

(P′, mostrada en la Tabla 23) para el período 2014 - 2024, siendo esta la “demanda de

cambio” para la simulación 2024 - 2034.

4.6.2 Proceso de Simulación Geoespacial 2024 - 2034

Generación de Mapas de Potencial e Idoneidad para 2034. Para la proyección al año 2034,

se determina la aptitud espacial de cada píxel a partir del estado de cobertura del año 2024. El

procedimiento es el siguiente:

1. Se emplea el mapa LULC clasificado ! (C2 = 2024) como estado inicial, junto con el

conjunto correspondiente de factores impulsores V(C2 = 2024).

2. Los factores impulsores V(C2) son normalizados.

3. El modelo MLP 5 (x) se aplica a cada píxel ? del área de estudio. Esta operación genera

un conjunto de Mapas de Potencial/Aptitud S
′
:
, uno para cada clase : .

4. A partir de estos mapas de potencial, se derivan los Mapas de Idoneidad de Transición.
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La Figura 48 presenta el mapa de potencial para la cobertura Urbana (2024-2034). La

colección completa de mapas de aptitud (para Vegetación y Suelo Desnudo) y los mapas de

idoneidad para todas las transiciones específicas se encuentran disponibles en el repositorio

digital del proyecto (Apéndice E).

Figura 48
Potencial para Ser de Cobertura Urbana (2024-2034).

Nota. Fuente: Elaboración propia.

Asignación Espacial de Transiciones (CA). Utilizando los mapas de idoneidad S
′ y la matriz

de demanda D
′, el simulador CA asigna espacialmente las transiciones proyectadas.

1. Se itera a través de las transiciones 8 0 9 .

2. Para cada transición, se identifica la demanda �′
8 9 (de la matriz 2014-2024).

3. Se seleccionaron los �′
8 9 píxeles con los valores más altos en el mapa de idoneidad S

′
9 .

4. Se cambió de 8 a 9 el estado de estos píxeles seleccionados.

4.6.3 Generación del Mapa LULC Proyectado para 2034

Una vez completada la asignación espacial para todas las transiciones definidas por la

demanda D
′, el mapa resultante representa el escenario LULC proyectado para el año 2034.

Este mapa final se presenta en la Figura 49.
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Figura 49
Mapa LULC proyectado (2034).

Nota. Mapa de Coberturas y Usos del Suelo (LULC) proyectado para la Provincia de Cusco,
año 2034, bajo un Escenario Tendencial. Fuente: Elaboración propia.
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CAPÍTULO V

Resultados y Discusión

5.1 Resultados

5.1.1 Desempeño de la Clasificación Supervisada

Configuración Óptima del Modelo de Clasificación. Las Figuras 50 a 55 muestran los mapas

de rendimiento obtenidos durante la optimización de hiperparámetros.

Figura 50
Resultados de optimización de hiperparámetros (2004).

Nota. Precisión de validación (OA) en función del número de árboles para diferentes
fracciones de muestreo para el año 2004. Fuente: Elaboración propia.

Figura 51
Mapa de calor de precisión de validación (OA) 2004.

Nota. Mapa de calor de precisión de validación (OA) para cada combinación de número de
árboles y fracción de muestreo, resultado de la optimización de hiperparámetros para el año
2004. Fuente: Elaboración propia.
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Figura 52
Resultados de optimización de hiperparámetros (2014).

Nota. Precisión de validación (OA) en función del número de árboles para diferentes
fracciones de muestreo para el año 2014. Fuente: Elaboración propia.

Figura 53
Mapa de calor de precisión de validación (OA).

Nota. Mapa de calor de precisión de validación (OA) para cada combinación de número de
árboles y fracción de muestreo, resultado de la optimización de hiperparámetros para el año
2014. Fuente: Elaboración propia.

Figura 54
Resultados de optimización de hiperparámetros (2024).

Nota. Precisión de validación (OA) en función del número de árboles para diferentes
fracciones de muestreo para el año 2024. Fuente: Elaboración propia.
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Figura 55
Mapa de calor de precisión de validación (OA).

Nota. Mapa de calor de precisión de validación (OA) para cada combinación de número de
árboles y fracción de muestreo, resultado de la optimización de hiperparámetros para el año
2024. Fuente: Elaboración propia.

Los hiperparámetros seleccionados para cada periodo y la precisión global (OA)

resultante se resumen en la Tabla 13.

Tabla 13
Precisión global e hiperparámetros óptimos

Año
Precisión

Global (OA)
Nº Óptimo
de Árboles

Fracción de
Muestreo Óptima

2004 0.948 90 0.9
2014 0.953 50 0.7
2024 0.950 110 0.9

Nota. Fuente: Elaboración propia.

Métricas de Precisión de la Clasificación.

Precisión de Clasificación – Año 2004 (Landsat 5 TM). El modelo de clasificación

para el año 2004 alcanzó una precisión global (OA) del 94.83 % y un coeficiente Kappa de

0.922 (Tablas 14 y 15).

Precisión de Clasificación – Año 2014 (Landsat 8 OLI). La clasificación de 2014

reportó una precisión global de 95.29 % y un coeficiente Kappa de 0.929 (Tablas 16 y 17).

Precisión de Clasificación – Año 2024 (Sentinel-2 MSI). En el periodo 2024, la

precisión global fue de 95.03 % con un coeficiente Kappa de 0.925 (Tablas 18 y 19).

Las Figuras 56 a 61 muetran la clasficación LULC. Los datos .tif e imágenes

complementarios están disponibles en el repositorio del proyecto (Apéndice E).
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Tabla 14
Matriz de confusión de la clasificación LULC 2004.

Clase Clasificada (Mapa)

Clase de Referencia Urbano Vegetación Suelo Total Ref.

Urbano 163 0 13 176
Vegetación 0 145 1 146
Suelo 6 5 151 162

Total Clasificado 169 150 165 484

Nota. La matriz muestra la validación de la clasificación supervisada para el año 2004.
Fuente: Elaboración propia.

Tabla 15
Métricas de precisión de la clasificación LULC 2004.

Clase LULC Exactitud del Productor Exactitud del Usuario F1-Score

1. Urbano 92.61 % 96.45 % 0.9449
2. Vegetación 99.32 % 96.67 % 0.9797
3. Suelo 93.21 % 91.52 % 0.9235

Métricas Globales

Exactitud Global (Overall Accuracy) 94.83 %
Acuerdo esperado por azar (%4) 0.3346
Coeficiente Kappa Estándar ( BC0=30A3) 0.9224
Kappa de Histograma ( ℎ8BC>) 0.9783

Nota. Resumen de las métricas de precisión por clase y globales obtenidas del proceso de
clasificación. Fuente: Elaboración propia.

Tabla 16
Matriz de confusión de la clasificación LULC 2014.

Clase Clasificada (Mapa)

Clase de Referencia Urbano Vegetación Suelo Total Ref.

Urbano 119 0 15 134
Vegetación 0 162 2 164
Suelo 4 1 164 169

Total Clasificado 123 163 181 467

Nota. La matriz muestra la validación de la clasificación supervisada para el año 2014.
Fuente: Elaboración propia.
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Tabla 17
Métricas de precisión de la clasificación LULC 2014.

Clase LULC Exactitud del Productor Exactitud del Usuario F1-Score

1. Urbano 88.81 % 96.75 % 0.9261
2. Vegetación 98.78 % 99.39 % 0.9908
3. Suelo 97.04 % 90.61 % 0.9371

Métricas Globales

Exactitud Global (Overall Accuracy) 95.29 %
Acuerdo esperado por azar (%4) 0.3384
Coeficiente Kappa Estándar ( BC0=30A3) 0.9288
Kappa de Histograma ( ℎ8BC>) 0.9612

Nota. Resumen de las métricas de precisión por clase y globales obtenidas del proceso de
clasificación. Fuente: Elaboración propia.

Tabla 18
Matriz de confusión de la clasificación LULC 2024.

Clase Clasificada (Mapa)

Clase de Referencia Urbano Vegetación Suelo Total Ref.

Urbano 134 0 16 150
Vegetación 0 168 0 168
Suelo 8 0 157 165

Total Clasificado 142 168 173 483

Nota. La matriz muestra la validación de la clasificación supervisada para el año 2024.
Fuente: Elaboración propia.

Tabla 19
Métricas de precisión de la clasificación LULC 2024.

Clase LULC Exactitud del Productor Exactitud del Usuario F1-Score

1. Urbano 89.33 % 94.37 % 0.9178
2. Vegetación 100.00 % 100.00 % 1.0000
3. Suelo 95.15 % 90.75 % 0.9290

Métricas Globales

Exactitud Global (Overall Accuracy) 95.03 %
Acuerdo esperado por azar (%4) 0.3346
Coeficiente Kappa Estándar ( BC0=30A3) 0.9253
Kappa de Histograma ( ℎ8BC>) 0.9751

Nota. Resumen de las métricas de precisión por clase y globales obtenidas del proceso de
clasificación. Fuente: Elaboración propia.
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Figura 56
Mapa LULC clasificado (Sector Oeste Cusco 2004).

Nota. Superposición del mapa LULC clasificado del año 2004 sobre la imagen de referencia
de alta resolución (Mayo 2002). Fuente: Elaboración propia.

Figura 57
Mapa LULC clasificado (Sector Este Cusco 2004).

Nota. Superposición del mapa LULC clasificado del año 2004 sobre la imagen de referencia
de alta resolución (Mayo 2002). Fuente: Elaboración propia.
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Figura 58
Mapa LULC clasificado (Sector Oste Cusco 2014).

Nota. Superposición del mapa LULC clasificado del año 2014 sobre la imagen de referencia
de alta resolución. Fuente: Elaboración propia.

Figura 59
Mapa LULC clasificado (Sector Este Cusco 2014).

Nota. Superposición del mapa LULC clasificado del año 2014 sobre la imagen de referencia
de alta resolución. Fuente: Elaboración propia.
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Figura 60
Mapa LULC clasificado (Sector Oeste Cusco 2024).

Nota. Superposición del mapa LULC clasificado del año 2024 sobre la imagen de referencia
de alta resolución. Fuente: Elaboración propia.

Figura 61
Mapa LULC clasificado (Sector Este Cusco 2024).

Nota. Superposición del mapa LULC clasificado del año 2024 sobre la imagen de referencia
de alta resolución. Fuente: Elaboración propia.
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Importancia Relativa de las Variables Predictoras. La importancia relativa de las variables

predictoras para los tres periodos se presenta en las Figuras 62, 63 y 64.

Figura 62
Importancia relativa de variables predictoras (2004).

Nota. Fuente: Elaboración propia.

Figura 63
Importancia relativa de variables predictoras (2014).

Nota. Fuente: Elaboración propia.

Figura 64
Importancia relativa de variables predictoras (2024).

Nota. Fuente: Elaboración propia.



116

5.1.2 Cambios Espaciales y Temporales del LULC (2004-2024)

Evolución de Superficies y Cambios Netos de Cobertura. La distribución de las coberturas

de suelo estudiadas en la provincia de Cusco para los años 2004, 2014 y 2024 se presenta en las

Tablas 20, 21 y la Figura 65.

Tabla 20
Cambios netos de área por clase LULC durante el período 2004 - 2014.

Clase 2004 (km2) 2014 (km2) Δ (km2) 2004 ( %) 2014 ( %) Δ ( %)
Urbano 21.13 33.61 +12.48 3.99 6.34 +2.35
Vegetación 70.62 62.80 -7.82 13.32 11.85 -1.47
Suelo Desnudo 438.39 433.73 -4.66 82.69 81.81 -0.88

Nota. Fuente: Elaboración propia.

Tabla 21
Cambios netos de área por clase LULC durante el período 2014 - 2024.

Clase 2014 (km2) 2024 (km2) Δ (km2) 2014 ( %) 2024 ( %) Δ ( %)
Urbano 33.61 50.28 +16.67 6.34 9.48 +3.14
Vegetación 62.80 51.96 -10.85 11.85 9.80 -2.05
Suelo Desnudo 433.73 427.91 -5.82 81.81 80.72 -1.10

Nota. Fuente: Elaboración propia.

Figura 65
Tendencia de evolución de coberturas.

Nota. La figura muestra la tendencia de la evolución de las coberturas de suelo del 2004 hasta
el año 2024. Fuente: Elaboración propia.
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Matrices de Transición y Probabilidades de Markov. Las matrices de probabilidad de

transición (derivadas del análisis de Markov, Tablas 22, 23 y Figura 66) contienen las tasas de

estabilidad y conversión bruta entre clases.

Tabla 22
Matriz de probabilidad de transición estimada para el período 2004 - 2014.

De A
Urbano Vegetación Suelo Desnudo

Urbano 0.8645 0.0017 0.1337
Vegetación 0.0179 0.6931 0.2890
Suelo Desnudo 0.0321 0.0315 0.9364

Nota. Fuente: Elaboración propia.

Tabla 23
Matriz de probabilidad de transición estimada para el período 2014 - 2024.

De A
Urbano Vegetación Suelo Desnudo

Urbano 0.8278 0.0272 0.1451
Vegetación 0.0219 0.6223 0.3558
Suelo Desnudo 0.0486 0.0276 0.9238

Nota. Fuente: Elaboración propia.

Figura 66
Diagrama de Sankey de la evolución de coberturas del suelo.

Nota. El diagrama de Sankey ilustra la evolución de las coberturas del suelo (LULC) en el
período estudiado. Fuente: Elaboración propia.
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Distribución Espacial de los Cambios de Cobertura. Las Figuras 67 y 68 presentan un

ejemplo de la transición de Suelo Desnudo a Urbano para los periodos 2004-2014 y 2014-2024,

respectivamente. El catálogo completo de mapas de cambio para todas las transiciones y clases

se encuentra organizado en el repositorio digital del proyecto (Apéndice E).

Figura 67
Cambio de cobertura de suelo desnudo a urbana (2004-1014).

Nota. Mapa de cambio de la cobertura de suelo desnudo a urbana entre los años 2004 y 2014.
Fuente: Elaboración propia.

Figura 68
Cambio de cobertura de suelo desnudo a urbana (2014-2024).

Nota. Mapa de cambio de la cobertura de suelo desnudo a urbana entre los años 2014 y 2024.
Fuente: Elaboración propia.
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5.1.3 Desempeño y Validación del Modelo Predictivo MLP-CA-MC

Colinealidad entre Variables Predictoras. Las matrices de correlación de Pearson para los

años 2004, 2014 y 2024 se presentan en las Figuras 69, 70 y 71.

Las variables de distancia a infraestructura (vías, aeropuerto y rieles) se situaron en el

rango de 0.84 a 0.90 durante el periodo analizado. En el bloque de equipamiento urbano, las

variables de educación y salud presentaron valores de 0.82, 0.81 y 0.84 para los años 2004,

2014 y 2024, respectivamente.

En el intervalo comprendido entre 2004 y 2024, el coeficiente entre la distancia a

instituciones educativas y la distancia a vías pasó de 0.64 a 0.73 y la relación entre la variable

educación y la distancia al aeropuerto varió de 0.61 a 0.74.

Finalmente, los factores topográficos de aspecto y pendiente mantuvieron coeficientes

inferiores a 0.1 en relación con el resto de los predictores en toda la serie temporal.

Figura 69
Matriz de correlación de variables predictoras (2004).

Nota. La figura muestra la matriz de correlación entre las variables predictoras consideradas
para el período 2004. Fuente: Elaboración propia.
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Figura 70
Matriz de correlación de variables predictoras (2014).

Nota. La figura muestra la matriz de correlación entre las variables predictoras consideradas
para el período 2014. Fuente: Elaboración propia.

Figura 71
Matriz de correlación de variables predictoras (2024).

Nota. La figura muestra la matriz de correlación entre las variables predictoras consideradas
para el período 2024. Fuente: Elaboración propia.
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Métricas de Validación del Escenario Simulado 2024.

Exactitud Categórica. La validación del modelo MLP-CA-MC para el año 2024

se efectuó mediante la comparación entre el mapa simulado y clasificado. Se registró una

Exactitud Global ($�) de 88.90 % y un coeficiente  BC0=30A3 de 0.6620. Respecto al F1-Score

por categoría, se obtuvieron valores de 0.9340 para la clase Suelo, 0.7160 para Urbano y 0.6841

para Vegetación (Tabla 25). En cuanto a los componentes del acuerdo, se cuantificó un valor de

%@D0=C8CH de 0.9921 y un  ℎ8BC> de 0.9759. El acuerdo esperado por azar (%4) fue de 0.6717.

Tabla 24
Matriz de confusión LULC 2024.

Clase Simulada (Predicción)

Clase Real (Referencia) Urbano Vegetación Suelo Total Real

Urbano 38,331 1,224 16,308 55,863
Vegetación 1,354 40,644 15,734 57,732
Suelo 11,522 19,229 444,703 475,454

Total Simulado 51,207 61,097 476,745 589,049

Nota. La matriz muestra la comparación entre clases simuladas y reales para el año 2024.
Fuente: Elaboración propia.

Tabla 25
Métricas de precisión LULC 2024.

Clase LULC Exactitud del Productor Exactitud del Usuario F1-Score

1. Urbano 68.62 % 74.85 % 0.7160
2. Vegetación 70.40 % 66.52 % 0.6841
3. Suelo 93.53 % 93.28 % 0.9340

Métricas Globales

Exactitud Global (Overall Accuracy) 88.90 %
Acuerdo esperado por azar (%4) 0.6717
Coeficiente Kappa Estándar ( BC0=30A3) 0.6620
Kappa de Histograma ( ℎ8BC>) 0.9759

Nota. La Tabla resume las métricas de precisión por clase y las métricas globales del modelo
de simulación. Fuente: Elaboración propia.

La matriz de confusión para el año 2024 clasificado y la simulación muestra un

intercambio entre las coberturas naturales (Suelo Desnudo y Vegetación) de 34 963 píxeles

de diferencia. En este bloque, se registraron 19 229 píxeles de Suelo Desnudo asignados a la

clase Vegetación y 15 734 píxeles de Vegetación asignados a Suelo Desnudo.
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Respecto a la categoría Urbano, se cuantificó una omisión de 16 308 píxeles (14.7 km2),

los cuales figuran en la simulación como Suelo Desnudo. Asimismo, la comisión en esta clase

fue de 11 522 píxeles, correspondientes a áreas de Suelo Desnudo en el mapa de referencia que

se encuentran integradas a la clase Urbano en el mapa simulado.

Capacidad Predictiva del Potencial de Transición (AUC-ROC). La evaluación de las

probabilidades de transición mediante el análisis ROC multiclase resultó en un valor de área

bajo la curva (�*�) de 0.9438. El trazado de la Figura 72 se ubica hacia el sector superior

izquierdo del espacio de la gráfica.

Figura 72
Curva ROC Global (Macro-Average) del modelo MLP-CA-MC.

Nota. El desempeño del modelo (línea azul) se compara con un clasificador aleatorio (línea
punteada gris). El AUC resultante es de 0.9438. Fuente: Elaboración propia.

Precisión Posicional y Multiescala. La precisión global con una ventana de tolerancia

de 3 × 3 píxeles fue de 97.05 %, frente al 88.90 % obtenido en la escala original. El coeficiente

 BC0=30A3 registró valores de 0.6620 en la resolución de 30m y de 0.7861 en el nivel de agregación

de 960m (Tabla 26). El desacuerdo por cantidad se mantuvo en un valor de 0.09 en todas

las escalas evaluadas. Por su parte, el desacuerdo por localización varió desde 0.3394 en la

resolución nativa hasta 0.3233 en la escala de 960m.
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Tabla 26
Validación multiescala LULC 2024.

Iteración
Escala

(Agregación)
Kappa

( BC0=30A3)
Desacuerdo
por Cantidad

Desacuerdo
por Localización

0 1x (30m) 0.6620 0.0979 0.3394
1 2x (60m) 0.6597 0.0973 0.3380
2 4x (120m) 0.6718 0.0966 0.3369
3 8x (240m) 0.6765 0.0955 0.3336
4 16x (480m) 0.6935 0.0907 0.3249
5 32x (960m) 0.7861 0.0874 0.3233

Nota. La Tabla muestra los resultados de la validación multiescala comparando mapas
simulados y reales de 2024 a distintos niveles de agregación espacial. Fuente: Elaboración
propia.

Figura 73
Validación multiescala.

Nota. Fuente: Elaboración propia.

Las Figuras 74 y 75 presentan las vistas comparativas de la simulación LULC 2024

versus la realidad, para los sectores Oeste y Este, respectivamente.
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Figura 74
Mapa LULC Simulado 2024 (Oeste) superpuesto en Alta Resolución.

Nota. Fuente: Elaboración propia.

Figura 75
Mapa LULC Simulado 2024 (Este) superpuesto en Alta Resolución.

Nota. Fuente: Elaboración propia.
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Patrones Espaciales de la Clase Vegetación. La distribución de la vegetación por

orientación de ladera para el año 2024 se detalla en la Tabla 27 y Figura 76. En la orientación

Suroeste (SW) se registró un valor de 27.50 % en el mapa real y de 28.37 % en la simulación.

Las diferencias porcentuales entre ambos mapas se situaron en un rango de -2.01 % (NW) a

+2.23 % (S).

Figura 76
Diagramas de frecuencia direccional de la cobertura vegetal (2024).

(a) Distribución Real (b) Distribución Simulada

Nota. Los diagramas de Rosa de los Vientos muestran la orientación predominante de la
cobertura vegetal observada (Real) frente a la simulada por el modelo (Simulada) para el año
2024. Fuente: Elaboración propia.

Tabla 27
Vegetación por orientación de ladera (2024).

Orientación % Real (2024) % Simulado (2024) Diferencia

Norte (N) 5.45 % 4.17 % -1.28 %
Noreste (NE) 4.35 % 3.43 % -0.92 %
Este (E) 5.00 % 4.44 % -0.56 %
Sureste (SE) 10.34 % 11.70 % +1.36 %
Sur (S) 20.42 % 22.65 % +2.23 %
Suroeste (SW) 27.50 % 28.37 % +0.87 %
Oeste (W) 17.70 % 18.01 % +0.31 %
Noroeste (NW) 9.24 % 7.23 % -2.01 %

Nota. La Tabla muestra la comparación porcentual de la vegetación según orientación de
ladera en 2024. Fuente: Elaboración propia.

Potencial de Cobertura Vegetación. Mapa de potencial de ser de cobertura Vegetación

generados por el modelo híbrido (Figura 77).
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Figura 77
Mapa de Potencial de Vegetación (2014-2024).

Nota. Potencial de Vegetación para el período de validación (2014-2024). Fuente:
Elaboración propia.

Factores Impulsores del Cambio (XAI).

Contribución Relativa de los Predictores. Los valores obtenidos en el análisis de

importancia por permutación se detallan en las Figuras 78, 79 y Tabla 28.

Figura 78
Ranking de importancia de variables basado en el impacto en el AUC.

Nota. Importancia de las variables predictoras. Fuente: Elaboración propia.
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Figura 79
Impacto de la permutación de variables en Curvas ROC.

Nota. Se ilustra el impacto de la permutación de las variables predictoras en las Curvas ROC
generadas por el modelo. Fuente: Elaboración propia.

Tabla 28
Ranking de Importancia (Permutación)

Variable Predictora AUC Permutado Caída (Δ AUC) Imp. Relativa ( %)
1. Elevación (DEM) 0.8957 0.0481 54.70
2. Inst. Educativas (IIEE) 0.9296 0.0143 16.21
3. Pendiente (Slope) 0.9367 0.0071 8.12
4. Turismo 0.9377 0.0061 6.97
5. Vías 0.9396 0.0043 4.84
6. Pob. Grandes 0.9413 0.0026 2.93
7. Hidrografía 0.9416 0.0023 2.56
8. Pob. Dispersas 0.9422 0.0016 1.84
9. Aspecto 0.9422 0.0016 1.82

AUC Base del Modelo: 0.9438

Nota. Fuente: Elaboración propia.

La aleatorización de la variable Elevación (DEM) resultó en un �*� permutado de

0.8957, lo que representa una variación de Δ = 0.0481 respecto al valor base y una importancia

relativa del 54.70 %. Para la variable Instituciones Educativas, se registró un �*� de 0.9296

(Δ = 0.0143) y un peso del 16.21 %. En el caso de las variables Pendiente, Turismo y Vías,

los valores se situaron en 0.0071, 0.0061 y 0.0043, respectivamente. Los factores restantes

(Poblaciones, Hidrografía y Aspecto) presentaron variaciones en el �*� inferiores a 0.003,

con valores de importancia relativa entre el 1.82 % y el 2.93 %.
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Dinámica de Respuesta Espacial (PDP). Caracteriza la relación marginal entre los

predictores y la probabilidad estimada de transición (Figura 80). Las tablas detalladas se

encuentran disponibles en el repositorio digital del estudio (Apéndice E).

Elevación (DEM). Los valores de probabilidad urbana se sitúan entre 0.4801 y 0.1412,

mientras que el Suelo Desnudo oscila entre 0.2189 y 0.6433.

Pendiente (Slope). La probabilidad urbana varía de 0.4187 a 0.2287.

Aspecto e Hidrografía. El rango de respuesta para el aspecto se ubica entre 0.3801 y

0.2960. El intervalo de probabilidad urbana se mantiene entre 0.3389 y 0.3278.

Instituciones Educativas (IIEE). Se registraron valores de 0.4189 y 0.2159 para la clase

urbana, con un cambio en la probabilidad de Suelo hasta 0.5133.

Turismo. La probabilidad de transición urbana se sitúa en 0.3996 en el origen y en

0.2294 en la distancia máxima evaluada.

Vías. El vector de salida para la clase urbana varía entre 0.3666 y 0.2783, mientras que

la Vegetación se ubica entre 0.2928 y 0.3990.

Poblaciones Grandes. La probabilidad urbana registra un cambio de 0.3286 a 0.2987.

Poblaciones Dispersas. Se obtuvo un rango de 0.2865 a 0.3317 para la categoría urbana.

Figura 80
Curvas de respuesta PDP

(a) Elevación (DEM). (b) Pendiente.



129

Figura 80
Curvas de respuesta PDP (continuación)

(c) Aspecto. (d) Red Hidrográfica.

(e) Instituciones Educativas. (f) Turismo.

(g) Poblaciones Grandes. (h) Poblaciones Dispersas.

(i) Red Vial.

Nota. Las curvas de dependencia parcial (PDP) muestran la influencia marginal de cada
variable predictora en el modelo. Fuente: Elaboración propia.
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5.1.4 Proyección del LULC para el Periodo 2024–2034

Cuantificación de Cambios Proyectados. La Tabla 29 detalla los cambios netos proyectados

para cada clase al año 2034. Complementariamente, la Figura 81 muestra la continuidad de

estas tendencias respecto a la serie histórica 2004 - 2024.

La cobertura Urbana alcanzó una superficie proyectada de 66.95 :<2 representando un

incremento neto de 16.67 :<2 y el 12.63 % del área total del estudio.

La clase Vegetación se proyectó en 41.11 :<2, estableciendo una reducción neta de

10.85 :<2 respecto al año 2024 y una pérdida de 2.05 % en la configuración del paisaje

El Suelo Desnudo presentó una transición de 427.91 :<2 a 422.09 :<2 durante el

horizonte proyectado, con un diferencial negativo de 5.82 :<2 y una ocupación final

del 79.62 % del territorio

Tabla 29
Proyección de área por clase LULC 2024-2034.

Clase 2024 (km2) 2034 (km2) Δ (km2) 2024 ( %) 2034 ( %) Δ ( %)

Urbano 50.28 66.95 +16.67 9.48 12.63 +3.14
Vegetación 51.96 41.11 -10.85 9.80 7.76 -2.05
Suelo Desnudo 427.91 422.09 -5.82 80.72 79.62 -1.10

Nota. Estadísticas de área proyectadas por clase LULC para el período 2024–2034. Fuente:
Elaboración propia.

La Figura 82 ilustra la transición de Suelo Desnudo a Urbano proyectada para el periodo

2024-2034, mostrando las zonas que el modelo proyecta expansión. El catálogo completo de

mapas de cambio simulados, incluyendo todas las transiciones y persistencias proyectadas, se

encuentra organizado en el repositorio digital del proyecto (Apéndice E).
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Figura 81
Tendencia de evolución de coberturas (Proyección 2034).

Nota. Tendencia de la evolución de las coberturas de suelo proyectada para el período 2024 a
2034. Fuente: Elaboración propia.

Figura 82
Simulación de cambio de cobertura de suelo desnudo a urbana (2024 - 2034).

Nota. Fuente: Elaboración propia.

Dinámica de Transiciones Proyectada. La dinámica de cambios esperada para el periodo

2024-2034 se muestra en la Tabla 30 y el diagrama de Sankey (Figura 83).

La clase Suelo Desnudo (Clase 3) presenta una probabilidad de permanencia del 95.07 %

(%33), la cobertura Urbana con 88.49 % (%11) y la Vegetación con 79.13 % (%22).
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La transición de Suelo Desnudo a Urbano (%31) se cuantifica en 4.93 %, mientras que la

conversión de Vegetación a Urbano (%21) alcanza el 2.64 %.

La cobertura vegetal muestra una probabilidad de conversión hacia Suelo Desnudo (%23)

del 18.23 %.

Se registró una probabilidad nula (%32 = 0.00) para la transición de Suelo Desnudo

hacia Vegetación. Por otro lado, la transición de Urbano a Suelo Desnudo (%13) fue de

11.51 %.

Tabla 30
Matriz de probabilidad de transición utilizada para la proyección 2024 - 2034.

De (Clase) A (Clase)
Urbano Vegetación Suelo Desnudo

Urbano 0.8849 0.0000 0.1151
Vegetación 0.0264 0.7913 0.1823
Suelo Desnudo 0.0493 0.0000 0.9507

Fuente: Elaboración propia a partir del análisis de cambio 2014 - 2024.

Figura 83
Diagrama de Sankey de la evolución de coberturas del suelo (2020 - 2034).

Nota. El diagrama ilustra la evolución y estabilidad de las coberturas del suelo (LULC) en la
proyección al 2034. Fuente: Elaboración propia.
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Las Figuras 84 y 85 presentan la configuración espacial de la cobertura LULC proyectada

al año 2034 para los sectores oeste y este de la provincia. El archivo en formato raster (.tif)

correspondiente a la proyección completa para el área de estudio se encuentra disponible en el

repositorio digital del proyecto (Apéndice E).

Figura 84
Mapa LULC Proyectado (Oeste) 2034.

Nota. Fuente: Elaboración propia.

Figura 85
Mapa LULC Proyectado (Este) 2034.

Nota. Fuente: Elaboración propia.
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Consistencia de la Distribución Clase Vegetación Proyectada. La clase Vegetación

proyectada al 2034 se distribuye en las laderas de umbría (S, SE, SW), las cuales integran

más del 60 % de la superficie total de esta cobertura (Figura 86). La orientación Suroeste (SW)

registra el 28.73 % de la superficie vegetal, mientras que las orientaciones de solana (N, NE)

presentan valores inferiores al 5 % (Tabla 31).

Figura 86
Diagrama de frecuencia direccional proyectada de la vegetación (2034).

Nota. La Rosa de los Vientos muestra la orientación predominante de la cobertura vegetal
proyectada por el modelo para el año 2034. Fuente: Elaboración propia.

Tabla 31
Distribución proyectada de la vegetación según orientación (2034).

Orientación % Vegetación 2034

Norte (N) 4.54 %
Noreste (NE) 3.64 %
Este (E) 4.33 %
Sureste (SE) 10.22 %
Sur (S) 21.04 %
Suroeste (SW) 28.73 %
Oeste (W) 18.62 %
Noroeste (NW) 8.90 %

Nota. Fuente: Elaboración propia.
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Figura 87
Mapa de Potencial de Vegetación (Proyección 2024-2034).

Nota. El mapa muestra el Potencial de Vegetación proyectado por el modelo para el período
2024-2034. Fuente: Elaboración propia.

5.2 Discusión

5.2.1 Fiabilidad de la Clasificación y Confusión Espectral

Interpretación del Desempeño de Clasificación. Las precisiones globales obtenidas (94.8 %-

95.3 %) y los coeficientes Kappa (0.922-0.929) se sitúan dentro de los rangos reportados en la

literatura reciente. El estudio de K. C. Roy et al. (2024) se limitó al uso de índices espectrales

obteniendo un OA máximo de 90.73 %, la inclusión de variables topográficas (elevación y

pendiente) en el trabajo de Belay et al. (2024) permitió elevar la precisión global hasta un

94.84 %. Esto sugiere que estos datos topográficos son factores discriminantes que mejoran la

clasificación de coberturas. Sin embargo, los resultados fueron inferiores a los reportados por

Gündüz (2025) (OA de 98 %). Este resultado se atribuye principalmente a la resolución espacial.

Mientras que en esta investigación los sensores fueron homogenizados a 30 m, Gündüz trabajó

exclusivamente con la resolución nativa de Sentinel-2, lo que sugiere que una mayor resolución

espacial favorece la separación de coberturas.

Interpretación de los Patrones de Acierto. La exactitud del productor en el presente

análisis varía entre 88.81 % y 100 %, mientras que la exactitud del usuario se sitúa en el rango

de 90.61 % a 100 %. Estos valores son comparables con los reportados por estudios previos,
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donde la exactitud del productor oscila entre 91.1 % y 100 % y la exactitud del usuario entre

99.1 % y 100 % (B. Roy, 2021). Si bien en este trabajo se registran ligeras disminuciones en

la exactitud del usuario para las clases Urbano y Suelo en determinados años, los resultados

globales confirman una elevada fiabilidad de la clasificación.

La clase Vegetación fue la mejor identificada en los tres años. Se observa una mejora

progresiva en su Recall (99.3 % en 2004, 98.8 % en 2014, 100 % en 2024), lo que muestre

la efectividad de las variables topográficas e índices espectrales para discriminar vegetación

persistente activa durante el invierno austral.

Los modelos RF para cada año registraron precisiones globales (OA) superiores a 0.91

incluso con configuraciones de 10 árboles y una fracción de muestreo de 0.1. Este desempeño,

alcanzado con configuraciones simples, contrasta con redes neuronales (CNN o ANN), las

cuales, a pesar de capturar relaciones no lineales complejas, demandan mayores recursos de

procesamiento y volúmenes de datos más extensos (Hussain et al., 2025; Khosravi, 2025).

Análisis de los Patrones de Error.

1. Las matrices de transición muestran confusión entre las categorías Urbano (Clase 1) y

Suelo Desnudo (Clase 3), con valores de transición (%13) que oscilan entre el 0.13 y 0.14

en ambos periodos. Este patrón de error se debe a la similitud espectral entre ciertos

materiales de construcción como arcilla y adobe en viviendas (Yañe Zuñiga, 2019) y

las superficies de suelo desnudo en el espectro óptico (Ettehadi et al., 2019; Krivoguz,

2024). Dicha dificultad se ve acentuada por la presencia de píxeles mixtos, los cuales

integran contribuciones de asfalto, vegetación y estructuras dentro de una misma unidad

(Tasan et al., 2025). La literatura científica valida estos hallazgos, reportando tasas de

confusión similares en rangos de 0.07 a 0.27 (Badshah et al., 2024; Bendechou et al.,

2024; Duan et al., 2025; Kamran et al., 2024), lo que confirma que esta imprecisión es

un desafío inherente y esperado en la clasificación LULC.

2. La clase Suelo Desnudo presentó la Precisión del Usuario más baja de las tres

clases (91.5 % en 2004, 90.6 % en 2014, 90.7 % en 2024). Esto indica que los

píxeles etiquetados como ”Suelo Desnudo” en los mapas clasificados tienen una mayor

probabilidad de incluir errores de comisión, principalmente píxeles que en realidad son
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Urbanos pero que el modelo no logró identificar correctamente.

3. La clase Urbano tuvo los valores más bajos de Precisión del Productor (92.6 % en

2004, 88.8 % en 2014, 89.3 % en 2024). Esto significa que el principal fallo del

modelo es la omisión de una fracción de los píxeles urbanos reales, confundiéndolos

predominantemente con Suelo Desnudo.

La comparación del rendimiento entre los diferentes sensores sugiere que las variaciones

en las características radiométricas y espectrales entre Landsat 5 TM, Landsat 8 OLI y Sentinel-

2 MSI no introdujeron sesgos, ni degradaron el desempeño del clasificador RF. Esto respalda

la viabilidad de utilizar estos sensores de forma combinada para análisis multitemporales,

consecuente con estudios que usaron distintos sensores (Buthelezi et al., 2024; Khosravi, 2025)

Sinergia de Variables Espectrales y Topográficas. Los resultados de importancia relativa

indican que la clasificación no depende de un único predictor, sino de la interacción entre datos

espectrales y físicos. El peso de la topografía es el factor más determinante, lo que responde a la

configuración geográfica del valle del Cusco. En este entorno andino, la altitud y la inclinación

del terreno dictan la distribución de las coberturas, mientras el crecimiento urbano se concentra

en el fondo del valle, la vegetación y los suelos descubiertos ocupan principalmente las laderas

(Figuras 80b, 80a). Mientras que los índices espectrales capturan la firma de los materiales

(Vahid & Aly, 2025).

5.2.2 Análisis de la Dinámica Temporal y Secuencialidad del Cambio

La expansión urbana en la provincia de Cusco muestra una aceleración entre los dos

periodos analizados. El cambio neto de la superficie urbana subió de 12.48 km2 en el primer

decenio a 16.67 km2 en el segundo. Este ritmo más rápido coincide con el aumento en la

probabilidad de transición desde el suelo desnudo (%31), que pasó de 3.21 % a 4.86 %, siendo

el principal flujo de suelo hacia cobertura urbana.

El análisis de las matrices de Markov revela un proceso de cambio secuencial en dos

etapas. En la primera, la Vegetación actúa como la fuente primaria de cambio hacia el Suelo

Desnudo. Esta transición (%23) es la más alta y se intensificó del 28.9 % al 35.6 % entre
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periodos. En la segunda etapa, este suelo desnudo (nuevo y preexistente) funciona como la

reserva inmediata para la urbanización final. Esta secuencia explica por qué la Vegetación

registra la mayor pérdida neta de área natural, a pesar de que el Suelo Desnudo transfiere mas

superficie a la clase urbana.

La vulnerabilidad de las coberturas también es desigual. Mientras que el Suelo

Desnudo es la clase más estable del paisaje (%33 > 92 %), la Vegetación es la más inestable

(%22 = 69.3 % H 62.2 %). Las transiciones directas de Vegetación a Urbano (%21 < 2.2 %) son

mínimas, lo que confirma que el proceso de urbanización en Cusco no ocurre directamente

sobre vegetación, sino sobre terrenos despejados.

5.2.3 Validez del Modelo Predictivo MLP-CA-MC

Implicancias de la Colinealidad en el Modelamiento. La fuerte correlación (0.84-0.90) entre

las distancias a vías, aeropuerto y rieles evidencia que el crecimiento se concentra sobre un eje

común. Este patrón se extiende a los servicios públicos, donde la asociación entre centros de

salud e instituciones educativas se mantuvo estable (d = 0.82, d = 0.81 y d = 0.84), indicando

una concentración del equipamiento urbano en sectores específicos de la provincia.

Se cuantificó un incremento en la correlación entre el acceso educativo y las variables

de transporte. La asociación con la distancia a vías ascendió de 0.64 a 0.73, mientras que con

la distancia al aeropuerto subió de 0.61 a 0.74 entre 2004 y 2024.

La elevación (DEM) mostró coeficientes moderados (d ≈ 0.67) respecto a las variables

de educación y salud. Asimismo, se halló una correlación de d ≈ 0.60 entre la elevación y las

poblaciones de mayor densidad.

La independencia estadística de la pendiente y el aspecto (|d | < 0.1) respecto a los

conductores antrópicos valida su inclusión como predictores, permitiendo al modelo capturar

restricciones físicas no ligadas al desarrollo de infraestructura.

Interpretación de las Métricas de Acuerdo.

Acuerdo Categórico. La diferencia observada entre la Exactitud Global ($� =

88.90 %) y el coeficiente  BC0=30A3 (0.6620) se explica por la estructura del paisaje en el

área de estudio, donde la clase Suelo Desnudo ocupa aproximadamente el 80 % del territorio.
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Esta marcada dominancia incrementa el acuerdo esperado por azar (%4), reduciendo el margen

de mejora del índice Kappa. El valor obtenido indica que el modelo MLP-CA-MC explica el

66.2 % del potencial de cambio más allá de una asignación aleatoria.

La precisión global (OA) obtenida supera a la reportada por Pham y Ali (2024) (79.58 %),

cuyo modelo se basó en un conjunto más restringido de variables predictoras, principalmente

topográficas y algunos índices espectrales. Esta diferencia sugiere que la incorporación de un

conjunto más amplio y diverso de predictores contribuye a mejorar el desempeño del modelo.

Asimismo, los resultados son comparables a los reportados por W. Khalid et al. (2024) (85.39 %),

lo cual puede explicarse por la similitud en el enfoque metodológico, ya que ambos trabajos

integran variables topográficas junto con factores antrópicos y de accesibilidad. Sin embargo,

la precisión alcanzada es inferior a la reportada por Blissag, Bilal et al. (2024) (92.63 %), quien

incorporó variables dinámicas como la densidad de población. Este contraste indica que la

inclusión de factores dinámicos con fuerte incidencia en los procesos de cambio del uso del

suelo resulta determinante para alcanzar mayores niveles de desempeño predictivo.

Los valores de %@D0=C8CH = 0.9921 y  ℎ8BC> = 0.9759 validan el uso de las matrices

de transición históricas. La simulación reproduce las magnitudes totales de superficie, lo que

indica que la demanda de cambio calculada mediante Cadenas de Markov es precisa y no

induce sesgos. Estos resultados concuerdan con investigaciones previas que reportaron valores

de  ℎ8BC> de 0.95 (Ahmad et al., 2025) y 0.9 (Al Kafy et al., 2024).

El análisis del F1-Score evidencia diferencias en el desempeño del modelo de predicción

según la cobertura simulada. La clase Suelo presenta un valor elevado (�1 = 0.93), asociado

a su alta representatividad espacial y a la adecuada reproducción de su patrón de ocupación.

En contraste, las clases Urbano y Vegetación registran valores más moderados (�1 = 0.72 y

0.68, respectivamente), lo que indica que la Exactitud Global se encuentra influenciada por la

predominancia de la clase mayoritaria.

El menor F1-Score de la clase Vegetación refleja dificultades en la asignación espacial de

las transiciones entre vegetación y suelo desnudo. La mayor incertidumbre de las proyecciones

se concentra en áreas periféricas sometidas a presión urbana, donde los modelos presentan

limitaciones para simular crecimientos fragmentados o espontáneos en comparación con
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patrones de expansión concéntrica (Duan et al., 2025). Esta dinámica irregular dificulta la

predicción precisa de la localización de nuevos desarrollos urbanos, afectando la exactitud

espacial del mapeo de cambios (Y. Liu et al., 2024a; Tiamgne et al., 2025).

La subestimación de la expansión construida se manifiesta en la asignación de píxeles

urbanos como Suelo Desnudo, lo que reduce la exactitud del productor para la clase Urbano y

conduce a una representación de menor extensión de las áreas de transición urbano-periurbanas

respecto a la realidad observada (Duan et al., 2025). De forma complementaria, la comisión de

píxeles en la clase Urbano se asocia a probabilidades de transición superiores a la ocupación

real registrada en el mapa de referencia, lo que afecta la exactitud del usuario.

Capacidad Discriminante de Potencial de Cambio. El valor de �*� obtenido

(0.9438) se sitúa en el rango calificado como excelente por la literatura especializada

(�*� > 0.90), lo que ratifica que la combinación de variables conductoras y el modelo

híbrido explican la complejidad de las dinámicas de cambio en la provincia de Cusco. Este

resultado es equivalente al 0.88 reportado en estudios previos sobre modelado de crecimiento

(Badshah et al., 2024).

AUC es superior a la Exactitud Global ($�), esto sugiere que, aunque existan errores

de asignación final en píxeles con probabilidades muy próximas, el modelo ordena y prioriza

correctamente las zonas con mayor susceptibilidad de cambio. En consecuencia, se valida el

uso de estas superficies de probabilidad como insumo base para los Autómatas Celulares,

asegurando que la asignación espacial de la expansión urbana proyectada se fundamenta en

reglas de transición estadísticamente sólidas.

Sensibilidad Espacial y Multiescala. El aumento de la precisión global al 97.05 %

bajo una tolerancia difusa de 3 × 3 indica que las discrepancias de asignación representan,

predominantemente, desplazamientos espaciales inferiores a 30 metros respecto a la referencia.

Al obtenerse un coeficiente  �DIIH superior al de los datos base, se confirma la validez técnica

del modelo de simulación (Hagen, 2003). Este comportamiento se refuerza con los resultados

de la validación multiescala, el incremento sostenido del  BC0=30A3 conforme aumenta la unidad

de agregación (alcanzando 0.7861 a 960m) demuestra que los errores de localización a escala

de celda se compensan al evaluar el sistema en escalas geográficas mayores. El uso de escalas
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tan diversas en la literatura técnica dificulta la comparación directa entre estudios (Marey et al.,

2025).

Coherencia Simulación de la Clase Vegetación. La Tabla 27 muestra una

correspondencia entre los valores reales y simulados para la distribución porcentual por

orientación. Las diferencias se mantienen dentro de un rango con desviaciones negativas en las

orientaciones N, NE, E y NW, y desviaciones positivas en SE, S, SW y W.

La orientación suroeste presenta el mayor porcentaje tanto en los datos reales (27.50 %)

como en los simulados (28.37 %), con una diferencia reducida de 0.87 %. Mientras que la mayor

subestimación corresponde a la orientación noroeste (-2.01 %).

Los datos muestran que la simulación reproduce la distribución porcentual con errores

reducidos, lo que indica una buena concordancia entre los valores reales y los simulados.

Los mapas de potencial de ser de cobertura Vegetación generados por el MLP (Figura 77)

refuerzan esta interpretación. Las zonas clasificadas con potencial positivo coinciden con las

laderas de menor exposición solar, mientras que las áreas más secas son penalizadas.

Interpretación de los Factores Impulsores del Cambio.

Jerarquía y Contribución de las variables predictoras. A partir del análisis de

importancia por permutación (Tabla 28), se evidencia una contribución desigual de las variables

al desempeño del modelo (AUC base = 0.9438).

En el modelo MLP la elevación (DEM) es la variable más influyente, con una caída del

AUC de 0.0481, equivalente al 54.7 % de la importancia relativa. En un segundo nivel se sitúan

las instituciones educativas (IIEE), con una reducción del AUC de 0.0143 (16.21 %).

Las variables pendiente, turismo y vías presentan una importancia intermedia, con

disminuciones del AUC entre 0.0043 y 0.0071. En contraste, poblaciones grandes, hidrografía,

poblaciones dispersas y aspecto muestran efectos marginales, con caídas del AUC inferiores a

0.003 y aportes relativos menores al 3 %.

Análisis de Dependencia no Lineal de las Variables Predictoras. La elevación y la

pendiente presentan el impacto más claro sobre las probabilidades. La clase urbana es máxima

en terrenos bajos y planos, disminuyendo de forma constante a medida que aumenta la altitud y

la inclinación. El aspecto, por su parte, muestra una influencia menor con cambios leves en la
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tendencia.

La probabilidad de expansión urbana es más alta en áreas cercanas a instituciones

educativas, vías y zonas turísticas, reduciéndose progresivamente conforme aumenta la

distancia. En el caso de las vías, este descenso urbano se compensa con un incremento en

la probabilidad de vegetación en zonas alejadas.

La cercanía a poblaciones grandes favorece la probabilidad de la clase urbana. En

contraste, el efecto de las poblaciones dispersas es moderado y muestra un comportamiento

donde la probabilidad urbana se estabiliza después de alcanzar valores intermedios.

La hidrografía presenta probabilidades constantes en todo su rango. Esto indica que la

cercanía a ríos no actúa como un factor que permita diferenciar entre las coberturas de suelo,

urbano o vegetación.

5.2.4 Dinámica Territorial 2034

Análisis de Cambios Proyectados. La proyección al año 2034 confirma la persistencia de

las tendencias observadas en las últimas dos décadas. El incremento del 33 % en la cobertura

urbana muestra una aceleración en la presión sobre el territorio, sugiriendo que los procesos

de consolidación y densificación continuarán en torno a los núcleos existentes y sus periferias

inmediatas.

La contracción proyectada de la Vegetación (−10.85 km2) resulta significativa, siendo

la clase con la pérdida más alta.

Dinámica de Transiciones al 2034. El análisis de las probabilidades de transición proyectadas

revela un patrón de cambio territorial, el cual guarda una estrecha coherencia con las dinámicas

históricas analizadas en fases previas de esta investigación. Esta lógica de cambio se explica a

través de los siguientes ejes interpretativos:

Presión y Degradación de la Vegetación Remanente. El modelo muestra una

persistencia de 79.1 % para la Vegetación (%22), este valor aunque mayor a de los anteriores

años de estudio, se aplica sobre una superficie cada vez mas pequeña (9.8 %). La secuencia

de transformación observada en periodos anteriores continúa, donde la vegetación es sometida

primero a una conversión a Suelo Desnudo (%23 = 18.2 %), y el suelo desnudo nuevo y
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preexistente transita hacia cobertura Urbana (%21 = 2.64 %). La estabilidad del Suelo Desnudo

(%33 = 0.95), evidencia que el modelo incorpora restricciones de aptitud que frenan una

transformación masiva de las laderas del valle, manteniendo la expansión urbana confinada a

los lugares de mayor potencial.

Irreversibilidad de las Tendencias Proyectadas (Vegetación). Se proyecta una

probabiliad nula de regeneración de vegetación a partir de suelo desnudo (%32 = 0.0) bajo

las tendencias actuales. La ausencia de este flujo en la simulación implica que cada hectárea

de vegetación perdida se considera una reducción definitiva del patrimonio natural dentro del

horizonte de proyección al 2034.

Interpretación de Anomalías Metodológicas y Confusión Espectral. El escenario

proyectado al 2024 y 2034 presenta dos anomalías espaciales localizados que requieren una

interpretación detallada.

La “Desurbanización” (Efecto %13):.

1. El ruido de clasificación (píxeles que “oscilan” entre Urbano y Suelo Desnudo) se

cuantifica en la matriz de transición como un cambio real. Este fenómeno genera un

incremento artificial en la probabilidad %13 (Urbano a Suelo Desnudo), asignándole un

valor que es lógicamente improbable para una ciudad en crecimiento.

2. La cadena de Markov determina la probabilidad de cambio %13 a Suelo Desnudo.

3. El MLP, al entrenarse con los datos ruidosos, aprende a identificar las características de

los píxeles que “cambiaron” de Urbano a Suelo asignando potencial de transición %13.

4. El autómata celular (CA) aplica la demanda de Markov (%13) en las ubicaciones de

mayor potencial del MLP, resultando en una aparente desurbanización.

La “Urbanización” de Intersticios Urbanos (Efecto %31). Esta anomalía sigue una

lógica de modelo diferente, relacionada con la transición %31 (Suelo Desnudo a Urbano), la cual

constituye un proceso real en la dinámica de la provincia.

1. La conversión de Suelo Desnudo a Urbano (%31 = 4.93 %) es la principal dinámica de

crecimiento esperada por el modelo. El error observado no radica en la magnitud de
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la transición, sino en su asignación espacial preferente hacia el interior de la ciudad

consolidada.

2. El MLP asigna un potencial de transición (%31) alto al suelo desnudo ubicados dentro de

la cobertura urbana (intersticios). Esto ocurre porque dichos espacios son ideales para

las variables jerárquicamente dominantes, se ubican en el rango de Elevación predilecto

(54.7 %) y maximizan la cercanía a Instituciones Educativas (16.2 %).

3. Al ejecutar la simulación, el Autómata Celular (CA) canaliza parte de la demanda de

crecimiento (%31) hacia estos vacíos internos, generando un efecto de densificación.

Esto resulta en una mancha urbana simulada mucho más compacta que la real y produce

fenómenos funcionalmente inviables, como la urbanización alrededor de las pistas de

aterrizaje.

Coherencia Proyección de la Clase Vegetación. El modelo proyecta la mayor densidad de la

clase Vegetación en las laderas Sur y Suroeste, esto demuestra que el modelo híbrido reproduce

correctamente las restricciones biofísicas de la provincia. Al observar los graficas de influencia

del aspecto (Figuras 80c, 78) en el MLP, se puede inferir que este fenómeno no proviende del

predictor aspecto, si no de las tendencias historicas.
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Conclusiones

1. La proyección del escenario tendencial al 2034 cuantifica una expansión urbana neta

de 16.67 km2, sostenida por la reducción simultánea de las coberturas de Vegetación

(-10.85 km2) y Suelo Desnudo (-5.82 km2). La simulación estima una probabilidad nula

de regeneración de Vegetación a partir de Suelo Desnudo (%32 = 0.0), estableciendo la

irreversibilidad de la pérdida de cobertura vegetal bajo las tendencias históricas.

2. El clasificador Random Forest demostró una alta precisión y consistencia para los tres

períodos (2004, 2014 y 2024), alcanzando precisiones globales superiores al 94.8 % y

coeficientes Kappa mayores a 0.92. Se concluye que la metodología es robusta para la

clasificación LULC. La principal fuente de error residual identificada es la confusión

espectral sistemática entre las clases Suelo Desnudo y Urbano.

3. Se cuantificó una expansión urbana acelerada impulsada por un proceso secuencial. El

área urbana pasó de 21.13 km2 en 2004 a 50.28 km2 en 2024. El análisis de transiciones

identificó una dinámica encadenada como el proceso dominante de transformación: la

Vegetación es convertida a Suelo Desnudo y esta reserva de Suelo Desnudo (nuevo y

preexistente) actúa como la fuente bruta inmediata para la expansión final de la clase

Urbano.

4. La simulación alcanzó una Exactitud Global (Overall Accuracy) de 0.8890, respaldada

por una capacidad discriminante del análisis AUC-ROC = 0.9438. Su principal fortaleza

es la alta fidelidad para simular la cantidad de cambio (Khisto ≈ 0.98) y los patrones

espaciales generales (Precisión Difusa > 97 % y Análisis Multiescala (960 m) > 78 %).

Su debilidad principal es la precisión de la localización exacta a nivel de píxel.
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Recomendaciones

Se sugiere explorar el uso de imágenes satelitales de mayor resolución espacial para

los periodos más recientes disponibles. Esto permitiría mejorar la segmentación de

superficies construidas y reducir la incertidumbre en la estimación de las tasas de

cambio, refinando la precisión de la clasificación base.

Dado que el modelo actual se fundamenta en variables estáticas, se recomienda enri-

quecer el espacio de características mediante la integración de datos socioeconómicos

dinámicos, como la densidad poblacional o la valoración del suelo, para capturar con

mayor fidelidad la complejidad de los factores que impulsan la urbanización.

Se propone desarrollar un flujo de trabajo automatizado que incorpore y procese nuevas

imágenes satelitales de forma periódica. Esto permitiría el reentrenamiento automático

de los pesos del Perceptrón Multicapa y la actualización de las matrices de transición,

transformando el modelo estático en un sistema de monitoreo continuo y adaptable a

nuevas tendencias.

Se sugiere la implementación de un módulo de software para la identificación de la

transición de vegetación a suelo desnudo. Este sistema permitiría monitorear la aparición

de nuevas áreas expuestas y generar notificaciones automáticas sobre zonas con alta

probabilidad de expansión urbana no planificada.

Aprovechando las proyecciones generadas para el horizonte 2034, se recomienda el

desarrollo de algoritmos de optimización de ubicación-asignación (Location-Allocation

Algorithms) que utilicen la distribución simulada de la población como dato de entrada.

Estos algoritmos permitirían calcular las coordenadas óptimas para nuevos nodos de

servicios, buscando minimizar los costos de desplazamiento y maximizar la cobertura

de atención a la población.
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Apéndices

Apéndice A

Mapa de Peligros de la Ciudad del Cusco 2004

Figura 88
Mapa de Peligros de la Ciudad del Cusco 2004



175

Apéndice B

Validación de Fuente de Datos Geográficos: El Caso de la Provincia de Cusco

La determinación de la superficie oficial de la Provincia del Cusco presenta

inconsistencias notables en la literatura técnica y académica. Si bien la cifra de 617 km2

es la más frecuente en compendios estadísticos del INEI y antecedentes académicos (Ccopa

Barrionuevo, 2019; Condori Juarez, 2019; Gaona Obando, 2019a, 2019b; M. Huaman Conza

& Huaman Gaspar, 2019; R. Huaman Conza, 2019; Ttito Ocsa & Mescco Pumasupa, 2020),

existen reportes divergentes. Diversas investigaciones sitúan el área en 719 km2 (M. Huaman

Conza, 2019; Huaman Gaspar & Visa Quispe, 2019; Sihue Huamani & Choque Sanga, 2019;

Vizcarra Olarte & Chambi Palomino, 2019), mientras que otros documentos técnicos sugieren

valores inferiores como 543.08 km2 (Mesones La Rosa, 2022; Soto Oscco & Chalico Solis,

2017), 529.21 km2 (Gobierno Regional del Cusco, 2022) e incluso 523 km2 (Castillo Alire &

Gutierrez Kancha, 2019).

Ante esta variabilidad, se procedió a validar la fiabilidad de la fuente de datos primarios

(shapefile) mediante un análisis comparativo. Se contrastó el área geométrica calculada del

shapefile frente a datos oficiales para una muestra de 16 provincias de similar extensión (< 1000

km2).

Los resultados, resumidos en la Figura 89, evidencian una alta concordancia en la

mayoría de los casos (13 de 16 provincias presentan diferencias menores al ±2 %), lo que valida

la precisión general de la cartografía vectorial utilizada.

Sin embargo, el análisis detectó anomalías críticas en las provincias de Yunguyo y

Cusco. En el caso específico de Cusco, el valor documental frecuentemente citado (617 km2)

excede en un 14.2 % al área geométrica real. Dado que el shapefile demostró ser preciso en

los casos de control, se concluye que los datos documentales históricos contienen errores o

desactualizaciones. Por consiguiente, esta investigación adopta el valor calculado de 529.208

km2 como la superficie oficial del área de estudio, cifra que además es consistente con reportes

técnicos recientes de zonificación regional (Gobierno Regional del Cusco, 2022).
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Figura 89
Diferencias porcentuales entre el área calculada (Shapefile) y la documentada por fuentes
oficiales.

Nota. Fuente: Elaboración propia.
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Apéndice C

Mapas de Predictores Espaciales (Drivers de Cambio)

Figura 90
Mapas de Predictores Espaciales utilizados en el modelo.

(a) Elevación (DEM) (b) Pendiente

(c) Aspecto (d) Red Vial

(e) Aeropuerto (f) Vía Férrea

(Continúa en la siguiente página...)
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Figura 90
Mapas de Predictores Espaciales (Continuación).

(g) Atractivos Turísticos (h) Red Hidrográfica

(i) IIEE (2004) (j) IIEE (2014)

(k) IIEE (2024)

Nota. Fuente: Elaboración propia a partir de datos del Modelo Digital de Elevación Copernicus
GLO-30 (European Space Agency, 2021), red vial e infraestructura de GeoGPS Perú (GeoGPS Perú,
2015, 2021) y datos hidrográficos (GeoGPS Perú, 2020).
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Apéndice D

Principales Sitios de Interés Ofertados por Empresas en la Provincia de Cusco

Tabla 32
Fuentes de Atractivos Turísticos en la Provincia de Cusco

Nombre del Sitio Enlaces de las Fuentes

Plaza de Armas del Cusco inkanmilkyway.com, machu-picchu.org, expedia.com, voyagepe-

rou.info, viajeroscallejeros.com, audiala.com

Sacsayhuamán inkanmilkyway.com, machu-picchu.org, expedia.com,

cosituc.gob.pe, boletomachupicchu.com, viajeroscallejeros.com

Barrio de San Blas inkanmilkyway.com, machu-picchu.org, expedia.com, voyagepe-

rou.info, viajeroscallejeros.com, boletomachupicchu.com

Qorikancha (Templo del Sol) expedia.com, boletomachupicchu.com, freewalkingtoursperu.com,

boletomachupicchu.com, voyageperou.info, viajeroscallejeros.com

Mercado Central de San Pedro inkanmilkyway.com, machu-picchu.org, expedia.com, voyagepe-

rou.info, viajeroscallejeros.com

Catedral del Cusco machu-picchu.org, expedia.com, boletomachupicchu.com

Cristo Blanco machu-picchu.org, youtube.com, voyageperou.info, viajeroscalleje-

ros.com

Piedra de los doce ángulos expedia.com, voyageperou.info, viajeroscallejeros.com

Templo de San Blas machu-picchu.org, expedia.com

Templo de la Compañía de

Jesús

machu-picchu.org, voyageperou.info

Continúa en la siguiente página...

https://www.inkanmilkyway.com/es/blog/lugares-turisticos-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://audiala.com/it/peru/distretto-di-wanchaq
https://www.inkanmilkyway.com/es/blog/lugares-turisticos-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://cosituc.gob.pe/
https://www.boletomachupicchu.com/parques-arqueologicos-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.inkanmilkyway.com/es/blog/lugares-turisticos-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.boletomachupicchu.com/lugares-imperdibles-visita-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://www.boletomachupicchu.com/parques-arqueologicos-cusco/
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.inkanmilkyway.com/es/blog/lugares-turisticos-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.boletomachupicchu.com/museos-en-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.youtube.com/watch?v=CvFEATh_EKs
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.voyageperou.info/es/que-hacer-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.expedia.com/es/San-Jeronimo.dx6286397
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.voyageperou.info/es/que-hacer-en-cusco/
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...viene de la página anterior

Nombre del Sitio Enlaces de las Fuentes

Convento de Santa Catalina y

Museo de Arte

boletomachupicchu.com, freewalkingtoursperu.com

Museo Inka boletomachupicchu.com, freewalkingtoursperu.com

Museo de Arte Precolombino boletomachupicchu.com, freewalkingtoursperu.com

Tambomachay cosituc.gob.pe, viajeroscallejeros.com

Puka Pukara cosituc.gob.pe, viajeroscallejeros.com

Qenqo viajeroscallejeros.com

Museo de Arte Religioso (Pala-

cio Arzobispal)

boletomachupicchu.com, freewalkingtoursperu.com

Museo Histórico Regional de

Cusco

boletomachupicchu.com

Acueducto Colonial de Sapan-

tiana

machu-picchu.org

Mirador de San Cristóbal machu-picchu.org

Museo de Arte Contemporáneo boletomachupicchu.com

Iglesia y Convento de la Mer-

ced

freewalkingtoursperu.com

Museo Machu Picchu de la

Casa Concha

boletomachupicchu.com

Centro Qosqo de Arte Nativo cosituc.gob.pe

Farallones de Tecsecocha scribd.com, mincetur.gob.pe

https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://cosituc.gob.pe/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://cosituc.gob.pe/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.viajeroscallejeros.com/lugares-que-visitar-en-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.machu-picchu.org/es/guias-y-consejos/lugares-turisticos-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://freewalkingtoursperu.com/es/blog/museos-en-cusco/
https://www.boletomachupicchu.com/museos-en-cusco/
https://cosituc.gob.pe/
https://es.scribd.com/presentation/400017036/Turismo-Ccorca
http://consultasenlinea.mincetur.gob.pe/fichaInventario/index.aspx?cod_Ficha=7735
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Apéndice E

Repositorio de Datos

Debido a la extensión del material gráfico generado, se ha dispuesto un repositorio

digital complementario. Este repositorio tiene como finalidad garantizar la reproducibilidad

técnica del estudio y permitir al lector la inspección detallada de los resultados intermedios y

finales en alta resolución, los cuales se presentan de forma sintetizada en este documento.

Acceso al Repositorio y Visualización Web

Todo el material suplementario se encuentra alojado públicamente y puede ser

consultado a través de las siguientes plataformas:

1. Repositorio de Archivos (Google Drive)

Almacena los mapas iniciales, mosaicos libres de nubes, índices espectrales, variables

predictoras y mapas de potencial de transición para las fases de validación y proyección.

Contiene los resultados de clasificación histórica, validación (2024) y proyección (2034) en

vistas de área completa y detalles ampliados, incluido los archivo GeoTIFF (.tif)

https://drive.google.com/drive/folders/1WZxv24N5wEuXPruSdiYXY-Sp_dER06Du?usp=sharing

2. Plataforma Web de Visualización

Se ha desarrollado un sitio web complementario que permite la visualización de todos los mapas

generados sin necesidad de descarga previa.

https://lulc-cusco-2034.vercel.app/

Escanee para acceder a la visualización web.

https://drive.google.com/drive/folders/1WZxv24N5wEuXPruSdiYXY-Sp_dER06Du?usp=sharing
https://lulc-cusco-2034.vercel.app/
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Estructura de Directorios

La información en el repositorio se ha organizado siguiendo la secuencia lógica de los

objetivos de la tesis, distribuida en las siguientes carpetas:

00_Metodologia_y_Flujos

Contiene los diagramas de flujo detallados de los procesos de clasificación supervisada y

modelado predictivo.

01_Insumos_Satelitales

Muestra las imágenes compuestas finales (mosaicos libres de nubes) utilizadas para

los años 2004, 2014 y 2024 en color real (RGB), junto con ejemplos del proceso de

enmascaramiento.

02_Indices_Espectrales

Colección completa de los mapas de índices calculados (NDVI, SAVI, NDBI, NDMI,

BSI, UI) para cada año de estudio, utilizados como variables predictoras.

03_Predictores_Espaciales

Almacena los mapas ráster de las variables conductoras. Se incluye el manual visual

detallado de los geoprocesos.

Nota sobre las Fuentes de Datos: Los insumos base fueron obtenidos mediante la

solicitud de acceso a la información pública (Código: 79zh4rpnl) dirigida al INEI. Según

la respuesta formal (Correo Nº5757-2025-INEI/OTD-OEIN), la información utilizada

(RENIPRESS y Directorio de Entidades) corresponde a registros administrativos de

carácter público y portales de datos abiertos, de acuerdo con el DS Nº 043-2001-PCM,

garantizando la transparencia y disponibilidad para fines de investigación.

Insumos Base y Correspondencia:

• INEI: Correo electrónico con información de: Registro Nacional de

Instituciones Prestadoras de Servicios de Salud - RENIPRESS.xlsx y

entidades.xlsx.
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• Municipalidad de San Sebastián - Cusco: Información cartográfica técnica

en formato CAD: PLANO BASE REFERENCIAL SAN SEBASTIAN.dwg.

Variables Generadas:

• Topografía: Elevación (DEM), Pendiente y Aspecto.

• Accesibilidad: Distancia a vías, aeropuerto y red ferroviaria.

• Socioeconómico: Distancia a instituciones educativas (temporal), centros

de salud y atractivos turísticos.

• Hidrografía: Distancia a la red hídrica.

04_Resultados_LULC_Clasificados

Mapas finales de Uso y Cobertura del Suelo (Urbano, Vegetación, Suelo Desnudo)

resultantes de la clasificación Random Forest para 2004, 2014 y 2024, en formato de

imagen de alta calidad. Estos incluyen:

Mapas de clasificación superpuestos sobre imágenes de referencia de alta

resolución (Google Earth Pro), utilizados para la verificación visual cualitativa de

la precisión espacial.

Mapas de clasificación superpuestos sobre las imágenes compuestas multiespec-

trales de resolución media (utilizadas por el modelo Random Forest en la etapa

de clasificación), lo que permite contrastar y evaluar visualmente la coherencia

espacial de los resultados.

Mapas de clasificación temáticos (versiones “puras”), sin fondo de referencia, para

observar claramente la distribución espacial y la continuidad de las clases.

Vistas ampliadas (zoom) de zonas de interés específicas (urbanas, vegetadas,

suelo desnudo) para cada año, presentadas igualmente con diferentes fondos de

referencia (alta resolución, compuesto mediano).

Mapa de Peligros para 2004 debido a la falta de imagen de alta resolución para

este año.
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Archivos GeoTIFF (.tif) de las clasificaciones, optimizados para ser abiertos

directamente en Google Earth Pro y permitir una visualización detallada e

interactiva.

05_Analisis_de_Cambios

Mapas detallados de las transiciones específicas entre clases para los periodos 2004-2014

y 2014-2024.

06_Simulacion_y_Validacion

Contiene los insumos y resultados del proceso de modelado híbrido:

Archivos tabulares (.csv) con las métricas de rendimiento de las combinaciones

evaluadas durante la búsqueda de hiperparámetros (fases amplia y fina) del modelo

MLP.

Documento (.pdf) que detalla el rendimiento comparativo de las ejecuciones

realizadas bajo la configuración óptima, utilizado para seleccionar la instancia

definitiva de la red neuronal.

Colección de mapas de Idoneidad de Transición generados por el modelo calibrado

para los periodos 2014-2024 y 2024-2034.

Mapa simulado del año 2024 utilizado para el cálculo de métricas de precisión

frente al mapa real.

Mapas de validación (2024) en formato GeoTIFF (.tif), optimizados para su

visualización detallada en Google Earth Pro.

Resultados del Análisis de Dependencia Parcial (PDP).

07_Proyeccion_Futura_2034

Mapa del escenario tendencial proyectado al año 2034 y mapas de los cambios simulados

para la década 2024-2034. Se incluye también el mapa proyectado al 2034 en formato

GeoTIFF (.tif), optimizado para su apertura y exploración en Google Earth Pro.


