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Resumen 

 

La predicción de resultados futbolísticos, inherentemente estocástica, encuentra su 

máxima complejidad en el contexto sudamericano por su variabilidad altitudinal extrema y 

térmica. Esta investigación aborda la subestimación de los factores ambientales, 

determinando la influencia predictiva de variables meteorológicas mediante el uso de 

Redes Neuronales Recurrentes (RNN) en cuatro ligas profesionales de la región andina: 

Colombia, Chile, Ecuador y Perú. 

Los hallazgos revelaron que la incorporación de datos climáticos actúa como un 

catalizador de precisión no uniforme, dependiente del contexto nacional. En la liga 

peruana, esta adición no solo incrementó la potencia predictiva del modelo en un 6% 

respecto a su base puramente deportiva, sino que también optimizó su eficiencia 

computacional al permitir la simplificación de la arquitectura neuronal. El impacto es 

tangible, estableciendo referencias significativas en las ligas analizadas. Se concluye que, 

si bien la mejora es contextual, la evidencia global demuestra que, en geografías variables, 

el clima trasciende su rol secundario para erigirse como un determinante crucial del 

resultado final. 

 

Palabras clave: Predicción de resultados futbolísticos, Redes neuronales 

recurrentes, Variables ambientales, Andes. 
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Abstract 

The prediction of football outcomes, inherently stochastic, reaches its greatest 

complexity in the South American context due to extreme altitudinal and thermal variability. 

This research addresses the underestimation of environmental factors, determining the 

predictive influence of meteorological variables through the use of Recurrent Neural 

Networks (RNN) across four professional leagues in the Andean region: Colombia, Chile, 

Ecuador, and Peru. 

The findings reveal that the incorporation of climate data functions as a non-uniform 

accuracy catalyst, contingent on national context. In the Peruvian league, this addition not 

only increased the model’s predictive power by 6% compared to its purely sports-based 

baseline, but also enhanced computational efficiency by allowing the simplification of the 

neural architecture. The impact is tangible, establishing meaningful benchmarks within the 

analyzed leagues. The study concludes that, although improvement is context-dependent, 

the overall evidence demonstrates that in geographically variable settings, climate 

transcends its secondary role to become a crucial determinant of the final outcome. 

 

Keywords: Football match prediction, Recurrent neural networks, Meteorological 

variables, Andean region / South America. 
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Introducción 

La predicción de resultados en el fútbol constituye un desafío científico de 

considerable complejidad debido a la naturaleza estocástica inherente al deporte. A 

diferencia de sistemas deterministas, los encuentros futbolísticos están influenciados por 

múltiples factores que interactúan de manera no lineal: las capacidades técnicas y tácticas 

de los equipos, el rendimiento individual de los jugadores, decisiones arbitrales, factores 

psicológicos y, crucialmente, las condiciones ambientales en las que se desarrolla el 

encuentro. Esta multiplicidad de variables dificulta el establecimiento de patrones 

predictivos robustos mediante métodos tradicionales basados en análisis subjetivo o en el 

uso limitado de información histórica. 

El territorio peruano presenta características geográficas excepcionales que lo 

convierten en un laboratorio natural para estudiar la influencia de factores ambientales en 

el rendimiento deportivo. La marcada zonificación altitudinal del país, consecuencia de la 

presencia de la Cordillera de los Andes, genera condiciones atmosféricas 

significativamente heterogéneas entre las distintas sedes donde se practican 

competiciones futbolísticas. Esta variabilidad incluye diferencias sustanciales en presión 

atmosférica, concentración de oxígeno, temperatura y humedad relativa. Sin embargo, la 

investigación sistemática sobre cómo estas variables meteorológicas influyen 

específicamente en los resultados de partidos de fútbol en contextos andinos permanece 

limitada. 

La presente investigación aborda esta laguna de conocimiento mediante la 

aplicación de técnicas avanzadas de aprendizaje profundo, específicamente redes 

neuronales recurrentes tipo LSTM, para evaluar la capacidad predictiva de modelos que 

incorporan variables meteorológicas en comparación con aproximaciones que utilizan 

exclusivamente estadísticas deportivas tradicionales. El enfoque metodológico considera 

datos de ligas de fútbol en Perú, Chile, Ecuador y Colombia, países que comparten 

características geográficas similares al estar ubicados sobre la Cordillera de los Andes, 

permitiendo así un análisis de los efectos ambientales en contextos comparables. 
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CAPITULO I 

Aspectos generales 

1.1. Planteamiento del problema 

1.1.1. Descripción del problema 

La predicción de resultados en encuentros futbolísticos enfrenta desafíos 

metodológicos fundamentales derivados de la complejidad dinámica del deporte. Los 

modelos tradicionales de predicción han tendido a concentrarse en variables endógenas 

al juego, tales como estadísticas históricas de rendimiento, posesión de balón, goles 

esperados y otras métricas derivadas directamente de la acción deportiva. Si bien estos 

factores indudablemente influyen en el resultado final, su poder predictivo se ve limitado 

por la omisión de variables contextuales que pueden modular significativamente el 

rendimiento de los equipos. 

Entre estas variables contextuales, los factores ambientales merecen particular 

atención en el contexto geográfico andino. La literatura científica en fisiología de ejercicio 

ha establecido que la altitud afecta la capacidad aeróbica, el metabolismo energético y la 

recuperación muscular. Similarmente estos factores pueden influir en aspectos técnicos 

del juego como el control del balón, la precisión en pases y la resistencia física de los 

jugadores. No obstante, la mayoría de los estudios predictivos en fútbol han sido 

desarrollados en contextos geográficos relativamente homogéneos, principalmente en 

Europa, donde las variaciones altitudinales y climáticas son menos pronunciadas. 

1.1.2. Identificación del problema 

El fútbol peruano y, por extensión, el fútbol andino, se disputa en condiciones 

ambientales marcadamente heterogéneas. Los estadios se ubican desde el nivel del mar 

hasta altitudes que superan los tres mil metros, con amplitudes térmicas diarias que 

pueden alcanzar veinticinco grados Celsius. Esta variabilidad genera condiciones de juego 

sustancialmente diferentes que podrían no ser capturadas adecuadamente por modelos 

predictivos desarrollados en contextos climáticamente uniformes.  
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Particularmente relevante resulta el caso peruano, donde las características 

geográficas y climáticas exhiben una heterogeneidad espacial pronunciada. Los equipos 

que compiten en la región norte del país enfrentan las temperaturas más elevadas del 

territorio nacional, con condiciones de humedad característica de zonas costero-

desérticas. Posteriormente, estos mismos equipos pueden verse obligados a disputar 

encuentros en localidades serranas donde las condiciones atmosféricas contrastan 

radicalmente como temperaturas próximas o bajo cero grados Celsius, precipitaciones 

pluviales frecuentes y altitudes que superan ampliamente los tres mil quinientos metros 

sobre el nivel del mar. Esta transición abrupta entre microclimas geográficos impone 

demandas de aclimatación fisiológica que exceden las experimentadas en circuitos 

futbolísticos de regiones con menor diversidad orográfica. La adaptación metabólica 

requerida para el rendimiento óptimo en estas condiciones divergentes constituye un factor 

que raramente ha sido incorporado en arquitecturas predictivas convencionales. 

En consecuencia, resulta necesario desarrollar aproximaciones metodológicas que 

integren explícitamente estas variables meteorológicas y evalúen su contribución marginal 

a la capacidad predictiva. 

1.2. Formulación del problema 

1.2.1. Problema general 

¿En qué medida la incorporación de variables meteorológicas influye la capacidad 

de predicción de resultados de partidos de fútbol en contextos geográficos caracterizados 

por alta variabilidad altitudinal y climática? 

1.2.2. Problemas específicos 

• ¿Qué variables estadísticas del partido de futbol resultan más informativas para 

la predicción en el contexto estudiado? 

• ¿Qué elementos meteorológicos ejercen mayor influencia en la capacidad 

predictiva de partidos de futbol? 
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• ¿En qué medida la heterogeneidad geográfica y climática de las distintas ligas 

estudiadas afecta la predictiva? 

• ¿En qué medida mejora la eficiencia predictiva al incluir variables ambientales, 

al comparar sistemáticamente dos experimentos: (a) un modelo que utiliza 

exclusivamente variables deportivas que capturan tendencias recientes de los 

equipos, y (b) un modelo que incorpora variables meteorológicas agregadas 

mediante ventanas temporales que reflejan las tendencias recientes del clima 

asociado a los equipos? 

1.3. Objetivos 

1.3.1. Objetivo general 

Determinar en qué medida la incorporación de variables meteorológicas en 

modelos de redes neuronales recurrentes mejora la capacidad de predicción de resultados 

de partidos de fútbol en contextos geográficos con alta variabilidad altitudinal y climática. 

1.3.2. Objetivo específico 

• Medir qué variables estadísticas del partido de futbol resultan más informativas 

para la predicción de resultados en el contexto estudiado, utilizando técnicas de 

aprendizaje supervisado basadas en ganancia de información. 

• Determinar qué elementos meteorológicos ejercen mayor influencia en la 

capacidad predictiva de los modelos, mediante técnicas de aprendizaje 

supervisado basadas en ganancia de información. 

• Evaluar la variabilidad el rendimiento predictivo del modelo desagregado por 

cada país para identificar posibles sesgos geográficos o climáticos en la 

predicción 

• Comparar la eficiencia predictiva entre dos experimentos: (a) un modelo que 

emplea exclusivamente variables deportivas que capturan tendencias recientes 

de los equipos, y (b) un modelo que incorpora variables meteorológicas 

agregadas mediante ventanas temporales que representan las tendencias 
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recientes del clima asociado a los equipos, con el fin de establecer la mejora 

atribuible a la inclusión de variables ambientales. 

1.4. Justificación.  

Esta formulación del problema permite abordar tanto la relevancia teórica de los 

factores ambientales en el rendimiento deportivo como su utilidad práctica en sistemas de 

predicción, contribuyendo al desarrollo de modelos contextualmente adaptados a la 

realidad geográfica andina. 

Esta investigación representa un reto debido a la complejidad dinámica de un 

partido de fútbol y su relación con el comportamiento ambiental. En este estudio, se aborda 

y contribuye a llenar un vacío existente, analizando cómo las variables meteorológicas 

afectan la dinámica del fútbol en Perú y en otros países ubicados a lo largo de la Cordillera 

de los Andes. Este análisis no solo amplía el conocimiento científico, sino que también 

tendrá un impacto en el contexto cultural del país, influyendo en estrategias deportivas, 

decisiones económicas y en la conexión de las comunidades con su deporte más querido. 

Este trabajo se justifica por varias razones clave: 

Brecha de Conocimiento: Se observa una evidente falta de comprensión 

detallada sobre cómo la zonificación altitudinal influye en el rendimiento deportivo, las 

estrategias de juego y las decisiones relacionadas con las apuestas, específicamente en 

el contexto de Perú. La carencia de estudios profundos en esta área destaca la necesidad 

urgente de abordar y llenar este vacío de conocimiento. 

Desarrollo del Fútbol: Para federaciones deportivas y organizadores de torneos, 

los resultados pueden informar decisiones sobre programación de partidos, especialmente 

en contextos donde condiciones meteorológicas extremas podrían comprometer la calidad 

del espectáculo o la seguridad de los participantes. Las implicaciones prácticas de esta 

investigación se extienden a múltiples ámbitos del ecosistema futbolístico. Para cuerpos 

técnicos y preparadores físicos, los hallazgos pueden informar estrategias de preparación 

específicas para partidos en condiciones ambientales desafiantes. El conocimiento sobre 
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cómo variables meteorológicas específicas afecta el rendimiento puede guiar decisiones 

sobre aclimatación, hidratación, estrategias tácticas y rotación de jugadores. 

Desafíos Únicos en Perú: Perú ofrece un entorno ideal para estudiar la relación 

entre los factores ambientales y el rendimiento en el fútbol. Analizar estas dinámicas en un 

país con tan rica diversidad geográfica tiene el potencial de generar conocimientos 

aplicables a otras regiones con características similares. 

Aplicación en Otros Deportes: Los resultados de este estudio podrían tener 

aplicaciones más allá del fútbol. Otros deportes que se juegan en condiciones similares 

podrían beneficiarse de este conocimiento, y los modelos desarrollados podrían adaptarse 

para hacer predicciones en diferentes contextos geográficos. 

Aplicación de Tecnologías Emergentes: La aplicación de técnicas avanzadas de 

aprendizaje profundo en el análisis y predicción de eventos deportivos es un campo en 

constante crecimiento. Este estudio contribuye a la literatura existente al explorar cómo 

estas tecnologías pueden adaptarse a las particularidades de un país con una marcada 

zonificación altitudinal, como Perú. 

Motivación 

A medida que el fútbol se convierte en un elemento clave de la identidad peruana, 

surge la necesidad de comprender las complejidades que introduce la zonificación 

altitudinal propia del país en este deporte. Desde las tácticas de los equipos hasta las 

apuestas que generan un flujo económico significativo, este estudio se posiciona como un 

referente en un campo de investigación poco explorado, impulsado por la implementación 

de tecnologías avanzadas de aprendizaje profundo. Su contribución no solo enriquecerá 

la comprensión del fútbol en Perú, sino que también ofrecerá conocimientos valiosos que 

podrán ser aplicados en otras regiones con características geográficas similares. 

Este trabajo aporta: 

Cultural Deportivo: El fútbol es un deporte que tiene un profundo impacto cultural 

en numerosos países. Comprender cómo la zonificación altitudinal influye en las 

predicciones de los resultados podría modificar la manera en que las comunidades se 
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vinculan con el deporte, especialmente en regiones donde existen variaciones 

significativas de altitud y temperatura. 

Estrategia Deportiva: Los resultados de esta investigación podrían influir 

directamente en las estrategias de los equipos y entrenadores. La adaptación a las 

condiciones de altitud podría convertirse en un factor clave en la planificación estratégica, 

lo cual impactaría en la competitividad de los equipos y, por ende, en el interés de los 

aficionados, jugadores y entrenadores. Además, este conocimiento mejoraría la toma de 

decisiones tácticas y la apreciación del juego. 

Aporte Económico: En sociedades donde las apuestas deportivas son comunes, 

esta investigación podría influir en la manera en que se realizan las apuestas y en las 

expectativas de los apostadores. Este impacto económico y social sería significativo, ya 

que el interés en las apuestas deportivas está estrechamente relacionado con el interés en 

los eventos deportivos. En Perú, el sector de las apuestas genero un movimiento 

económico cercano a los mil millones de dólares, siendo el 90 % de las apuestas 

relacionadas con el fútbol. Según estimaciones del Ministerio de Comercio Exterior y 

Turismo (Mincetur), el movimiento económico ascendería a 4,500 millones de soles. 

Contribución al Conocimiento Científico: La investigación en la intersección de 

deportes, geografía y tecnologías emergentes es aún limitada. Este estudio tiene como 

objetivo llenar este vacío, proporcionando una comprensión más profunda de cómo la 

altitud y las variables asociadas impactan en la capacidad predictiva de los modelos de 

aprendizaje profundo en un contexto deportivo. 

1.5. Alcances 

La investigación cubre partidos de fútbol profesional disputados en las principales 

ligas de Perú, Chile, Ecuador y Colombia durante el período comprendido entre los años 

2017 y parte del 2025, determinados por la disponibilidad de datos. La inclusión de 

múltiples países permite evaluar la robustez de los hallazgos a través de diferentes 

contextos dentro del marco geográfico andino, aumentando la generalización de las 

conclusiones. 
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El análisis se restringe a partidos donde está disponible información completa tanto 

de estadísticas deportivas como de condiciones meteorológicas, garantizando así la 

integridad del análisis multivariado. Las variables meteorológicas son obtenidas de fuentes 

satelitales, proporcionando mediciones objetivas y consistentes a través de las diferentes 

ubicaciones geográficas. 

1.6. Limitaciones 

Falta de información detallada sobre el estado físico de los jugadores, lesiones, 

suspensiones, tácticas propuestas, el director técnico y otros factores de alineación, los 

cuales pueden influir considerablemente en el resultado de los partidos, pero no son 

reflejados por las estadísticas agregadas del equipo. Asimismo, no se considera aspectos 

tácticos, motivacionales y psicológicos que podrían ser clave en determinados encuentros. 

Los datos utilizados provienen de fuentes que combinan recolección manual y visión por 

computadora, lo que puede generar errores e imprecisiones en las estadísticas y 

cronología de los eventos, afectando la calidad de los datos. Además, se limita a partidos 

con transmisión o cobertura oficial, excluyendo aquellos sin registros suficientes en 

localidades remotas o con infraestructura limitada. 

Las variables meteorológicas, aunque obtenidas de fuentes confiables, representan 

mediciones para la ubicación general del estadio en ventanas temporales específicas, y 

pueden no capturar perfectamente las condiciones micro climáticas exactas en el terreno 

de juego durante las dos horas de duración del partido. Variaciones localizadas en 

condiciones dentro del estadio o cambios rápidos durante el transcurso del encuentro no 

son capturados completamente por las mediciones utilizadas. 

Finalmente, la naturaleza observacional del estudio impide el establecimiento de 

relaciones causales definitivas entre variables meteorológicas y resultados. Las 

asociaciones identificadas, aunque informativas, son interpretadas con la cautela 

apropiada para estudios no experimentales donde no es posible controlar completamente 

todas las variables confundentes. 
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CAPITULO II 

Marco teórico 

2.1. Marco Teórico  

2.1.1. El Fútbol y su Influencia Cultural 

El fútbol constituye un fenómeno sociocultural de primera magnitud en el Perú, 

trascendiendo su dimensión deportiva para convertirse en un catalizador de identidad 

colectiva y cohesión social. A diferencia de otras manifestaciones culturales, este deporte 

posee la capacidad única de articular diversos estratos sociales, regiones geográficas y 

tradiciones locales en torno a una experiencia compartida que refuerza el sentido de 

pertenencia nacional. Los encuentros deportivos de las selecciones nacionales no se 

reducen a meros eventos competitivos, sino que se configuran como rituales colectivos 

donde las victorias o derrotas adquieren significados que trascienden el resultado 

deportivo, consolidándose como experiencias que fortalecen los lazos de solidaridad 

ciudadana y la construcción de una narrativa nacional compartida (Escalona, 2021). Este 

fenómeno se observa particularmente en países sudamericanos donde el fútbol representa 

uno de los principales vehículos de expresión identitaria y movilización social. Desde una 

perspectiva económica, el fútbol ha evolucionado hacia una industria globalizada que 

genera valor económico sustancial mediante múltiples canales: derechos de transmisión, 

patrocinios corporativos, comercialización de productos oficiales y turismo deportivo. La 

profesionalización creciente del deporte ha estimulado el desarrollo de infraestructura 

especializada, creación de empleos directos e indirectos, y transferencias económicas 

significativas entre clubes y federaciones nacionales (Amaya Gómez; Luis Ángel, 2022). 

El análisis del rendimiento futbolístico ha experimentado una transformación radical 

durante las últimas dos décadas, transitando desde observaciones cualitativas basadas en 

la experiencia de entrenadores hacia sistemas cuantitativos sofisticados que integran 

tecnologías de captura de datos en tiempo real. Esta evolución responde a la creciente 

competitividad del fútbol profesional y la necesidad de optimizar el rendimiento mediante 

decisiones fundamentadas en evidencia empírica. Los sistemas contemporáneos de 
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análisis de rendimiento emplean tecnologías de rastreo óptico y dispositivos inerciales 

portátiles que registran métricas físicas, tácticas y técnicas con precisión milimétrica (René 

Manassé Galekwa; Jean Marie Tshimula; Etienne Gael Tajeuna; Kyamakya Kyandoghere, 

2024). Estas herramientas permiten cuantificar variables como distancia recorrida, 

velocidad de desplazamiento, aceleraciones, zonas de actividad en el campo, precisión en 

pases y eficiencia en duelos individuales. La disponibilidad de estos datos ha 

democratizado parcialmente el acceso a información previamente exclusiva de 

organizaciones con recursos sustanciales. La incorporación de paradigmas analíticos 

provenientes de la ciencia de datos ha introducido metodologías estadísticas avanzadas y 

algoritmos de aprendizaje automático en el análisis futbolístico (René Manassé Galekwa; 

Jean Marie Tshimula; Etienne Gael Tajeuna; Kyamakya Kyandoghere, 2024). Estos 

enfoques permiten identificar patrones tácticos complejos, evaluar probabilidades de 

eventos específicos durante el juego y desarrollar modelos predictivos que informan 

decisiones estratégicas tanto en preparación previa como durante la competición (Daniel 

Memmert ; Dominik Raabe, 2023). 

2.1.2 Predicción de Resultados en Fútbol 

2.1.2.1 Modelos estadísticos clásicos 

El deporte ha evolucionado mucho más allá de las estadísticas tradicionales como 

goles anotados, tiros o porcentajes de posesión. En el juego actual, los conocimientos 

basados en datos son indispensables para equipos, entrenadores y analistas que buscan 

optimizar el rendimiento, mejorar la toma de decisiones tácticas y obtener una ventaja 

competitiva. Los modelos basados en distribuciones de Poisson representan otro enfoque 

clásico ampliamente utilizado para estimar probabilidades de diferentes marcadores 

(Amadu, 2024) (Rory Bunker; Calvin Yeung; Teo Susnjak; Chester Espie; Keisuke Fujii, 

2023). Estos modelos asumen que el número de goles anotados por cada equipo sigue 

una distribución de Poisson independiente, cuyos parámetros de tasa se estiman mediante 

regresión considerando variables como fuerza ofensiva, capacidad defensiva, valor en el 

mercado, goles a favor, goles en contra y ventaja de localía. A pesar de su simplicidad 
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conceptual, estos modelos han demostrado capacidad predictiva razonable en diversas 

competiciones (Gómez & Reyes, 2024). Con el auge de las tecnologías de seguimiento y 

la disponibilidad de grandes conjuntos de datos que registran cada movimiento de los 

jugadores y del balón, el análisis del fútbol ha pasado de métricas meramente descriptivas 

a modelos complejos que evalúan las acciones de los jugadores, predicen resultados y 

simulan estrategias de partido (Daniel Carrilho ; Micael Santos Couceiro; João Brito ; Pedro 

Figueiredo ; Rui J. Lopes ; Duarte Araújo). El aprovechamiento del aprendizaje automático 

(Machine Learning) y la inteligencia artificial (IA) ha permitido obtener una comprensión 

más profunda del comportamiento de los jugadores, las formaciones tácticas y la dinámica 

de los equipos, revolucionando la forma en que se analizan los encuentros y se desarrollan 

las estrategias (Amadu, 2024). 

2.1.2.2 Evolución hacia enfoques basados en datos y aprendizaje profundo 

La disponibilidad creciente de datos granulares sobre eventos de juego ha 

catalizado el desarrollo de metodologías predictivas más sofisticadas fundamentadas en 

técnicas de aprendizaje automático. Los algoritmos de clasificación supervisada, 

incluyendo bosques aleatorios, máquinas de vectores de soporte y métodos de ensamble, 

han demostrado capacidad para capturar relaciones no lineales complejas entre múltiples 

variables predictoras y los resultados de partidos (Rory Bunker, Calvin Yeung, Keisuke 

Fujii, 2024). Las redes neuronales profundas representan la frontera actual en 

modelización predictiva deportiva. Estas arquitecturas multicapa pueden aprender 

representaciones jerárquicas de características, identificando automáticamente patrones 

relevantes sin requerir ingeniería manual exhaustiva de variables. Las redes neuronales 

recurrentes, específicamente diseñadas para procesar secuencias temporales, resultan 

particularmente apropiadas para capturar dinámicas evolutivas del rendimiento de equipos 

a lo largo de temporadas competitivas (Nallapa, 2022). 

2.1.2.3 Limitaciones de los Modelos Tradicionales 

Los enfoques predictivos tradicionales presentan limitaciones metodológicas 

significativas derivadas de sus supuestos fundamentales que fueron construidos. Los 
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modelos basados en estadísticas agregadas asumen implícitamente estacionariedad en el 

rendimiento de equipos, ignorando fluctuaciones debidas a cambios en plantillas, lesiones, 

variaciones en forma física o modificaciones tácticas implementadas por cuerpos técnicos. 

Esta asunción resulta particularmente problemática en competiciones extensas donde la 

composición y estrategia de equipos evoluciona sustancialmente (Spyridon Plakias ; 

Themistoklis Tsatalas ; Xenofon Betsios; Giannis Giakas, 2025). La mayoría de modelos 

tradicionales desestiman factores contextuales que la evidencia empírica sugiere que 

ejercen influencia significativa sobre resultados. Variables como condiciones 

meteorológicas adversas, altitud del estadio, fatiga acumulada por calendarios 

congestionados, importancia relativa del encuentro dentro de la competición y presión 

psicológica asociada a derbi locales o partidos decisivos raramente se incorporan en 

formulaciones clásicas. La naturaleza inherentemente estocástica del fútbol impone un 

límite fundamental a la precisión alcanzable mediante cualquier sistema predictivo. 

Eventos de baja probabilidad, pero alto impacto, como errores arbitrales controvertidos, 

expulsiones tempranas o lesiones inesperadas durante el partido, pueden alterar 

radicalmente el desarrollo y resultado de encuentros de manera difícilmente predecible a 

priori (Mazi Essoloani Aleza; D. Vetrithangam, 2023). Esta irreductibilidad estocástica 

sugiere que incluso los modelos más sofisticados alcanzarán precisiones modestas en 

términos absolutos. 

2.1.3 Factores Ambientales y su Influencia en el Rendimiento Futbolístico 

2.1.3.1 Variables meteorológicas relevantes 

• Temperatura y humedad relativa: Las condiciones ambientales de temperatura y 

humedad constituyen determinantes primarios del estrés térmico experimentado 

por deportistas durante actividad física intensa. Las temperaturas ambientales 

elevadas intensifican los procesos de deshidratación y aceleran la aparición de 

fatiga prematura, reduciendo la capacidad aeróbica y aumentando el riesgo de 

lesiones musculares y golpes de calor. Paralelamente, los niveles elevados de 

humedad relativa comprometen la eficiencia de los mecanismos termorreguladores 
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del organismo, obstaculizando la disipación de calor corporal mediante evaporación 

cutánea (Jhonny Francisco Segovia Romero; Joseph Taro, 2025) (Philo U Saunders 

; David B Pyne ; Christopher J Gore, 2009). 

• Precipitación: Las condiciones pluviométricas modifican sustancialmente las 

características de la superficie de juego, afectando tanto el comportamiento del 

balón como la biomecánica de los desplazamientos de jugadores. La presencia de 

agua en el césped reduce el coeficiente de fricción, incrementando la velocidad de 

rodamiento del balón y dificultando el control técnico en recepciones y 

conducciones. Simultáneamente, la saturación del terreno aumenta el riesgo de 

resbalones y caídas, modificando patrones de movimiento y potencialmente 

incrementando la incidencia lesional. 

• Velocidad y dirección del viento: Las condiciones anemométricas ejercen influencia 

directa sobre la trayectoria y velocidad del balón, particularmente en pases largos, 

centros y disparos a distancia. Vientos con velocidades superiores pueden desviar 

significativamente las trayectorias balísticas, introduciendo incertidumbre adicional 

en la ejecución técnica. Este efecto resulta especialmente relevante en estadios 

descubiertos sin protección perimetral que mitigue la exposición al viento 

(Sungchan Hong ; Ryosuke Nobori, 2016). 

• Presión atmosférica y altitud: La altitud sobre el nivel del mar constituye una variable 

ambiental particularmente crítica en el contexto geográfico andino. La disminución 

progresiva de la presión barométrica en función de la altura genera una reducción 

proporcional en la presión parcial de oxígeno atmosférico, fenómeno que 

compromete la difusión alveolar de oxígeno y, consecuentemente, la saturación de 

oxígeno en hemoglobina. Esta disminución de oxígeno en el organismo debido a la 

reducida presión desencadena adaptaciones fisiológicas agudas que incluyen 

incremento de frecuencia respiratoria y cardíaca, reducción del volumen sistólico y 
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disminución de la capacidad aeróbica máxima (Sarah Illmer; Frank Daumann, 

2022) (Ronaldo Kobal ; Irineu Loturco, 2022). 

2.1.3.2 Efectos fisiológicos en el jugador  

La exposición a condiciones ambientales adversas activas respuestas fisiológicas 

compensatorias que pueden comprometer el rendimiento deportivo cuando superan la 

capacidad adaptativa del organismo. En ambientes calurosos, el incremento del flujo 

sanguíneo cutáneo para facilitar la disipación térmica compite con las demandas 

metabólicas de la musculatura activa, resultando en una reducción de la capacidad de 

trabajo físico. La deshidratación progresiva, evidenciada mediante pérdidas hídricas del 

peso corporal, deteriora tanto el rendimiento físico como las funciones cognitivas 

relevantes para la toma de decisiones tácticas (Jhonny Francisco Segovia Romero; Joseph 

Taro, 2025). 

La hipoxia de altitud induce adaptaciones hematológicas agudas, incluyendo 

incremento en la síntesis de eritropoyetina y consecuente estimulación de la eritropoyesis. 

Sin embargo, estas adaptaciones requieren períodos de aclimatación de varias semanas 

para desarrollarse completamente. En ausencia de aclimatación adecuada, la exposición 

aguda a altitudes superiores a 2500 metros resulta en deterioro significativo de la 

capacidad aeróbica, manifestándose en reducción de la velocidad de carrera, menor 

distancia total recorrida y tiempos de recuperación prolongados entre esfuerzos de alta 

intensidad (Ronaldo Kobal ; Irineu Loturco, 2022). 

2.1.3.3 Impacto en la táctica, precisión y ritmo del partido 

Las condiciones ambientales no solamente afectan las capacidades físicas 

individuales, sino que también modulan aspectos tácticos y estratégicos del juego 

colectivo. En condiciones de temperatura elevada, se observa típicamente una reducción 

en el ritmo general del partido, menor densidad de acciones de alta intensidad y 

modificaciones en patrones de posesión tendientes a economizar gasto energético. Los 

equipos tienden a adoptar estrategias más conservadoras, priorizando control de posesión 

sobre presión intensiva constante. La precisión técnica en pases y disparos puede verse 
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comprometida por condiciones meteorológicas adversas. Terrenos de juego saturados por 

lluvia incrementan la variabilidad en los rebotes del balón, dificultando la anticipación y 

control. El viento introduce incertidumbre adicional en trayectorias aéreas, reduciendo la 

efectividad de centros laterales y disparos lejanos. Estas perturbaciones pueden favorecer 

estrategias basadas en juego directo y transiciones rápidas sobre elaboración prolongada 

mediante pases cortos (Sarah Illmer; Frank Daumann, 2022). La altitud modifica 

sustancialmente las propiedades físicas del balón y su comportamiento dinámico. La 

menor densidad del aire en altura reduce la resistencia aerodinámica, incrementando la 

velocidad de desplazamiento y modificando trayectorias de manera menos predecible. 

Este fenómeno genera parábolas más extendidas en pases largos y disparos a distancia, 

demandando ajustes técnicos y tácticos específicos por parte de jugadores y cuerpos 

técnicos (Sungchan Hong ; Ryosuke Nobori, 2016). 

 

2.1.4 Fuentes de Datos y Herramientas 

2.1.4.1 Plataformas de Estadísticas de Fútbol 

Los datos de rastreo posicional, obtenidos mediante sistemas ópticos multicámara 

o dispositivos GPS portátiles, capturan las coordenadas espaciales de todos los jugadores 

y el balón con frecuencias de muestreo. Esta información permite cuantificar métricas 

físicas como distancias recorridas, velocidades máximas, aceleraciones, desaceleraciones 

y mapas de calor que visualizan zonas de mayor actividad. Adicionalmente, facilita análisis 

tácticos sofisticados como formaciones dinámicas, amplitud del equipo, profundidad 

ofensiva y coordinación de líneas (Wilton W Fok; Louis C Chan; Carol Chen, 2018). Los 

datos de desempeño físico, obtenidos mediante sensores inerciales integrados en 

indumentaria especializada, registran variables fisiológicas y biomecánicas como 

frecuencia cardíaca, carga metabólica, asimetrías en patrones de carrera y distribución de 

impactos. Esta información resulta valiosa para monitorear estados de fatiga, prevenir 

lesiones y personalizar programas de entrenamiento (Daniel Carrilho ; Micael Santos 

Couceiro; João Brito ; Pedro Figueiredo ; Rui J. Lopes ; Duarte Araújo). 
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Los principales proveedores de datos deportivos se diferencian por su enfoque y 

alcance algunos garantizan alta precisión mediante codificación manual de eventos por 

analistas especializados, aunque su cobertura se limita a competiciones de élite. Otros 

combinan datos de eventos con video sincronizado, facilitando análisis contextualizados y 

comparaciones internacionales, siendo útil para scouting de jugadores. También ofrecen 

datos bajo licencias académicas y ofreciendo métricas avanzadas como el valor esperado 

de gol (xG) basado en modelos estadísticos contextuales. Por su parte, nuestra fuente de 

datos actúa como agregador global de información, proporcionando acceso sistemático a 

estadísticas a través de su API, aunque con limitaciones en granularidad temporal y en 

detalle de eventos individuales 

2.1.4.2 NASA POWER 

Fundamentos técnicos del sistema: 

El proyecto POWER (Prediction Of Worldwide Energy Resources) de la NASA 

constituye una fuente particularmente adecuada para investigación que requiere datos 

climáticos con cobertura global y consistencia temporal. El sistema integra información de 

múltiples fuentes satelitales y modelos atmosféricos para generar estimaciones de 

variables meteorológicas con resolución temporal horaria y resolución espacial de 

aproximadamente 0.5 grados de latitud-longitud (equivalente a aproximadamente 55 km 

en el ecuador) (Center, 2025). Los productos de datos POWER se fundamentan 

principalmente en MERRA-2 (Modern-Era Retrospective analysis for Research and 

Applications, Version 2), un sistema de reanálisis atmosférico desarrollado por el Global 

Modeling and Assimilation Office de la NASA. MERRA-2 asimila observaciones satelitales 

y de estaciones terrestres en un modelo numérico de predicción meteorológica, generando 

campos meteorológicos espacialmente completos y físicamente consistentes que cubren 

el período desde 1980 hasta el presente. Complementariamente, POWER incorpora 

procesamiento específico de datos satelitales para variables relacionadas con radiación 

solar y propiedades de nubes, derivados del proyecto CERES (Clouds and the Earth’s 

Radiant Energy System) (Center, 2025). Esta combinación de fuentes permite ofrecer un 
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conjunto comprehensivo de variables relevantes para aplicaciones que requieren 

caracterización detallada de condiciones atmosféricas. 

Variables climáticas disponibles y su pertinencia: 

El sistema POWER provee acceso a más de 200 parámetros meteorológicos y 

solares, incluyendo variables directamente relevantes para análisis de rendimiento 

deportivo. Entre las variables de mayor pertinencia se encuentran la temperatura del aire 

a 2 metros de altura (T2M), que representa condiciones térmicas experimentadas por 

individuos en superficie; la humedad relativa a 2 metros (RH2M), indicativa del contenido 

de vapor de agua atmosférico; la velocidad y dirección del viento a 2 y 10 metros (WS2M, 

WD2M, WS10M, WD10M), la precipitación total corregida (PRECTOT-CORR), que incluye 

ajustes por subestimación sistemática en productos satelitales; y la cobertura nubosa 

(CLOUD_AMT). Adicionalmente, POWER ofrece variables radiactivas como la radiación 

solar incidente en superficie (ALLSKY_SFC_SW_DWN), relevante para evaluar exposición 

a radiación ultravioleta y cargas térmicas radiactivas (Center, 2025). Estas variables se 

distribuyen con resolución temporal horaria, permitiendo sincronización precisa con 

horarios de eventos deportivos y captura de variaciones diurnas en condiciones 

meteorológicas. 

Ventajas metodológicas para investigación: 

La utilización de datos POWER ofrece ventajas metodológicas significativas para 

investigación científica. La cobertura global permite estudios comparativos entre regiones 

geográficas diversas sin restricciones de disponibilidad de estaciones meteorológicas 

locales. Las series históricas extensas, facilitan análisis retrospectivos comprehensivos y 

permiten controlar variabilidad climática interanual. La consistencia metodológica derivada 

del uso de sistemas de reanálisis que asimilan múltiples fuentes observacionales en un 

marco físico consistente minimiza discontinuidades temporales y valores anómalos 

artificiales. Esta propiedad resulta particularmente valiosa para análisis de series 

temporales donde discontinuidades metodológicas pueden introducir artefactos que 

confunden señales reales. La accesibilidad mediante API pública permite automatización 
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completa de procesos de descarga, facilitando la replicabilidad de estudios y la 

actualización continua de bases de datos. La ausencia de costos de licenciamiento 

democratiza el acceso a información climática de calidad para investigación académica, 

contrastando con fuentes comerciales que imponen barreras económicas significativas. 

Limitaciones y consideraciones: 

La resolución espacial de aproximadamente 50 km implica que las estimaciones 

corresponden a promedios sobre áreas considerables, pudiendo no capturar microclimas 

locales o efectos topográficos de pequeña escala. En contextos de topografía compleja, 

como las zonas andinas del Perú, esta limitación puede resultar en divergencias entre 

condiciones estimadas y las efectivamente experimentadas en el estadio específico. Los 

datos POWER, al derivarse de productos modelados que combinan observaciones directas 

con ecuaciones físicas, incorporan incertidumbre inherente. Variables como la 

precipitación, particularmente difíciles de observar desde satélite sobre superficies 

continentales, pueden presentar mayores errores que variables directamente medidas 

como la temperatura. El sistema utiliza el valor -999 como indicador de dato faltante, 

requiriendo manejo apropiado en análisis estadístico para evitar interpretaciones erróneas. 

La latencia en la disponibilidad de datos representa otra consideración relevante. 

Aunque los productos POWER se actualizan regularmente, puede existir un desfase 

temporal de varios días entre la ocurrencia de condiciones meteorológicas y su 

disponibilidad en el sistema. Esta limitación resulta menos relevante para estudios 

retrospectivos, pero puede restringir aplicaciones que requieren información en tiempo casi 

real. 

2.1.5 Aprendizaje Automático y Aprendizaje Profundo 

Los algoritmos de aprendizaje automático operan mediante la identificación de 

patrones estadísticos y estructuras latentes en conjuntos de datos, utilizando estos 

patrones para realizar inferencias o predicciones sobre observaciones no contempladas 

durante el proceso de entrenamiento. El aprendizaje supervisado representa el paradigma 

más directamente aplicable a problemas de predicción deportiva. Este enfoque utiliza 
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conjuntos de datos etiquetados donde cada observación comprende tanto las variables 

predictoras como la variable objetivo conocida. El algoritmo aprende una función de mapeo 

que relaciona entradas con salidas, optimizando sus parámetros para minimizar el error 

entre predicciones y valores reales observados. Los problemas de clasificación, donde se 

predice una etiqueta categórica y los problemas de regresión, donde se estima un valor 

continuo, constituyen las dos vertientes principales del aprendizaje supervisado (Huyen, 

2022). 

2.1.5.1 Selección de características 

La selección de características constituye un proceso fundamental en el desarrollo 

de modelos de aprendizaje automático que busca identificar el subconjunto óptimo de 

variables predictoras que maximizan el desempeño del modelo mientras minimizan la 

complejidad computacional y el riesgo de sobreajuste. En dominios con alta 

dimensionalidad, como el análisis deportivo donde múltiples estadísticas y variables 

contextuales pueden registrarse, la inclusión indiscriminada de todas las características 

disponibles introduce riesgos sustanciales: incremento de requisitos computacionales, 

mayor propensión al sobreajuste debido a la captura de correlaciones espurias, y 

degradación de la interpretabilidad del modelo. La selección hacia adelante (forward 

selection) comienza con un conjunto vacío, agregando secuencialmente la característica 

que más mejora el desempeño. La eliminación hacia atrás (backward elimination) inicia 

con todas las características, removiendo iterativamente aquella cuya ausencia menos 

degrada el desempeño. Aunque estos métodos consideran la relevancia específica para el 

modelo empleado, resultan computacionalmente costosos al requerir múltiples ciclos de 

entrenamiento (Alice Zheng; Amanda Casari, 2018). 

2.1.5.2 Proceso de modelado 

El desarrollo de modelos de aprendizaje automático sigue un flujo estructurado que 

comienza con el preprocesamiento de datos. Esta etapa comprende limpieza de valores 

faltantes o anómalos, normalización o estandarización de variables para homogenizar 

escalas, codificación de variables categóricas en representaciones numéricas, y 
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potencialmente ingeniería de características para crear variables derivadas que capturen 

relaciones relevantes. La fase de entrenamiento emplea algoritmos de optimización que 

ajustan iterativamente los parámetros del modelo para minimizar una función de pérdida 

que cuantifica la discrepancia entre predicciones y valores reales. La elección del algoritmo 

de optimización (gradiente descendente estocástico, Adam, RMSprop) y la configuración 

de hiper parámetros (tasa de aprendizaje, tamaño de lote, número de épocas) influyen 

significativamente en la convergencia y desempeño final del modelo (Huyen, 2022). La 

validación mediante conjuntos de datos independientes permite evaluar la capacidad de 

generalización del modelo a datos no vistos durante el entrenamiento. La detección 

temprana de sobreajuste, donde el modelo memoriza patrones específicos del conjunto de 

entrenamiento sin capturar relaciones generalizables, constituye un aspecto crítico de esta 

fase. La evaluación final emplea métricas cuantitativas apropiadas al tipo de problema. 

Para clasificación multiclase, métricas como precisión, recall, F1-score y matrices de 

confusión permiten caracterizar el desempeño diferenciado en cada categoría. Para 

regresión, métricas como error cuadrático medio, error absoluto medio y coeficiente de 

determinación R2 cuantifican la precisión de las estimaciones numéricas (Huyen, 2022). 

2.1.5.3 Redes Neuronales Recurrentes (RNN) 

Las redes neuronales recurrentes representan una clase especializada de 

arquitecturas diseñadas específicamente para procesar datos secuenciales donde el orden 

temporal o espacial contiene información relevante. A diferencia de las redes feed forward 

que asumen independencia entre observaciones, las RNN incorporan conexiones cíclicas 

que permiten mantener un estado interno o memoria que captura información de pasos 

temporales anteriores. 

2.1.5.3.1 Concepto de dependencia temporal 

La dependencia temporal surge cuando el valor apropiado de una predicción en un 

momento determinado depende no solamente de las características observadas en ese 

instante, sino también del contexto proporcionado por observaciones previas (Wilton W 

Fok; Louis C Chan; Carol Chen, 2018). En el análisis deportivo, esta propiedad resulta 
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fundamental, el resultado esperado de un partido depende no únicamente de las 

estadísticas actuales de los equipos, sino también de su trayectoria reciente, secuencias 

de victorias o derrotas, y evolución de forma física a lo largo de la temporada. Las RNN 

abordan esta dependencia temporal mediante un mecanismo de estado oculto que se 

actualiza en cada paso temporal, integrando información de la entrada actual con el estado 

heredado del paso anterior. Esta recursión permite, en principio, que la red capture 

dependencias temporales de longitud arbitraria, aunque en la práctica las RNN 

tradicionales presentan dificultades para aprender dependencias muy extensas ( Roger 

Grosse ; Jimmy Ba's, 2017). 

2.1.5.3.2 Arquitecturas de Redes Neuronales 

Las redes neuronales artificiales constituyen sistemas computacionales inspirados 

en la arquitectura del sistema nervioso biológico, diseñadas para reconocer patrones 

complejos mediante el procesamiento jerárquico de información. La unidad fundamental, 

la neurona artificial, implementa una transformación no lineal de una combinación 

ponderada de sus entradas, emulando conceptualmente el comportamiento de neuronas 

biológicas que integran señales sinápticas y generan potenciales de acción. 

Una red neuronal típica organiza neuronas en capas diferenciadas funcionalmente. 

La capa de entrada recibe las características o variables predictoras, codificándolas en 

representaciones numéricas apropiadas. Las capas ocultas ejecutan transformaciones 

sucesivas de la información mediante operaciones matriciales ponderadas seguidas de 

funciones de activación no lineales. La capa de salida genera las predicciones finales, 

adaptándose a la naturaleza del problema (activación softmax para clasificación multiclase, 

activación lineal para regresión). Cada neurona calcula una suma ponderada de sus 

entradas más un término de sesgo, aplicando posteriormente una función de activación 

que introduce no linealidad. Funciones de activación comúnmente empleadas incluyen la 

tangente hiperbólica (tanh), la unidad lineal rectificada (ReLU) y sus variantes (Leaky 

ReLU, ELU). La elección de la función de activación influye tanto en la capacidad expresiva 



33 
 

 
 

de la red como en la eficiencia del entrenamiento (Ian Goodfellow ; Yoshua Bengio ; Aaron 

Courville, 2016). 

2.1.5.3.3 Retro propagación y optimización 

El entrenamiento de redes neuronales emplea el algoritmo de retro propagación, 

que calcula eficientemente los gradientes de la función de pérdida respecto a todos los 

parámetros mediante aplicación repetida de la regla de la cadena del cálculo diferencial. 

Estos gradientes dirigen la actualización de pesos mediante algoritmos de optimización 

basados en descenso de gradiente, que ajustan iterativamente los parámetros en la 

dirección que reduce la función de pérdida. Los optimizadores adaptativos modernos, 

como Adam (Adaptive Moment Estimation) y RMSprop, mantienen estimaciones de primer 

y segundo momento de los gradientes, ajustando dinámicamente las tasas de aprendizaje 

por parámetro. Esta adaptabilidad acelera la convergencia y mejora la robustez frente a 

hiper parámetros mal configurados, aunque requiere memoria adicional para almacenar 

los momentos (Ian Goodfellow ; Yoshua Bengio ; Aaron Courville, 2016). 

2.1.5.3.4 Regularización y prevención de sobreajuste 

El sobreajuste constituye un desafío fundamental en redes neuronales profundas, 

manifestándose cuando el modelo desarrolla representaciones excesivamente específicas 

a los datos de entrenamiento que no generalizan a datos nuevos. Múltiples estrategias de 

regularización mitigan este problema. El dropout desactiva aleatoriamente una fracción de 

neuronas durante el entrenamiento, forzando la red a aprender representaciones 

redundantes más robustas. La parada temprana interrumpe el entrenamiento cuando el 

desempeño en el conjunto de validación comienza a deteriorarse, previniendo ajuste 

excesivo a ruido en los datos de entrenamiento ( Roger Grosse ; Jimmy Ba's, 2017). La 

augmentación de datos, cuando resulta aplicable al dominio específico, incrementa 

artificialmente el tamaño efectivo del conjunto de entrenamiento mediante 

transformaciones que preservan la etiqueta correcta. En contextos deportivos, esto podría 

incluir reflexiones de posiciones en el campo o agregación de ruido calibrado a estadísticas 

numéricas. 
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2.1.5.3.5 Problema del desvanecimiento y explosión del gradiente: 

El entrenamiento de RNN mediante retro propagación temporal enfrenta desafíos 

significativos de la propagación de gradientes a través de muchos pasos temporales. 

Durante la retro propagación, los gradientes se multiplican repetidamente por las mismas 

matrices de pesos, resultando en dos fenómenos patológicos. El desvanecimiento del 

gradiente ocurre cuando productos repetidos de valores menores que uno conducen a 

gradientes exponencialmente decrecientes que efectivamente anulan la señal de 

aprendizaje para dependencias largas. Conversamente, la explosión del gradiente surge 

cuando productos de valores mayores que uno generan gradientes exponencialmente 

crecientes que desestabilizan el proceso de optimización ( Roger Grosse ; Jimmy Ba's, 

2017). 

2.1.5.3.6 Long Short-Term Memory (LSTM) 

Las redes LSTM, fueron diseñadas específicamente para resolver el problema del 

desvanecimiento del gradiente mediante la introducción de una arquitectura de celda de 

memoria con mecanismos de control de flujo de información. La innovación fundamental 

radica en la separación entre el estado de celda (memoria a largo plazo) y el estado oculto 

(salida a corto plazo), junto con un sistema de puertas que regulan selectivamente qué 

información se retiene, actualiza o descarta. 

Esta arquitectura modular permite que las LSTM mantengan información relevante 

durante períodos temporales extensos, evitando el desvanecimiento del gradiente 

mediante el flujo constante de información a través del estado de celda. La capacidad 

resultante para capturar dependencias a largo plazo ha consolidado las LSTM como 

arquitectura preferida para múltiples aplicaciones de procesamiento secuencial (Wilton W 

Fok; Louis C Chan; Carol Chen, 2018). 

2.1.5.3.6 Gated Recurrent Unit (GRU) 

Las unidades GRU, representan una simplificación arquitectónica de las LSTM que 

mantiene su capacidad de modelar dependencias a largo plazo mientras reduce la 

complejidad computacional. La innovación principal consiste en la consolidación de las 
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puertas de entrada y olvido en una única puerta de actualización, eliminando además la 

distinción entre estado de celda y estado oculto (Ariana Yunita ; MHD Iqbal Pratama, 2025). 

La arquitectura GRU implementa dos mecanismos de control. 

Gracias a esta estructura compacta, la GRU logra un desempeño comparable al de 

la LSTM con menor complejidad computacional y menos parámetros a entrenar (Ariana 

Yunita ; MHD Iqbal Pratama, 2025). 

2.1.5.4 Árboles de Decisión 

Los algoritmos basados en árboles de decisión constituyen una familia de métodos 

de aprendizaje supervisado que modelan relaciones entre variables mediante estructuras 

jerárquicas de decisiones sucesivas. Estos algoritmos poseen propiedades 

particularmente valiosas para análisis de características: capacidad innata para manejar 

no linealidades e interacciones complejas sin transformaciones explícitas, robustez ante 

variables en diferentes escalas sin requerir normalización, y generación natural de métricas 

de importancia de características. 

Un árbol de decisión particiona recursivamente el espacio de características 

mediante reglas de decisión binarias, construyendo una estructura jerárquica donde cada 

nodo interno representa una prueba sobre una característica específica, cada rama 

corresponde al resultado de esa prueba, y cada nodo hoja asigna una etiqueta de clase o 

valor de regresión. El proceso de construcción emplea algoritmos greedy que seleccionan 

en cada paso la partición que maximiza la pureza de los subconjuntos resultantes. Para 

clasificación, criterios como el índice de Gini o la entropía de Shannon cuantifican la 

homogeneidad de clases en cada nodo (Alice Zheng; Amanda Casari, 2018). 

Los árboles de decisión individuales tienden a desarrollar estructuras profundas 

que memorizan el conjunto de entrenamiento, manifestando alto sobreajuste. Técnicas de 

poda limitan este problema removiendo ramas que proporcionan mejoras marginales 

insuficientes o estableciendo restricciones sobre profundidad máxima, número mínimo de 

instancias por nodo, o ganancia mínima requerida para particionar. 
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2.1.5.5 Métricas y Evaluación de Modelos Multiclase 

Métricas fundamentales: 

La evaluación de modelos de clasificación multiclase requiere métricas que 

capturen diferentes aspectos del desempeño predictivo. La exactitud (accuracy) 

representa la proporción de predicciones correctas sobre el total de observaciones, 

constituyendo la métrica más intuitiva pero potencialmente engañosa en presencia de 

desbalance de clases (Huyen, 2022).  

La precisión (precisión) cuantifica la proporción de predicciones positivas que 

resultan correctas para cada clase, respondiendo a la pregunta: "De todos los casos que 

el modelo predijo como clase k, ¿cuántos realmente pertenecían a esa clase?" 

Formalmente, para la clase k: 

Precisión𝑘 =
𝑉𝑃𝑘

𝑉𝑃𝑘 + 𝐹𝑃𝑘
 

Donde 𝑉𝑃𝑘 denota los verdaderos positivos y 𝐹𝑃𝑘 los falsos positivos para la clase 𝑘 

El recall (sensibilidad o exhaustividad) mide la proporción de instancias reales de 

cada clase que el modelo identifica correctamente, respondiendo: “¿De todos los casos 

reales de la clase k, ¿cuántos identificó correctamente el modelo?” 

𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =  
𝑉𝑃𝑘

𝑉𝑃𝑘 + 𝐹𝑁𝑘
 

Donde 𝐹𝑁𝑘 denota los falsos negativos. 

El F1-score combina precisión y recall mediante su media armónica, 

proporcionando una métrica balanceada particularmente útil cuando ambos aspectos 

resultan igualmente importantes: 

𝐹1𝑘  =  2 
Precisión𝑘 . 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

Precisión𝑘+ 𝑅𝑒𝑐𝑎𝑙𝑙𝑘
 

 

Para obtener métricas globales en problemas multiclase, se emplean esquemas de 

agregación. El promedio macro calcula la métrica independientemente para cada clase y 

promedia sin ponderación, tratando todas las clases equitativamente. El promedio 
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ponderado (weighted) pondera las métricas por clase según su frecuencia en el conjunto 

de datos, resultando más representativo del desempeño global cuando las clases 

presentan tamaños desiguales. La matriz de confusión proporciona una visualización 

comprehensiva del desempeño, mostrando en cada celda (i, j) el número de instancias de 

la clase verdadera i que fueron predichas como clase j. El análisis de esta matriz revela 

patrones de confusión específicos, como si el modelo confunde sistemáticamente empates 

con victorias del equipo visitante, información valiosa para interpretar limitaciones del 

modelo (Huyen, 2022). 

Manejo del desbalance de clases: 

El desbalance de clases, donde ciertas categorías (típicamente empates en fútbol) 

ocurren con frecuencia sustancialmente menor que otras, introduce sesgos que degradan 

el desempeño de modelos entrenados con funciones de pérdida estándar. Múltiples 

estrategias abordan este problema. La asignación de pesos de clase (class weights) 

modifica la función de pérdida para penalizar más severamente errores en clases 

minoritarias. Durante el entrenamiento, el error asociado a cada ejemplo se multiplica por 

un factor inversamente proporcional a la frecuencia de su clase. En frameworks como 

TensorFlow y PyTorch. 

El oversampling (sobre muestreo) de clases minoritarias replica instancias de estas 

categorías para balancear artificialmente la distribución. Técnicas sofisticadas como 

SMOTE (Synthetic Minority Over-sampling Technique) generan ejemplos sintéticos 

mediante interpolación entre instancias existentes de la clase minoritaria, aumentando la 

diversidad del conjunto aumentado. 

El submuestreo (under sampling) reduce el número de instancias de clases 

mayoritarias para equilibrar la distribución. Aunque simple, esta técnica descarta 

información potencialmente valiosa, pudiendo degradar el desempeño cuando los datos 

resultan limitados. La focal loss, introducida constituye una modificación de la función de 

pérdida de entropía cruzada que reduce automáticamente el peso de ejemplos bien 

clasificados, concentrando el aprendizaje en casos difíciles. 



38 
 

 
 

Esta formulación resulta particularmente efectiva en escenarios de desbalance 

extremo sin requerir ponderaciones manuales. La evaluación estratificada asegura que los 

conjuntos de entrenamiento, validación y prueba mantengan proporciones similares de 

cada clase, previniendo que conjuntos de evaluación pequeños resulten dominados por 

clases específicas y proporcionando estimaciones más estables del desempeño. 

2.2. Antecedentes de estudio 

(Stevens, 2024). Predicting the outcome of Women’s World Cup matches 

taking weather conditions into account, using K-Nearest Neighbors, Random Forest 

and Support Vector Machines. Tilburg University, Paises Bajos 

Conclusiones: 

Esta tesis aborda la predicción de resultados en partidos de la Copa Mundial 

Femenina de la FIFA mediante la integración de variables meteorológicas, utilizando tres 

técnicas de Aprendizaje Automático (ML): K-Nearest Neighbors (KNN), Random Forest y 

Support Vector Machines (SVM). La investigación utilizó un conjunto de datos que abarca 

resultados de partidos, clasificaciones FIFA y condiciones meteorológicas (sensación 

térmica, viento, humedad) de los Mundiales Femeninos desde 2011 (Alemania), 2015 

(Canadá), 2019 (Francia) y 2023 (Australia/Nueva Zelanda). El objetivo principal fue 

determinar el impacto de incluir las condiciones climáticas como una característica 

adicional en la capacidad predictiva de los modelos. Respecto a la variable meteorológica, 

el hallazgo central fue que la inclusión de las condiciones climáticas no mejoró la precisión 

predictiva del modelo de Aprendizaje Automático KNN. La precisión en el conjunto de 

prueba se mantuvo en 0.65 cuando se incluyó la sensación térmica. En un análisis 

secundario para evaluar si el impacto era diferente para los equipos europeos en 

comparación con los no europeos, la mayor precisión se obtuvo en el modelo para equipos 

no europeos sin la inclusión de la variable meteorológica (0.615), y los resultados para los 

equipos europeos con o sin datos meteorológicos fueron inferiores o comparables, lo que 

no sustenta la hipótesis de que el clima influya significativamente en el resultado del partido 

en este contexto. El autor atribuye la falta de impacto del clima a dos limitaciones 
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principales: el tamaño reducido del conjunto de datos (solo cuatro Mundiales) y la 

imprecisión de los datos meteorológicos, que fueron medidos a nivel de país o ciudad y no 

en la ubicación específica del estadio. 

Comentario: Este documento es metodológicamente relevante, ya que aplica 

técnicas de ML similares directamente al problema de la predicción de resultados de fútbol 

internacional, incluyendo específicamente el factor climático. El resultado central, la 

ausencia de una mejora significativa en la precisión al incorporar la sensación térmica, es 

un hallazgo empírico crucial para la investigación propuesta. Este resultado plantea la 

hipótesis nula para el uso de variables meteorológicas en contextos de ML para predicción 

de partidos internacionales, lo que obliga a la investigación con RNN a justificar y explorar 

por qué su metodología o conjunto de datos podría arrojar resultados diferentes. La crítica 

metodológica del autor sobre la granularidad de los datos climáticos (medición a nivel de 

país en lugar de estadio) es vital. Esto sugiere que para que las RNN detecten una señal 

climática, es imperativo utilizar datos meteorológicos más precisos y localizados, un 

desafío que debe abordarse si la investigación actual busca superar las limitaciones 

observadas por este autor. 

 

(Ditsuhi Iskandaryan , Francisco Ramos, 2020),The effect of weather in soccer 

results: an approach using machine learning techniques. Universitat Jaume I, 

España 

Conclusiones: 

Esta investigación determina el efecto de las condiciones climáticas en los 

resultados de partidos de fútbol mediante la implementación de técnicas de Aprendizaje 

Automático (ML), analizando datos de LaLiga y la Segunda División española de las 

temporadas 2013-2014 a 2017-2018. El estudio se estructuró en dos tareas de 

clasificación: Multivariante (Predecir victoria local, victoria visitante o empate) y Bivariante 

(Predecir empate o no empate). Utilizo algoritmos de ML como Random Forest (RF), 

Support Vector Machines (SVM), K-Nearest Neighbors (KNN) y Extra-Trees. Los datos de 
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fútbol se complementaron con información meteorológica altamente localizada, obtenida 

de 775 estaciones cercanas a los 25 estadios utilizados. Las variables climáticas 

consideradas incluyen temperatura máxima, mínima y media, ráfagas de viento, velocidad 

máxima del viento y precipitación, además de características derivadas como las 

diferencias entre las condiciones del equipo local y el visitante. Los resultados demostraron 

una precisión significativamente mayor en la predicción de resultados en comparación con 

los modelos que excluían estas características. Para el Caso de Estudio 1, el clasificador 

𝐸𝑥𝑡𝑟𝑎 − 𝑇𝑟𝑒𝑒𝑠 fue superior, alcanzando una precisión del 65.9 % con datos 

meteorológicos, frente a solo 53.3 % sin ellos (para RF, que fue el mejor sin datos 

climáticos). Para el Caso de Estudio 2, SVM fue el más eficiente con una precisión del 79.3 

% con datos meteorológicos. Se concluye que la inclusión de datos meteorológicos es útil 

para predecir el resultado de un partido de fútbol, siendo la diferencia de temperatura 

promedio (𝑇𝑚𝑒𝑑_𝐷𝑖𝑓𝑓) y la diferencia máxima de velocidad del viento (𝑉𝑚𝑎𝑥_𝐷𝑖𝑓𝑓) 

algunas de las características finales más relevantes. 

Comentario: Este trabajo es fundamental porque proporciona una evidencia em-

pírica directa y cuantitativa de que las condiciones meteorológicas sí pueden mejorar 

significativamente la precisión de la predicción de resultados de fútbol cuando se utilizan 

técnicas de ML. Metodológicamente, se diferencia del estudio de Stevens por su contexto 

(liga doméstica vs. Copa Mundial) y, crucialmente, por la granularidad de sus datos. El uso 

de 775 estaciones meteorológicas en España para cubrir 25 estadios minimiza el problema 

de la imprecisión de la ubicación del partido. Esta diferencia en la recolección de datos 

sugiere que la señal climática es detectable solo cuando se mide con precisión, lo que tiene 

implicaciones directas para la investigación con RNN, la cual deberá priorizar la calidad 

espacial de los datos meteorológicos. Este documento apoya la premisa de trabajo de la 

investigación propuesta (que las variables meteoro-lógicas influyen en el resultado) y 

justifica la exploración de modelos avanzados (como las RNN) para capturar estas 

correlaciones de manera más efectiva. 



41 
 

 
 

(Niek Tax; Niek Tax, 2015). Predicting The Dutch Football Competition Using 

Public Data: A Machine Learning Approach. Universidad de Twente, Paises bajos 

Conclusiones: 

El estudio identificó una amplia gama de factores con valor predictivo (rendimiento 

histórico, rachas, cambio de DT, ventaja de localía, fatiga y distancia de viaje). El modelo 

con datos públicos alcanzó una precisión máxima de 54.702 % (Naive Bayes o Multilayer 

Perceptron combinado con PCA). Al igual que en otros estudios, los modelos tuvieron 

serias dificultades para predecir el empate, ya que las características utilizadas no ofrecían 

valor predictivo para esta clase minoritaria. La combinación de datos públicos con 

probabilidades de apuestas (modelo híbrido) mejoró ligeramente la precisión al 56.054 %, 

sugiriendo que las probabilidades incluyen factores no capturados por los datos públicos. 

Comentario: La metodología empleada, que incluye una revisión sistemática de 

factores y un enfoque retrodictivo que parte por el objetivo final construyendo un plan hacia 

atrás para el entrenamiento, es directamente aplicable a la investigación con RNN, dado 

el carácter temporal de los datos climáticos. Aunque el estudio no incluye variables 

meteorológicas, sí considera el factor "Fatiga", que se modela a partir de la dureza del 

partido anterior y el tiempo transcurrido desde el último encuentro. Las condiciones 

meteorológicas extremas (calor, humedad) son conocidas por inducir fatiga y estrés 

fisiológico, lo que sugiere que la meteorología es una variable cuantificable que 

complementa el análisis de rendimiento físico y la fatiga, justificando su inclusión para 

refinar la capacidad predictiva. Además, los autores excluyeron datos difíciles de recuperar 

automáticamente, lo que implica que las variables meteorológicas deben ser 

rigurosamente cuantificables para ser útiles. 

(Walker J. Ross; Madeleine Orr, 2022). Predicting climate impacts to the 

Olympic Games and FIFA Men’s World Cups from 2022 to 2032. Sport in Society. 

Universidad de Edimburgo, Reino Unido. 

Conclusiones: 
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Este estudio se centra en la proyección de las condiciones climáticas y de calidad 

del aire para los mega eventos deportivos programados entre 2022 y 2032, incluyendo los 

Juegos Olímpicos y la Copa Mundial Masculina de la FIFA. El trabajo establece condiciones 

límite ambientales críticas para garantizar la seguridad y la integridad competitiva, el 

trabajo establece criterios para evaluar los riesgos ambientales en eventos deportivos 

mediante umbrales. Fútbol (FIFA World Cups): La Copa Mundial de Qatar 2022 fue 

reprogramada a noviembre/diciembre debido al calor extremo, aunque las temperaturas 

históricas sugieren que casi todos los días aún superan el umbral de riesgo. La región 

enfrentará probablemente un aumento de días calurosos y olas de calor en los años 

posteriores, comprometiendo el uso de las instalaciones si no se mantienen las 

adaptaciones (como el aire acondicionado en estadios). Para la Copa Mundial UNITED 

2026 (Canadá, EE. UU., México), el calor extremo será la principal preocupación en casi 

todas las ciudades anfitrionas. Juegos Olímpicos: Beijing 2022 enfrentó mala calidad del 

aire e insuficientes temperaturas frías para la nieve natural. El estudio concluye enfatizando 

la necesidad de que los organizadores creen eventos, infraestructura y legados resilientes 

al clima, implementando planes de contingencia para proteger a los atletas y mantener la 

integridad competitiva. 

Comentario: Este documento establece un marco conceptual robusto, la ecología 

del deporte, al postular una relación bidireccional entre el deporte y el medio ambiente: el 

impacto del deporte en el clima y el impacto del clima en la operación deportiva. Su 

relevancia para la investigación propuesta reside en dos aspectos: 1. Cuantificación de 

Variables de Riesgo: Proporciona umbrales de riesgo cuantitativos específicos. Estos 

límites definidos por especialistas pueden ser utilizados para categorizar los datos 

meteorológicos de entrada en el modelo RNN, transformando variables continuas en 

variables categóricas o binarias de riesgo. 2. Contexto de Mega eventos: Documenta que 

el calor extremo es un factor disruptivo recurrente en el fútbol a nivel de Copa Mundial. Si 

las condiciones de calor extremo obligan a los jugadores a adoptar estrategias de ritmo o 

aumentan el riesgo de enfermedades relacionadas con el calor, esta variable debe ser 
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inherentemente predictiva de cambios en el rendimiento y, potencialmente, en el resultado 

final. 

(Jimenez, 2023) Sistema para pronosticar resultados de partidos de futbol en 

opciones dobles. Universidad de Lima, Perú. 

Conclusiones: 

El proyecto desarrolló un sistema de pronóstico para la liga peruana, enfocado en 

maximizar la probabilidad de acierto utilizando la modalidad de opciones dobles como 

Local Gana o Empata. El sistema logró un 82 % de acierto para las recomendaciones de 

mayor peso (PRO-PESO = 7). El modelo busca una estrategia de ganancia incremental a 

largo plazo (multiplicador semanal de 1.20 a 1.25). En cuanto a las variables utilizadas, el 

sistema se basa en resultados históricos, tablas de posiciones y estadísticas agregadas. 

Comentario: La relevancia principal radica en la exclusión explícita de variables 

contextuales. El diseño del sistema no contempló "Factores climatológicos de las ciudades 

donde se efectúa el partido de fútbol", ni el "Factor emocional de los jugadores", ni las 

lesiones. Esta exclusión, frecuente en los sistemas de predicción que se basan en datos 

deportivos estándar, justifica plenamente la necesidad de integrar y cuantificar la influencia 

de estas variables exógenas. Se cuenta con detalles de la implementación del sistema, 

mas no sobre el modelo de predicciones por lo que no se tiene detalles de la arquitectura 

ni experimentos que realizo. Además, la recomendación para futuros trabajos incluye la 

incorporación del aprendizaje de máquina para refinar las sugerencias de combinaciones, 

lo que valida la exploración de modelos avanzados como las RNN para la clasificación y 

predicción de resultados. 

(Bustos, 2023) Sistema de Predicción de Resultados para los Partidos de 

Futbol de la Liga Profesional Colombiana. Universitaria de Bogotá Jorge Tadeo 

Lozano, Colombia. 

Conclusiones: 

La investigación evaluó la capacidad predictiva de Redes Neuronales Artificiales 

(ANN), Máquinas de Soporte Vectorial (SVM), Árboles de Decisión (DT) y el Sistema de 
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Clasificación ELO para la liga colombiana. Los resultados de precisión obtenidos fueron 

limitados para la clasificación de tres clases (gana local, empate, gana visitante), con el 

mejor rendimiento logrado por el modelo ELO (43 % de accuracy) y DT (42 % de accuracy). 

La RNN mostró el rendimiento más bajo (34 % de accuracy), lo que sugiere que, con las 

variables históricas utilizadas, este modelo no logró capturar patrones efectivos. La 

conclusión central es que la precisión no superó el 45 %, lo que demanda la necesidad de 

incorporar un conjunto más amplio de variables para robustecer la predicción. 

Comentario: Este documento es de capital importancia, ya que aborda 

directamente la implementación de un algoritmo de Redes Neuronales Recurrentes en la 

predicción de partidos de fútbol. La baja precisión del modelo (34 % de accuracy) sugiere 

que las variables de entrada tradicionales (resultados históricos, goles, posición) son 

insuficientes en este contexto. La principal relevancia radica en la justificación de la 

introducción de nuevas variables, ya que los autores recomiendan explícitamente explorar 

y evaluar la inclusión de más variables en el análisis". El bajo rendimiento de la RNN con 

datos estadísticos estándar justifica la hipótesis de que la inclusión de factores externos 

no correlacionados, como las variables meteorológicas, podría ser la clave para que la 

RNN desarrolle un poder discriminatorio superior. 

(FUENTEALBA, 2025) Predicción de Resultados de Partidos de la Liga 

Profesional de Futbol Chileno usando Algoritmos de Machine Learning. Universidad 

del Desarrollo, Chile. 

Conclusiones: 

El proyecto reafirma la complejidad inherente a la predicción de resultados de 

fútbol, siendo la clase empate la más difícil de identificar, una limitación que persiste incluso 

tras aplicar técnicas avanzadas de balanceo de clases (SMOTE, ADASYN) y optimización 

de hiper parámetros. Los modelos utilizados y métrica de precisión son: Random Forest 

(0.3693), XGBoost (0.4156), CatBoost (0.4140) y Regresión Logística (0.3740) mostraron 

un rendimiento modesto, manteniéndose cerca del nivel de un clasificador aleatorio. Este 

patrón se replicó en la Premier League, confirmando que el desafío es intrínseco al 
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dominio, no a una liga específica. Se concluye que se requiere la incorporación de "nuevas 

fuentes de información más ricas (variables contextuales, tácticas, calidad individual de 

jugadores, condiciones externas)"para lograr una mejora significativa. 

Comentario: Este estudio provee la justificación más explícita y directa para la 

investigación propuesta. La mención de condiciones externas como un requisito para 

mejorar el desempeño predictivo valida directamente la inclusión de variables 

meteorológicas. El fracaso consistente de los modelos en predecir el empate es crucial. 

Dado que los métodos basados en árboles y regresión logística no lograron superar este 

obstáculo, se justifica la exploración de modelos RNN, los cuales son más adecuados para 

manejar datos secuenciales y relaciones no lineales sutiles, buscando precisamente la 

señal climática que podría diferenciar los resultados en condiciones extremas. 
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CAPITULO III 

Metodología 

3.1. Enfoque metodológico 

La metodología empleada en este estudio se inscribe en un enfoque cuantitativo, 

utiliza la estadística como herramienta. 

3.1.1. Diseño de investigación  

La investigación tiene un nivel descriptivo según (Hernández, Fernández, & 

Baptista, 2014) Estudios descriptivos Busca especificar propiedades y características importantes 

de cualquier fenómeno que se analice. Describe tendencias de un grupo o población. (p.92) 

3.1.2 Nivel de investigación 

Los estudios descriptivos pretenden especificar las propiedades, características y 

perfiles de personas, grupos, comunidades, procesos, objetos o cualquier otro fenómeno 

que se someta a un análisis. (Hernandez-Sampieri & Mendoza, 2019)  Es decir, miden o 

recolectan datos y reportan información sobre diversos conceptos, variables, aspectos, 

dimensiones o componentes del fenómeno o problema a investigar (p.108) 

3.1.3. Población 

Nuestra población está constituida por datos estadísticos de partidos de futbol de 

las ligas profesionales de Colombia Chile Ecuador y Peru “Es el conjunto de todos los 

elementos (unidades de analsis9 que pertenecen al ámbito espacial donde se desarrolla 

el trabajo de investigación” (Carrasco, 2019)   

3.1.4. Muestra 

Se ha considerado como muestra a los datos de la stemporadas del 2017 al 2025 

por su parte (Supo, 2024) El tamaño de la muestra “está determinado por el nivel de 

precisión que deseamos para los resultados y las conclusiones, mientras mayor sea el 

tamaño de la muestra tendremos mayor precisión y mientras menos precisión se exija, 

menos tamaño tendrá la muestra” (p161).  
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3.1.5. Muestreo por conveniencia 

El muestreo es por conveniencia en vista que la disponibilidad de datos estadísticos 

de partidos de futbol en un nivel detallado se encuentra en las fechas disponibles  (Supo, 

2024) Recibe también el nombre muestreo deliberado, porque no cuenta con ningún 

procedimiento estandarizado, ninguna acción especifica que realzar, ni razón más que la 

comodidad o única oportunidad de muestrear; en suma, no hay ninguna forma de 

seleccionar la muestra, es simplemente deliberado (p. 190) 

3.1.6. Diseño 

El diseño corresponde al experimental puesto que se ha realizado mediciones a los 

resultados del entrenamiento de aprendizaje automático. Según (Bernal, 2010). En la 

investigación experimental existen diversos tipos de diseño, que se clasifican de diferentes 

formas. Sin embargo, la clasificación más usada, según Salkind (1998) e investigadores 

como Briones (1985), es la de Campbell y Stanley, quienes identifican tres categorías 

generales de diseños de investigación: preexperimentales, cuasi experimentales y 

experimentales verdaderos. 

3.2. Etapas del proceso metodológico  

3.2.1. Etapa 1 Extracción de Datos 

Esta etapa es el punto de partida para la recolección de un conjunto diverso de 

datos, que incluye estadísticas detalladas de fútbol como información adicional, 

calendarios de partidos y alineaciones correspondientes a las ligas profesionales de futbol 

de Chile, Colombia, Ecuador y Perú. La recopilación abarca desde el 3 de febrero de 2017, 

fecha del primer partido de esas ligas en dicho año, hasta el 19 de mayo de 2025, cuando 

concluyó la extracción tanto de los datos futbolísticos. Estas fechas de calendario de 

partidos se cruza con los datos de condiciones ambientales proporcionadas por la NASA 

POWER API. La información deportiva se almacenó en una base de datos no relacional 

MongoDB, mientras que los datos ambientales se guardaron en archivos CSV, tal como se 

aprecia en la figura 1. 



48 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2. Etapa 2 Procesamiento de Datos de Futbol 

Ejecuta un proceso de transformación multietapa que incluye la normalización de 

formatos inconsistentes, la implementación de un esquema de imputación jerárquica que 

aprovecha similitudes contextuales entre equipos, competiciones y el conjunto global, así 

como la aplicación de ingeniería de características, donde se obtiene un total de 44 

variables, esta etapa podemos resumir en la figura 2 

 

Figura 2 

Etapa 2: Procesamiento de Datos Deportivos 

 

 

 

 

Figura 1 

Etapa 1 Extracción de datos 
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3.3.3. Etapa 3 Procesamiento de Datos de Ambiente 

Procesa específicamente las variables meteorológicas mediante extracción 

paralela con gestión de reintentos, calculando promedios temporales de tres horas durante 

cada encuentro, descomponiendo vectorialmente el viento en componentes cartesianas y 

generando variables categóricas que identifican condiciones climáticas adversas según 

umbrales físicamente fundamentados, como se muestra en la figura 3. 

  

Figura 3 

Etapa 3: Procesamiento de Datos Ambientales 
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3.3.4. Etapa 4 Preparación para Modelado 

Consolida ambos conjuntos de datos mediante operaciones de cruce de datos 

mediante espacio temporal basadas en coordenadas de estadio y marcas temporales, 

implementa una división cronológica estricta que preserva la estructura temporal (70 % 

entrenamiento, 15 % validación, 15 % prueba) y aplica normalización diferenciada según 

la naturaleza estadística de cada variable, ajustando exclusivamente sobre el conjunto de 

entrenamiento para evitar filtración de información, como se muestra en la figura 4. 

El conjunto de entrenamiento está compuesto por 6 563 registros, desde el 2017-

02-03 22:45:00 hasta el 2023-03-04 23:15:00; el conjunto de validación incluye 1 406 

registros, desde el 2023-03-05 00:00:00 hasta el 2024-03-30 17:15:00; y el conjunto de 

prueba contiene 1 408 registros, con un intervalo que va desde el 2024-03-30 18:15:00 
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hasta el 2025-05-19 01:15:00. Todos en formato de horas UTC conformando un total de 

9377 partidos.  

Figura 4 

Etapa 4: Preparación para Modelado 

 

3.3.5. Etapa 5 Generación de Secuencias Temporales (X, y) 

Transforma los datos tabulares en secuencias temporales tridimensionales 

mediante la extracción de ventanas deslizantes de cuatro partidos previos, concatenando 

horizontalmente las rachas de rendimiento de ambos equipos, las condiciones ambientales 
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históricas asociadas a cada equipo en su condición local/visitante y el comportamiento 

histórico del árbitro asignado, generando tensores con dimensiones (n_muestras, 4 

timesteps, F características), como se muestra en la figura 5. 

Figura 5 

Etapa 5 Generación de Secuencias Temporales (X, y) 
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3.3.6. Etapa 6 Importancia Relativa de Características 

 Tenemos construido los dataframes que contiene estadísticas deportivas y 

ambientales, se procede a implementar Random Forest, este modelo nos ayuda con la 

interpretabilidad ya que mediante la métrica Gini obtenemos la importancia de cada una 

de las variables del dataframe. Ya que estamos en un problema de series temporales, para 

simular o replicar una ventana de tiempo procedemos a ingresar al modelo el promedio de 

las estadísticas de los últimos 4 partidos, para esta etapa nos basamos en la etapa 5 que 

obtiene las ventanas de tiempo, pero para este caso ingresa promediado. 

3.3.7. Etapa 7 Optimización de hiper parámetros (Grid Search) 

Para el desarrollo del presente estudio, se seleccionaron las Redes Neuronales 

Recurrentes (RNN), específicamente las arquitecturas LSTM y GRU. Se descartaron los 

modelos de Machine Learning convencionales debido a su incapacidad para modelar de 

forma nativa las dependencias temporales largas, tales como las rachas de victorias o 

derrotas de los equipos. Como señala la literatura especializada, estas arquitecturas con 

mecanismos de memoria son fundamentales para capitalizar la información histórica, 

permitiendo que el modelo aprenda patrones evolutivos que los modelos estáticos 

ignorarían. 

Implementa una estrategia de optimización exhaustiva mediante Grid Search sobre 

un espacio de 128 configuraciones de hiper parámetros, evaluando arquitecturas LSTM y 

GRU con diferentes profundidades, tasas de dropout, optimizadores y tamaños de lote.  

Este proceso se ejecuta de forma independiente para dos experimentos: 

Experimento "F-1” utilizando únicamente 28 características deportivas y de árbitro, y 

Experimento "F-A1” incorporando 16 características ambientales adicionales (8 por 

equipo), identificando para cada uno la configuración óptima según métricas de validación, 

como se muestra en la figura 6.  
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Figura 6 

Etapa 6: Optimización de hiperparametros 
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3.3.8. Etapa 8 Evaluación de Resultados  

Se realiza una evaluación estratificada geográficamente, desagregando el conjunto 

de prueba según el país de origen de la competición y calculando métricas de rendimiento 

individuales para cada estrato. También se realiza un análisis comparativo sistemático 

entre ambos experimentos, contrastando rendimientos globales y estratificados, 

documentando exhaustivamente las condiciones bajo las cuales la incorporación de 

información meteorológica resulta beneficiosa, neutral o contraproducente para la 

capacidad predictiva del modelo. 
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CAPITULO IV 

Desarrollo 

Este capítulo describe el proceso de desarrollo e implementación empleado para la 

recopilación, procesamiento y análisis de datos deportivos y meteorológicos en el contexto 

de esta investigación. El desarrollo experimental siguió una estructura basada en la 

metodología CRISP-DM, adaptada a las particularidades de los datos deportivos y 

ambientales. El proceso comprende diferentes etapas de procesamiento de datos, 

organizadas en capas de madurez (bronce, plata y oro) para el procesamiento de datos 

deportivos y para los datos meteorológicos, que transforman datos crudos en información 

estructurada lista para el modelado predictivo. 

4.1. Enfoque General 

La estrategia metodológica de esta investigación se fundamenta en la integración 

de dos líneas de datos complementarias: estadísticas deportivas de partidos de fútbol y 

variables meteorológicas. El objetivo principal consiste en construir un modelo predictivo 

capaz de anticipar los resultados de encuentros deportivos, considerando tanto el 

rendimiento histórico de los equipos como las condiciones ambientales durante los 

partidos. 

 El proceso de desarrollo e implementación se estructura en tres capas de 

procesamiento, siguiendo una arquitectura de lakehouse basada en el modelo medallón: 

• Capa Bronce: Almacenamiento de datos crudos extraídos directamente de 

las fuentes 

• Capa Plata: Transformación y normalización de datos en estructuras 

relacionales 

• Capa Oro: Preparación final de datos con ingeniería de características para 

análisis 

35 
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Esta arquitectura permite mantener la trazabilidad completa de los datos desde su 

origen hasta su uso en modelos predictivos, facilitando la reproducibilidad del proceso y la 

identificación de inconsistencias en etapas tempranas. 

4.2. Extracción de Datos Deportivos (Capa Bronce) 

4.2.1. Selección de Fuentes de Datos  

La identificación de fuentes confiables de datos deportivos representó el primer 

desafío metodológico. Aunque existen múltiples plataformas que ofrecen estadísticas de 

fútbol, como Transfermarkt, WhoScored, BFREF y Understat, se seleccionó Sofascore 

como fuente principal por tres razones fundamentales: 

1. Cobertura temporal extensa: Proporciona datos históricos de la liga peruana 

desde 2008, período significativamente más amplio que el ofrecido por 

competidores. 

2. Granularidad de estadísticas: A partir de 2017, incorporó métricas avanzadas 

como posiciones promedio de jugadores, mapas de calor y estadísticas detalladas 

de pases. 

3. Disponibilidad de API no documentada: Aunque no cuenta con documentación 

oficial, su arquitectura REST permite el acceso programático mediante ingeniería 

inversa. 

La selección de Sofascore implicó aceptar ciertas limitaciones en términos de 

disponibilidad de datos para jugadores menos conocidos, equipos recién llegados al futbol 

profesional y partidos no televisados, particularmente en temporadas anteriores a 2017.Se 

recolecto un conjunto diverso de datos, incluyendo estadísticas detalladas de fútbol, 

calendarios de partidos y alineaciones de las ligas profesionales de Chile, Colombia, 

Ecuador y Perú, abarcando desde el 3 de febrero de 2017 hasta el 19 de mayo de 2025. 

4.2.2. Diseño del Sistema de Extracción 

El sistema de extracción se construyó sobre la librería Botasaurus Driver, que 

proporciona capacidades de navegación automatizada resistentes a mecanismos anti 
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robot. La implementación se estructuró en torno a cinco funciones principales de 

extracción: 

1. Extracción de temporadas válidas: Esta función identifica las temporadas 

disponibles para cada liga mediante consulta al endpoint de temporadas. Retorna 

un diccionario que mapea años a identificadores internos de temporada, 

permitiendo la iteración sistemática sobre períodos históricos. 

2. Extracción de fixtures: Recupera la lista completa de partidos para una 

temporada específica mediante paginación incremental. El proceso continúa 

solicitando páginas hasta recibir una respuesta de error para aplicar técnicas de 

reintentos, cuando finaliza el proceso finaliza se determina que se han recuperado 

todos los partidos disponibles. 

3. Extracción de información adicional del partido: API que obtiene detalles 

complementarios de cada encuentro, incluyendo información del estadio, árbitro, 

directores técnicos y condiciones específicas del partido. 

4. Extracción de estadísticas detalladas: API que recupera métricas de 

rendimiento agrupadas en categorías: visión general del partido, pases, duelos, 

tiros, defensa y portería. Estas estadísticas se estructuran en formato JSON 

anidado que posteriormente requiere transformación. 

5. Extracción Completa: Integra las 4 funciones anteriores para realizar la 

extracción de cada uno de los partidos de una determinada temporada de una 

liga, tal como se aprecia en el algoritmo 1. 

4.2.3. Implementación de la Estrategia de Extracción 

La función principal extract_ingestion_All orquesta el proceso de extracción 

completo mediante un diseño de tres bucles anidados: 

Algoritmo 1 Extracción de Datos de Ligas y Temporadas 



59 
 

 
 

 

 

Se implementó un retardo de 2 segundos entre solicitudes consecutivas para evitar 

la activación de mecanismos de limitación de tasa del servidor y se ejecutó el pipeline cada 

2 temporadas. Esta decisión, aunque incrementa el tiempo total de extracción, resultó 

fundamental para mantener la estabilidad del proceso. 

4.2.4. Gestión de Restricciones del API  

El acceso a la API de Sofascore presentó varios desafíos técnicos que requirieron 

soluciones específicas: 

Limitación de tasa: Los servidores implementan restricciones que bloquean 

direcciones IP tras detectar patrones de solicitudes automatizadas. Para mitigar este 

problema, se incorporó la simulación de tráfico legítimo desde el navegador. 

Cambios en estructura de datos: La estructura JSON de las respuestas varía según 

la temporada y liga, particularmente para datos históricos. Se implementaron bloques 𝑡𝑟𝑦 −

𝑒𝑥𝑐𝑒𝑝𝑡 que capturan excepciones de indexación o claves faltantes, registrando 

advertencias sin interrumpir el proceso global. 

Datos incompletos: No todos los partidos cuentan con información completa, 

especialmente en competiciones menores o temporadas antiguas. La estrategia adoptada 
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consistió en almacenar valores nulos cuando los datos no están disponibles, permitiendo 

su posterior imputación en fases de transformación 

4.2.5. Almacenamiento en MongoDB 

Los datos extraídos se almacenaron en MongoDB, sistema de base de datos 

NoSQL orientado a documentos. La elección de MongoDB sobre bases de datos 

relacionales se fundamentó en: 

• Flexibilidad de esquema: Permite almacenar documentos JSON con estructura 

variable sin necesidad de definir esquemas rígidos previamente 

• Consultas eficientes: Soporta índices compuestos que aceleran búsquedas por 

múltiples campos simultáneamente. 

• Escalabilidad horizontal: Facilita la distribución de datos entre múltiples nodos si el 

volumen de información crece significativamente. Logrando así un aislamiento por 

país que permite realizar ingestas para nuevos países, esta capacidad permite 

realizar la re ingesta de datos de un solo país y no realizar el pipeline completo. 

Se crearon tres colecciones principales por liga: 

1. {𝑛𝑜𝑚𝑏𝑟𝑒_𝑙𝑖𝑔𝑎}_match: Información básica de partidos 

2. {𝑛𝑜𝑚𝑏𝑟𝑒_𝑙𝑖𝑔𝑎}_event: Detalles ampliados de encuentros 

3. {𝑛𝑜𝑚𝑏𝑟𝑒_𝑙𝑖𝑔𝑎}_statistics: Estadísticas de rendimiento 

Esta estructura de colecciones separadas, aunque introduce cierta redundancia, 

facilita la verificación de integridad de datos y permite la reconstrucción incremental en 

caso de fallos parciales del proceso de extracción. 

4.2.6. Evaluación de Calidad en Datos Deportivos 

La evaluación de calidad de los datos deportivos se realizó siguiendo los principios 

del DAMA-DMBOK (International, 2017) , adaptados al contexto de datos no estructurados 

y semiestructurados extraídos de APIs web. 

 Exactitud: La verificación de exactitud se realizó mediante muestreo aleatorio, 

comparando los datos extraídos con fuentes alternativas (Transfermarkt, BFREF, ESPN). 
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Se observó concordancia en resultados finales (goles anotados) y en estadísticas básicas 

(tiros, córneres, tarjetas). Las discrepancias identificadas se concentraron en métricas 

derivadas como precisión de pases, posesión de balón donde la definición puede variar 

entre proveedores. Las coordenadas de estadios presentaron una tasa de error, 

identificándose tres patrones principales: 

-Coordenadas nulas para estadios nuevos 

-Coordenadas invertidas (latitud/longitudes intercambiadas) 

-Coordenadas incorrectas que situaban estadios fuera de su ubicación real 

Completitud: El análisis de valores faltantes reveló patrones heterogéneos según 

la temporada y variable: 

-La completitud mejoró dramáticamente a partir de 2017 coincidiendo con la 

adopción de sistemas de tracking automático por parte de Sofascore. Los valores 

nulos en estadísticas básicas correspondieron exclusivamente a partidos de ligas 

menores o fases eliminatorias no cubiertas. 

Consistencia: Se identificaron inconsistencias en el formato de datos que 

requirieron normalización: 

-Variables porcentuales expresadas como texto ("67 %") en lugar de decimales 

-Métricas fraccionarias en formato mixto ("12/28 (43 %)") 

-Timestamps en múltiples zonas horarias que requirieron estandarización a UTC 

Unicidad: No se detectaron duplicados en partidos únicos. Sin embargo, la 

estructura de documentos anidados en MongoDB introducía redundancia intencional 

(información de equipos replicada en cada partido) que fue normalizada durante la 

transformación a modelo dimensional. 

Validez: Los valores numéricos se encontraron dentro de rangos esperados. Los 

casos atípicos identificados correspondieron a partidos con circunstancias excepcionales 

(expulsiones tempranas, condiciones climáticas extremas) que fueron preservados tras 

verificación manual. 
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4.3. Transformación de Datos Deportivos (Capa Plata) 

4.3.1. Esquena del Modelo Estrella del Data Warehouse 

La transformación de datos crudos almacenados en MongoDB hacia estructuras 

relacionales siguió un modelo dimensional tipo estrella, compuesto por tablas de 

dimensiones y una tabla de hechos como se muestra en la figura 7. Este diseño responde 

a la necesidad de mantener integridad referencial mientras se optimiza el rendimiento de 

consultas analíticas. 

4.3.1.1. Dimensiones 

Las dimensiones identificadas fueron: 

Dimensión Equipo: Almacena información estática de los equipos participantes, 

incluyendo identificador único, nombre oficial, código abreviado, país de origen, fecha de 

fundación y colores representativos. La verificación de existencia. 

Dimensión Personal Externo: Agrupa árbitros y directores técnicos bajo una 

estructura común que diferencia tipos mediante un campo categórico. Esta decisión de 

diseño reconoce las similitudes estructurales entre ambos roles desde una perspectiva de 

modelado de datos. 

Dimensión Estadio: Contiene información geográfica y de capacidad de los 

recintos deportivos. Incluye coordenadas geográficas que posteriormente permitirán la 

integración con datos meteorológicos. 

Dimensión Competición: Identifica las ligas y torneos, vinculándolos con el país 

organizador. 

Dimensión Tiempo: Registra información temporal del partido, incluyendo 

temporada, jornada, timestamp de inicio y tiempo añadido. 

4.3.2. Construcción de la Tabla de Hechos 

La tabla de hechos constituye el núcleo analítico del modelo, integrando claves 

foráneas a todas las dimensiones y métricas de rendimiento. Su construcción involucró tres 

procesos principales: 
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Extracción de valores anidados: Las estadísticas en MongoDB se almacenan en 

estructuras JSON anidadas donde cada métrica se identifica por una clave textual. Se 

implementó la función obtener_valor_por_clave que navega estos diccionarios anidados 

para extraer valores específicos tanto del equipo local como visitante. Esta función maneja 

gracefully la ausencia de claves, retornando None cuando una estadística no está 

disponible. 

Normalización de métricas: Algunas estadísticas presentan formatos heterogéneos 

que requieren transformación. Por ejemplo, los duelos aéreos se expresan como 

"ganados/totales (porcentaje %)", mientras que otros porcentajes aparecen solo como "67 

%". La estrategia de normalización se pospuso para la capa oro, almacenando en esta 

fase los valores tal como aparecen en la fuente. 

Gestión de referencias nulas: No todos los partidos cuentan con información 

completa de árbitros o estadios. El modelo permite valores nulos en claves foráneas no 

críticas, priorizando la preservación de datos disponibles sobre la integridad referencial 

estricta. 

 

Transformación 

Se realizo la corrección de los estadios quedando los puntos dentro de la cordillera 

de los Andes como se muestra en la figura 8. Por otra parte, la implementación de 

Figura 7 

Modelo Estrella 

Figura 7 

Modelo Estrella 
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validaciones automáticas detectó 23 registros con inconsistencias lógicas (por ejemplo, 

disparos al arco superiores a disparos totales), que fueron corregidos asignando el valor 

de disparos totales a disparos al arco. 

Validación y Exportación 

Antes de exportar los datos a CSV, se realizaron validaciones de integridad, 

incluyendo verificación de unicidad de identificadores, conteo de valores nulos, validación 

de rangos en métricas numéricas y comprobación de claves foráneas. Los datos validados 

se exportaron a archivos CSV individuales por tabla, formato que facilita la inspección 

manual y la carga en herramientas de análisis. Esta decisión de diseño, aunque incrementa 

el número de archivos, mejora la trazabilidad y permite la recarga selectiva de tablas 

específicas sin afectar el conjunto completo. 

Figura 8 

Estadios en Colombia, Chile, Ecuador y Perú 
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4.4. Preparación Final de Datos Deportivos (Capa Oro) 

4.4.1. Integración de Dimensiones 

La preparación final inició con la integración de las tablas de dimensiones con la 

tabla de hechos mediante operaciones de combinación secuenciales. Este proceso 

enriqueció el dataset con información contextual necesaria para el análisis 

Se cruza los registros para garantizar que solo se mantengan registros con 

información completa en todas las dimensiones relevantes. 

4.4.2. Transformación de Formatos Heterogéneos 

El análisis exploratorio reveló que múltiples columnas contenían valores en 

formatos no numéricos que impedían su uso directo en modelos predictivos. Se 

identificaron dos patrones principales: 

Formato fracción con porcentaje: Variables como duelos aéreos se expresaban 

como "12/28 (43 %)", conteniendo simultáneamente valores absolutos y proporción. La 

transformación aplicada extrajo numerador y denominador mediante expresiones 

regulares, calculó la proporción manualmente y descartó los valores absolutos para evitar 

multicolinealidad. 

Formato porcentaje simple: Variables como posesión del balón aparecían como "67 

%". La transformación consistió en remover el símbolo porcentual y convertir a 

representación decimal. 

Este proceso se aplicó sistemáticamente a variables de duelos aéreos, duelos 

ganados, balones largos, posesión, centros acertados y regates acertados, tanto para 

equipos locales como visitantes. 

4.4.3. Estrategia de Imputación Jerárquica 

La presencia de valores nulos en estadísticas numéricas requirió el diseño de una 

estrategia de imputación que respetara la estructura jerárquica de los datos deportivos. 

El método implementado opera en tres niveles de especificidad decreciente: 

• Nivel 1 - Distribución por equipo: Para cada valor faltante, el algoritmo 

primero intenta construir una distribución empírica basada en los partidos históricos del 
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equipo específico (local o visitante según corresponda). Si esta distribución contiene al 

menos 5 observaciones válidas, se realiza un muestreo aleatorio de ella para imputar el 

valor faltante. Este enfoque preserva las características particulares de rendimiento de 

cada equipo. 

• Nivel 2 - Distribución por competición: Si el equipo carece de suficientes 

observaciones históricas, el algoritmo recurre a la distribución de la métrica en la 

competición completa. Esto es particularmente útil para equipos recién ascendidos o con 

datos históricos limitados. 

• Nivel 3 – Distribución global: Como último recurso se utiliza la distribución 

observada en el dataset completo, independientemente de equipo o competición. 

La implementación pre calcula las distribuciones antes de iniciar la imputación para 

mejorar la eficiencia computacional: Esta estrategia reconoce que las características de 

juego varían entre equipos y competiciones, evitando la homogenización artificial que 

produciría una imputación global directa. Un ejemplo es que la liga de Ecuador no posee 

las mismas distribuciones estadísticas que la liga peruana en una temporada determinada. 

4.4.4. Corrección de Datos Geográficos 

 La validación de las coordenadas de estadios reveló inconsistencias 

significativas que requerían corrección manual. Los problemas identificados incluyeron: 

• Coordenadas invertidas: Algunos estadios presentaban latitud y longitud 

intercambiadas 

• Coordenadas nulas: Estadios nuevos o menos conocidos carecían 

completamente de información geográfica 

• Coordenadas erróneas: Ubicaciones que situaban estadios en océanos o 

países  incorrectos 

La corrección se realizó mediante verificación manual en Google Maps y posterior 

actualización directa en el DataFrame: 
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Este proceso, aunque laborioso, resultó fundamental para la posterior integración 

con datos meteorológicos, que dependen críticamente de coordenadas geográficas 

precisas. Los puntos de los estadios se encuentran situados sobre los países a estudiar 

que a su vez se encuentra sobre la Codillera de los Andes como se mostró en la figura 8. 

4.4.5. Ingeniería de Características 

La transformación de variables estadísticas brutas en características predictivas 

significativas constituyó una fase crucial del preprocesamiento. Se identificaron relaciones 

funcionales entre variables que, al ser explicitadas, podrían mejorar la capacidad predictiva 

del modelo. Por ejemplo, se calculó la proporción de pases acertados dividiendo los pases 

completados exitosamente entre el total de pases intentados, aplicando un término de 

suavizado pequeño en el denominador para evitar divisiones por cero. Esta misma lógica 

se extendió a otras métricas como los disparos al arco, donde se calcularon proporciones 

específicas para disparos dentro del área, fuera del área, bloqueados y dirigidos al marco. 

Un aspecto relevante surgió durante el análisis de estas proporciones calculadas: algunas 

excedían el valor unitario, lo cual resulta matemáticamente inconsistente para una 

proporción genuina. Esta anomalía sugiere posibles errores en los datos fuente o 

diferencias en los criterios de conteo entre variables relacionadas. Para mantener la 

coherencia del modelo, se aplicó una función de recorte que limitó estos valores al rango 

válido entre cero y uno, documentando la frecuencia de estas correcciones para cada 

variable. La caracterización del estilo arbitral representó otra dimensión importante de la 

ingeniería de características. Se construyeron variables agregadas que capturan la 

severidad y el patrón de intervención de cada árbitro. La variable "tarjetas por falta 

cuantifica la propensión del árbitro a sancionar disciplinariamente, mientras que "total de 

interrupciones “suma todas las detenciones del juego, incluyendo faltas, tiros libres y 

saques de banda. Estas métricas permiten al modelo capturar indirectamente el ritmo e 

intensidad del partido, aspectos que pueden influir en el resultado final. 

La construcción de variables derivadas se fundamentó en el conocimiento del 

dominio futbolístico y la estructura de correlación observada en los datos: 
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4.4.5.1. Pases  

Estas características son fundamentales para modelar el ritmo de juego de los 

equipos en el partido. Los pases representan estrategias de juego como también la 

asociación de los equipos. 

• Porcentaje de pases acertados: El porcentaje de pases acertados mide la 

precisión de los pases realizados por un equipo en relación con el total de pases 

intentados. Este indicador es crucial para evaluar la calidad del juego en equipo 

y la capacidad de los jugadores para mantener la posesión del balón y avanzar 

en el campo. Un alto porcentaje de pases acertados generalmente refleja un 

equipo bien organizado y con buena coordinación, mientras que un bajo 

porcentaje puede indicar problemas en la comunicación, la precisión o el ritmo 

del juego, a entender cómo un equipo gestiona la posesión del balón, su 

capacidad para organizar jugadas y su efectividad en la creación de 

oportunidades. 

𝑝𝑜𝑟𝑐_𝑝𝑎𝑠𝑒𝑠_𝑎𝑐𝑒𝑟𝑡𝑎𝑑𝑜𝑠_𝑒𝑞𝑢𝑖𝑝𝑜 =
𝑝𝑎𝑠𝑒𝑠_𝑎𝑐𝑒𝑟𝑡𝑎𝑑𝑜𝑠_𝑒𝑞𝑢𝑖𝑝𝑜

𝑝𝑎𝑠𝑒𝑠_𝑡𝑜𝑡𝑎𝑙𝑒𝑠_𝑒𝑞𝑢𝑖𝑝𝑜 +  𝜖
 

4.4.5.2. Disparos  

Estas características son fundamentales para modelar la efectividad ofensiva de 

los equipos en el partido. Los disparos representan oportunidades para marcar goles, y las 

redes neuronales recurrentes son muy buenas para capturar patrones temporales y 

secuenciales en estos eventos. Al incluir estas características, el modelo puede aprender 

cómo el rendimiento ofensivo de un equipo medido a través de la cantidad y calidad de los 

disparos, evoluciona a lo largo del tiempo y cómo está relacionado con el rendimiento 

general del equipo en el partido, identifique cuándo un equipo tiene un rendimiento ofensivo 

fuerte o débil, y cómo las tácticas ofensivas de ambos equipos y sus defensas pueden 

influir en el resultado del partido. 

• Porcentaje de disparos al arco: El porcentaje de disparos al arco refleja la 

efectividad de un equipo al realizar disparos dirigidos al área del portero 
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contrario. Un valor alto indica que el equipo está disparando con precisión hacia 

el arco, lo que generalmente es un indicador positivo de su capacidad ofensiva. 

Esta característica es útil para modelar el rendimiento ofensivo de los equipos, 

ya que los disparos al arco son uno de los eventos más importantes para generar 

oportunidades de gol. La RNN puede aprender patrones sobre cómo los disparos 

al arco afectan la probabilidad de anotar, y cómo el estilo de juego de un equipo 

se ve reflejado en su habilidad para generar oportunidades claras. 

𝑝𝑜𝑟𝑐_𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑎𝑟𝑐𝑜_𝑒𝑞𝑢𝑖𝑝𝑜 =
𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑎𝑟𝑐𝑜_𝑒𝑞𝑢𝑖𝑝𝑜

𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑒𝑞𝑢𝑖𝑝𝑜 +  𝜖
 

• Porcentaje de disparos dentro del área: El porcentaje de disparos dentro del área 

es crucial, ya que los disparos desde el área suelen ser más efectivos debido a 

la mayor proximidad al arco. Un alto porcentaje de disparos dentro del área 

indica que el equipo está realizando jugadas más directas y está generando 

oportunidades más claras de gol. Esta característica ayuda a la RNN a identificar 

cómo las tácticas ofensivas de un equipo afectan la calidad de sus disparos y su 

capacidad para crear oportunidades de gol desde zonas más peligrosas. 

𝑝𝑜𝑟𝑐_𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑎𝑟𝑒𝑎_𝑒𝑞𝑢𝑖𝑝𝑜 =
𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑎𝑟𝑒𝑎_𝑒𝑞𝑢𝑖𝑝𝑜

𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑒𝑞𝑢𝑖𝑝𝑜 +  𝜖
 

• Porcentaje de disparos fuera del área: El porcentaje de disparos fuera del área 

mide la tendencia de un equipo a realizar disparos desde larga distancia, los 

cuales, aunque pueden ser espectaculares, generalmente tienen menos 

probabilidad de ser efectivos. Esta variable ayuda a la RNN a modelar el 

comportamiento ofensivo del equipo, especialmente cuando se enfrentan a 

defensas sólidas o cuando no pueden penetrar en el área contraria. La RNN 

puede aprender si un equipo tiene éxito o no con disparos de larga distancia y 

cómo eso afecta sus posibilidades de ganar el partido. 

𝑝𝑜𝑟𝑐_𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑓𝑢𝑒𝑟𝑎_𝑎𝑟𝑒𝑎_𝑒𝑞𝑢𝑖𝑝𝑜 =
𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑓𝑢𝑒𝑟𝑎_𝑎𝑟𝑒𝑎_𝑒𝑞𝑢𝑖𝑝𝑜

𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑒𝑞𝑢𝑖𝑝𝑜 +  𝜖
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• Porcentaje de disparos bloqueados: El porcentaje de disparos bloqueados refleja 

cuántos de los disparos realizados por el equipo fueron interceptados o 

bloqueados por los defensores del equipo contrario. Un alto porcentaje de 

disparos bloqueados puede indicar que el equipo está teniendo dificultades para 

superar la defensa contraria, lo que limita su capacidad para crear oportunidades 

de gol. Esta característica permite que la RNN aprenda cómo la defensa 

adversaria afecta la capacidad de disparo del equipo y cómo esto influye en el 

resultado del partido. 

𝑝𝑜𝑟𝑐_𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑏𝑙𝑜𝑞𝑢𝑒𝑎𝑑𝑜𝑠_𝑒𝑞𝑢𝑖𝑝𝑜 =  
𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑏𝑙𝑜𝑞𝑢𝑒𝑎𝑑𝑜𝑠_𝑒𝑞𝑢𝑖𝑝𝑜

 𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑝𝑎𝑟𝑜𝑠_𝑒𝑞𝑢𝑖𝑝𝑜 +  𝜖
 

4.4.5.3. Arbitro 

Para estas nuevas características no se realiza el cálculo para local y visita ya que 

representan características globales que surgieron del juego y no corresponde a ningún 

equipo, pero es producto del enfrentamiento. Las características creadas por el árbitro 

reflejan decisiones clave durante el partido que afectan el ritmo, la dinámica y la estrategia 

del juego. Las faltas, tarjetas, saques y tiros libres son eventos que modifican 

constantemente el flujo del partido, y comprender su influencia es esencial para la 

predicción de los resultados. La RNN puede aprender cómo estos eventos influyen en la 

secuencia temporal del partido, ayudando a modelar patrones complejos relacionados con 

las sanciones y las interrupciones. En conjunto, estas características permiten a la RNN 

captar la influencia del árbitro en la dinámica global del juego, proporcionando una mejor 

comprensión de cómo los factores relacionados con las sanciones y las interrupciones 

afectan el comportamiento de los equipos y, en última instancia, el resultado del partido. 

• Total de tarjetas: El total de tarjetas es una métrica combinada que da una visión 

completa de las sanciones aplicadas a los jugadores durante el partido. Tanto 

las tarjetas rojas como las amarillas afectan al desarrollo del juego, ya que las 

amonestaciones y expulsiones pueden influir en la moral de los jugadores y en 

la estrategia del equipo. Esta variable es importante para que la RNN aprenda 
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cómo las sanciones afectan la dinámica del juego a lo largo del tiempo y cómo 

estas interacciones pueden influir en la predicción del resultado del partido. 

𝑡𝑜𝑡𝑎𝑙_𝑡𝑎𝑟𝑗𝑒𝑡𝑎𝑠 =  𝑡𝑜𝑡𝑎𝑙_𝑡𝑎𝑟𝑗𝑒𝑡𝑎𝑠_𝑟𝑜𝑗𝑎𝑠 +  𝑡𝑜𝑡𝑎𝑙_𝑡𝑎𝑟𝑗𝑒𝑡𝑎𝑠_𝑎𝑚𝑎𝑟𝑖𝑙𝑙𝑎𝑠 

• Tarjetas por falta: Esta característica mide la relación entre el número de tarjetas 

tanto rojas como amarillas y el número total de faltas cometidas. Un alto valor de 

𝑡𝑎𝑟𝑗𝑒𝑡𝑎𝑠 𝑝𝑜𝑟 𝑓𝑎𝑙𝑡𝑎 sugiere que el árbitro está sancionando agresivamente las 

faltas, mientras que un valor bajo puede indicar un arbitraje más permisivo. Esta 

métrica es importante para comprender la tendencia del árbitro en cuanto a las 

sanciones por faltas, lo cual puede influir en el ritmo del juego y en las decisiones 

tácticas de los equipos. Ayuda a la RNN a identificar cómo las decisiones del 

árbitro afectan la dinámica general del juego. 

𝑡𝑎𝑟𝑗𝑒𝑡𝑎𝑠_𝑝𝑜𝑟_𝑓𝑎𝑙𝑡𝑎 =
 𝑡𝑜𝑡𝑎𝑙_𝑡𝑎𝑟𝑗𝑒𝑡𝑎𝑠

𝑡𝑜𝑡𝑎𝑙_𝑓𝑎𝑙𝑡𝑎𝑠 +  𝜖
  

• Total de interrupciones: El total de interrupciones es una métrica que agrega 

faltas, tiros libres y saques de banda, lo que da una idea general del número de 

veces que el flujo del juego se ve interrumpido. Un alto número de interrupciones 

puede ser un indicador de un juego más fragmentado y de mayor tensión, lo que 

puede afectar la fluidez del partido. Esta característica ayuda a la RNN a 

identificar cómo los cambios frecuentes en el flujo del juego pueden afectar la 

dinámica y el resultado del partido. 

𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑐𝑖𝑜𝑛𝑒𝑠 

=  𝑡𝑜𝑡𝑎𝑙_𝑓𝑎𝑙𝑡𝑎𝑠 +  𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑟𝑜𝑠_𝑙𝑖𝑏𝑟𝑒𝑠 +  𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑞𝑢𝑒𝑠_𝑏𝑎𝑛𝑑𝑎 

 Donde 𝜀 =  10−5 una constante pequeña añadida para evitar la división por cero 

y equipo representa “local” y "visita", según corresponda. 

 A través de estos pasos, los datos fueron finalmente preparados y estructurados 

para ser alimentados en los modelos de aprendizaje supervisado 
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4.5. Extracción de Datos Meteorológicos (Capa Bronce) 

4.5.1. Selección de Fuente de Datos Ambientales 

Para la integración de variables climáticas se seleccionó la plataforma NASA 

POWER (Prediction Of Worldwide Energy Resources), que proporciona datos 

meteorológicos globales derivados de observaciones satelitales. Esta elección se 

fundamentó en tres ventajas principales sobre estaciones meteorológicas terrestres: 

1. Cobertura espacial completa: Los satélites proporcionan datos en cualquier 

coordenada geográfica, eliminando el problema de estadios ubicados lejos de 

estaciones meteorológicas 

2. Consistencia temporal: Los datos satelitales están disponibles desde 1981 con 

metodología consistente, mientras que estaciones terrestres presentan períodos de 

operación variables 

3. Acceso programático: La API REST de NASA POWER permite la extracción 

 automatizada sin restricciones severas de tasa de solicitud 

La principal limitación de esta fuente radica en la resolución espacial de 

aproximadamente 0.5° × 0.5° (aproximadamente 50 km en el ecuador), que puede 

introducir imprecisiones en áreas con microclimas marcados 

4.5.2. Diseño del Sistema de Extracción Paralela 

La extracción de datos meteorológicos presenta un desafío computacional 

significativo debido al volumen de solicitudes requeridas. Para cada partido, se necesita 

consultar múltiples horas de datos meteorológicos, lo que para un dataset de varios miles 

de partidos puede resultar en decenas de miles de llamadas al API. 

Para abordar este desafío, se diseñó un sistema de extracción basado en 

concurrencia mediante 𝑇ℎ𝑟𝑒𝑎𝑑𝑃𝑜𝑜𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟 de Python. La arquitectura se estructura en 

tres componentes principales: 

Clase contenedora: Encapsula toda la lógica de extracción y manejo de errores. Se 

inicializa con la lista de variables meteorológicas deseadas, número máximo de 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 

paralelos y límite de reintentos por solicitud. Motor de solicitudes con reintentos: 
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Implementa una estrategia de 𝑏𝑎𝑐𝑘𝑜𝑓𝑓 exponencial para manejar fallos transitorios de red. 

Si una solicitud falla, el sistema espera 2 x n segundos antes de reintentar, donde n es el 

número de intento. Esta estrategia reduce la probabilidad de exceder límites de tasa del 

servidor el algoritmo utilizado es el 2. 

 

Sistema de procesamiento paralelo: Utiliza 𝑇ℎ𝑟𝑒𝑎𝑑𝑃𝑜𝑜𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟 para procesar múltiples 

registros simultáneamente, manteniendo un pool de 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 que procesan solicitudes de 

manera concurrente. La implementación incluye una barra de progreso que proporciona 

retroalimentación visual del avance, el procesamiento implementado se muestra en el 

algoritmo 3. 
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4.5.3. Estrategias de Agregación Temporal 

La API de NASA POWER proporciona datos horarios, mientras que los partidos de 

fútbol tienen duración aproximada de 2 horas. Se implementaron dos modos de agregación 

temporal para capturar las condiciones meteorológicas relevantes: 

Modo de 3 horas (𝑚𝑜𝑑𝑒 = ’3ℎ’): Calcula el promedio de 3 horas consecutivas antes 

de la hora de inicio del partido. Este enfoque proporciona una representación más precisa 

de las condiciones durante el encuentro, particularmente relevante para variables como 

velocidad del viento que pueden cambiar significativamente en períodos cortos. 

4.5.4. Evaluación de Calidad en Datos Meteorológicos 

Después de la ejecución del algoritmo de ingesta paralela se analiza estas series 

temporales al igual que se realizó con los datos estadísticos de futbol para analizar la 

calidad de datos obtenidos, siguiendo los principios del DAMA-DMBOK (International, 

2017), adaptados al contexto de datos de series temporales extraídos de APIs web. 
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Exactitud: La validación de datos meteorológicos presentó desafíos únicos debido 

a la ausencia de verdad fundamental absoluta. Se implementó una estrategia de validación 

cruzada comparando los datos satelitales de NASA POWER con: 

• Estaciones meteorológicas cercanas. 

• Rangos históricos esperados para cada ubicación geográfica. 

• Coherencia física entre variables relacionadas (temperatura-humedad, 

precipitación-nubosidad). 

• Las series temporales muestran correlaciones. 

Completitud: Se cuenta con la data completa, la API de NASA POWER utiliza el 

valor -999 para indicar datos faltantes o inválidos. El sistema de extracción filtra estos 

valores automáticamente antes de calcular promedios, evitando que contaminen las 

estadísticas agregadas. 

Consistencia: Se implementaron las siguientes validaciones de coherencia física. 

Precipitación no nula implica nubosidad, radiación solar inversamente proporcional a 

nubosidad y humedad relativa entre 0-100 %. Los casos inconsistentes fueron tratados 

mediante imputación basada en patrones temporales como interpolación de horas 

adyacentes. 

Temporalidad: Un desafío particular fue la sincronización horaria. Los datos 

deportivos utilizan hora local del estadio, NASA POWER emplea UTC que es igual al 

mismo formato horario los partidos. Se considerando zona horaria del país y diferencias 

entre hora programada y hora real de inicio. 

4.6. Transformación de Datos Meteorológicos (Capa Plata) 

4.6.1. Variables Meteorológicas Seleccionadas 

Se seleccionaron siete variables meteorológicas en base a su relevancia 

documentada en la literatura deportiva y su disponibilidad en la plataforma NASA POWER: 

• Temperatura a 2 metros: Afecta el rendimiento físico de los jugadores y la dinámica 

del balón 
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• Humedad relativa a 2 metros: Influye en la sensación térmica y la fatiga 

• Velocidad del viento a 2 metros: Impacta la trayectoria del balón, especialmente en 

pases largos y tiros 

• Dirección del viento: Permite identificar ventajas direccionales 

• Cobertura nubosa: Afecta la visibilidad y condiciones de juego 

• Precipitación corregida: Determina si el campo está húmedo o seco 

• Radiación solar descendente: Relacionada con temperatura percibida y visibilidad 

 

4.6.2. Gestión de Errores y Trazabilidad 

 El sistema implementa múltiples niveles de manejo de errores para 

garantizar robustez ante fallos parciales: 

1. Validación de coordenadas: Verifica que las coordenadas geográficas sean vá

 lidas antes de intentar la extracción 

2. Manejo de timeouts: Cada solicitud tiene un timeout de 30 segundos para 

 evitar bloqueos indefinidos 

3. Registro de fallos: Los errores se registran con nivel de detalle suficiente para 

 diagnóstico posterior 

4. Campo de éxito: Cada registro resultante incluye un campo 𝑎𝑝𝑖_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 que 

 indica si la extracción fue exitosa 

Al finalizar el proceso, se genera una columna 𝑎𝑝𝑖_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 estadística que indica 

la tasa de éxito global. Este diseño permite identificar patrones sistemáticos de fallo, por 

ejemplo, ciertos rangos de coordenadas o períodos temporales, que puedan requerir 

atención especial. 

4.6.3. Limpieza y Normalización 

El proceso de preparación de datos meteorológicos inició con la eliminación de la 

columna 𝑎𝑝𝑖_𝑠𝑢𝑐𝑐𝑒𝑠𝑠, utilizada únicamente para control de calidad durante la extracción. 
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Posteriormente, se reconstruyó un índice temporal unificado combinando las columnas 

fecha y hora. 

Esta transformación facilita la sincronización temporal con los datos deportivos y 

permite análisis de series temporales si se requieren. 

La renombrado de columnas se realizó siguiendo convenciones descriptivas en 

español para mantener consistencia con el dataset deportivo. 

4.7. Preparación Final de Datos Meteorológicos (Capa Oro) 

4.7.1. Ingeniería de Características Meteorológicas 

Estas nuevas características es incorporar datos ambientales que puedan tener un 

impacto significativo en el juego de fútbol. Las redes neuronales recurrentes son 

especialmente adecuadas para este tipo de tareas, ya que permiten modelar secuencias 

temporales y patrones dependientes del tiempo. En este caso, las características 

ambientales como el viento, la lluvia y las condiciones climáticas adversas pueden afectar 

la dinámica del partido de manera no lineal y de forma continua a lo largo del tiempo. 

Componente x del viento: El viento tiene una dirección y una velocidad. Para 

entender mejor su efecto en el juego de fútbol, es útil descomponer la velocidad del viento 

en sus componentes en los ejes x y y La componente x (u horizontal) es crucial para 

entender cómo el viento afecta a los movimientos horizontales del balón (como en los tiros 

o el pase). Esta característica ayudará a la red neuronal recurrente a captar los patrones 

temporales relacionados con la influencia del viento en el desplazamiento del balón durante 

el partido. 

𝑣𝑖𝑒𝑛𝑡𝑜𝑥 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑_𝑣𝑖𝑒𝑛𝑡𝑜 . cos(dirección_viento) 

 

Componente y del viento: La componente y del viento representa la dirección 

vertical del viento. Al igual que la componente x esto se descompone para estudiar cómo 

el viento afecta los movimientos verticales del balón, como cuando el viento puede hacer 

que el balón se desplace en el aire de arriba hacia abajo. Al incorporar esta característica, 
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podemos modelar la relación entre la dirección del viento y los patrones de juego, lo cual 

es crucial para predicciones precisas en condiciones adversas. 

𝑣𝑖𝑒𝑛𝑡𝑜𝑦 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑_𝑣𝑖𝑒𝑛𝑡𝑜 . sin(dirección_viento) 

Lluvia (1 si hay lluvia, 0 si no): La lluvia tiene un impacto directo en el terreno de 

juego, haciendo que el balón se desplace de manera diferente y afectando la capacidad 

de los jugadores para controlar el balón. Esta característica es binaria (1 si hay lluvia, 0 si 

no) y ayuda a la RNN a reconocer patrones de juego en condiciones de lluvia, lo que puede 

afectar el rendimiento de ambos equipos, especialmente en cuanto a precisión y control 

del balón. 

 𝑙𝑙𝑢𝑣𝑖𝑎 = {
1, 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑐𝑖𝑜𝑛 > 𝑈𝑀𝐵𝑅𝐴𝐿_𝐿𝐿𝑈𝑉𝐼𝐴
0, 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑐𝑖𝑜𝑛 ≤  0

 

Clima adverso (1 si se cumple alguna condición adversa, 0 si no): El clima adverso 

se define como una combinación de condiciones que pueden afectar el desarrollo del 

partido, como lluvia, viento fuerte o temperaturas extremas. Esta variable binaria captura 

la presencia de condiciones climáticas adversas. La RNN puede aprender cómo estos 

factores combinados influyen en el rendimiento y la estrategia de los equipos. Por ejemplo, 

el viento fuerte o la lluvia pueden hacer que el juego sea más impredecible, afectando tanto 

el control del balón como la toma de decisiones de los jugadores. 

Viento severo (cuadrado de la velocidad del viento): El viento severo es un indicador 

del impacto potencial del viento en el juego. Cuanto mayor sea la velocidad del viento, más 

difícil será controlar el balón y predecir su trayectoria. Al usar el cuadrado de la velocidad 

del viento, esta característica amplifica el efecto de vientos fuertes, lo que puede ser crucial 

para la RNN al modelar situaciones de viento extremo, donde la influencia es mucho más 

significativa. Esto también ayuda a identificar patrones de juego donde los equipos tienen 

que adaptarse a un viento más fuerte, como en el caso de disparos o pases largos. 

𝑣𝑖𝑒𝑛𝑡𝑜_𝑠𝑒𝑣𝑒𝑟𝑜 =  𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑_𝑣𝑖𝑒𝑛𝑡𝑜2 
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Esta transformación amplifica la diferencia entre condiciones ventosas moderadas 

y severas, reflejando que el impacto del viento sobre la trayectoria del balón escala 

aproximadamente con el cuadrado de la velocidad según principios aerodinámicos. 

4.7.2. Tratamiento de Valores Atípicos 

El análisis exploratorio mediante gráficos de caja reveló la presencia de valores 

extremos en varias variables meteorológicas. Para mantener la distribución natural de los 

datos mientras se limitan observaciones potencialmente erróneas, se implementó un 

clipping basado en el rango intercuartílico. 

Este método, basado en el criterio de Tukey, preserva los datos bajo distribución 

normal mientras restringe valores extremos que podrían representar errores de medición 

o condiciones excepcionales no representativas. 

La decisión de utilizar clipping en lugar de eliminación de outliers se fundamentó en 

dos consideraciones: 

• Preservación del tamaño muestral: La eliminación de registros completos por 

outliers en una sola variable reduciría significativamente el dataset 

• Naturaleza de datos satelitales: Los valores extremos pueden representar 

fenómenos meteorológicos reales como tormentas u olas de calor, son raros pero 

relevantes para el análisis. 

4.7.3. Integración Datos Deportivos con Datos Ambientales 

La incorporación de datos meteorológicos requirió un flujo de procesamiento 

independiente pero complementario. Complementario por que se requiere la finalización 

del procesamiento de los datos de futbol mediante la transformación, ya se imputan datos 

faltantes de manera jerárquica como se aprecia en el algoritmo 5 para poder cruzar la 

información y sea consistente. Los datos ambientales se obtuvieron mediante consultas a 

servicios de información climática histórica, sincronizados temporalmente con cada partido 

en ventanas de tres horas alrededor del horario de inicio. Esta sincronización temporal 

precisa resultó crítica para garantizar que las condiciones registradas correspondieran 

efectivamente a las experimentadas durante el evento deportivo. Las variables climáticas 
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crudas incluían temperatura, humedad relativa, velocidad del viento, dirección del viento, 

nubosidad, precipitación y radiación solar. Sin embargo, estas mediciones directas no 

necesariamente capturan los efectos físicos relevantes para el rendimiento deportivo. 

La fusión de los datos meteorológicos y deportivos se realizó mediante combinación 

por identificador de partido, garantizando la correspondencia temporal exacta. 

Se cruzan los datos para asegurar que solo se mantengan partidos con información 

meteorológica completa. 

El dataset integrado resultante contiene los siguientes features: 

• Variables identificadoras: 𝑖𝑑_𝑝𝑎𝑟𝑡𝑖𝑑𝑜, 𝑖𝑑_𝑒𝑠𝑡𝑎𝑑𝑖𝑜, 𝑖𝑑_𝑎𝑟𝑏𝑖𝑡𝑟𝑜, 𝑖𝑑_𝑡𝑒𝑎𝑚_𝑙𝑜𝑐𝑎𝑙, 

𝑖𝑑_𝑡𝑒𝑎𝑚_𝑣𝑖𝑠𝑖𝑡𝑎. 

• Estadísticas deportivas: 28 variables que describen el rendimiento de los 

equipos. 

• Variables meteorológicas: 16 variables que capturan las condiciones 

ambientales. 

• Variables derivadas: Diferencias de rendimiento e indicadores categóricos. 

El análisis se estructura en tres segmentos principales: en el ámbito del Equipo, se 

evalúan métricas de rendimiento como despejes, tiros de esquina, atajadas y disparos 

fuera del arco, junto con los porcentajes de balones largos, centros, regates, pases, 

disparos al arco, disparos en el área, fuera de ella y bloqueados. Respecto al Árbitro, se 

consideran las tarjetas por falta y el total de interrupciones, mientras que en la dimensión 

del Ambiente se analiza la diferencia en duelos aéreos, temperatura, porcentaje de 

humedad, dirección de viento, porcentaje de nubosidad, radiación, viento de sur a norte, 

viento de oeste a este y viento severo. 

4.7.4. Validación Final de Calidad 

Previo a la exportación del dataset integrado, se ejecutó una batería de 

verificaciones de calidad: 
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• Verificación de completitud: Se confirmó la completitud de variables críticas para el 

modelo, aceptando nulos únicamente en campos opcionales. 

• Validación de rangos: Se verificaron rangos esperados para variables numéricas: 

o Temperatura entre -10°C y 45°C 

o Humedad relativa entre 0 % y 100 % 

o Velocidad del viento entre 0 y 30 m/s 

o Precipitación entre 0 y 50 mm/hora 

• Consistencia temporal: Se validó que todos los registros tuvieran timestamps 

válidos dentro del período de estudio (2017-2025). 

• Integridad referencial: Se confirmó que todos los identificadores de equipos, 

estadios y competiciones existieran en sus respectivas tablas dimensionales. 

 El dataset final se exportó en formato CSV con codificación UTF-8, 

preservando caracteres especiales en nombres de equipos y estadios 

Este archivo constituye el punto de entrada para las fases posteriores de modelado 

predictivo, conteniendo 9294 registros de partidos con 44 variables explicativas y una 

variable objetivo que es el resultado del partido. 
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CAPITULO V 

Pruebas y resultados 

En este capítulo, nos centramos en las pruebas y resultados, cuyo conjunto de 

entradas está compuesto por estadísticas del partido de fútbol, así como datos 

relacionados con el equipo local, el equipo visitante y las condiciones generales del partido, 

como la caracterización del árbitro, los cuales fueron definidos en el capítulo de ingeniería 

de características. 

Por otro lado, se incluye el modelo 𝐸𝑛𝑐ℎ𝑎𝑛𝑡𝑟𝑒𝑠𝑠 elaborado en el experimento 

denominado "𝐹 − 𝐴1", que utiliza las mismas entradas que el modelo base denominado 

"𝐹 − 1", pero con la adición de características ambientales. Los experimentos presentados 

en este capítulo abarcan diferentes variaciones en la arquitectura de los modelos. Cada 

uno de estos experimentos se lleva a cabo tanto para el modelo base como para el modelo 

𝐸𝑛𝑐ℎ𝑎𝑛𝑡𝑟𝑒𝑠𝑠, con el fin de evaluar su desempeño y comparar los resultados obtenidos.  

Además, los experimentos incluyen datos provenientes de diversos países, tales 

como Colombia, Ecuador, Chile y Perú, lo que permite analizar el comportamiento del 

modelo en contextos nacionales específicos. Parte de este análisis se enfoca en examinar 

cómo varían las métricas de desempeño entre los diferentes países, lo que proporciona 

una visión más detallada sobre la influencia de las características contextuales en los 

resultados de las predicciones. 

5.1. Preparación para pruebas 

5.1.1. División de Dataset   

El flujo general de los modelos de aprendizaje supervisado se inicia con un proceso 

fundamental: la división de los datos en tres subconjuntos, requirió una estructuración 

cuidadosa para evitar fugas de información del futuro hacia el pasado, destinados al 

entrenamiento, validación y prueba del modelo. En primer lugar, se lleva a cabo una 

división de los datos de acuerdo con una proporción estándar de 75 % para entrenamiento, 

10 % para validación y 15 % para prueba. Este enfoque de partición asegura que el modelo 
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sea entrenado sobre un conjunto de datos suficientemente grande, al tiempo que se 

conserva una porción representativa de los datos para validación y evaluación. 

En este proceso, se ha dado especial atención a la temporalidad de los partidos. 

En lugar de realizar una partición arbitraria de los datos, se ha respetado el orden temporal 

de los partidos, de manera que el conjunto de entrenamiento incluye los partidos más 

antiguos, mientras que los conjuntos de validación y prueba contienen los partidos más 

recientes. Este enfoque garantiza que el modelo sea evaluado en datos futuros a partir de 

los datos históricos, un aspecto crucial para problemas de predicción de eventos 

deportivos, donde la naturaleza secuencial de los datos no debe ser ignorada. 

5.1.2. Normalización 

A continuación, se realiza el proceso de normalización de los datos, que se lleva a 

cabo de acuerdo con el tipo de columna y su distribución específica. La normalización es 

esencial para garantizar que las variables con diferentes escalas no dominen el proceso 

de entrenamiento del modelo, ya que muchas técnicas de aprendizaje automático, como 

los algoritmos basados en distancias o redes neuronales, son sensibles a la magnitud de 

las características. Este proceso se realiza para cada tipo de dato, asegurando que los 

valores sean ajustados de manera que todas las características tengan una distribución 

similar, lo que facilita la convergencia del modelo durante el entrenamiento. 

La normalización de las características numéricas se realizó exclusivamente 

basándose en las estadísticas del conjunto de entrenamiento. Se aplicó estandarización 

robusta a la mayoría de las variables para soportar valores atípicos. Las variables que 

representan proporciones naturales recibieron un tratamiento diferente mediante 

escalamiento 𝑚𝑖𝑛 − 𝑚𝑎𝑥, que preserva su interpretación como valores entre cero y uno. 

Los escaladores ajustados en el entrenamiento se aplicaron posteriormente de manera 

idéntica a los conjuntos de validación y prueba, manteniendo la consistencia en la 

representación de las características. 
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5.1.3. Arquitectura de series temporales  

Además, se lleva a cabo la construcción de la ventana de temporalidad, que se 

calcula específicamente por grupo. La transformación del dataset tabular en secuencias 

temporales adecuadas para redes neuronales recurrentes representó uno de los aspectos 

más complejos del diseño experimental. El objetivo consistía en capturar la dinámica 

temporal del rendimiento de los equipos mediante ventanas históricas de cuatro partidos 

previos. Esta ventana se refiere al historial de los partidos, es decir, los datos previos a un 

partido específico, lo cual es crucial para la predicción de eventos futuros basados en el 

comportamiento histórico. Para los partidos de equipo local y visitante, se busca en el 

historial de partidos previos de esos mismos equipos, de modo que las características 

utilizadas para predecir los resultados futuros provienen de datos pasados de las mismas 

entidades deportivas. Esta estrategia permite aprovechar el contexto histórico de cada 

equipo, lo que mejora la capacidad predictiva del modelo. 

5.1.3.1. Historial por Equipo.  

Se desarrolló un mecanismo de extracción de rachas que recupera los últimos N 

partidos de cada equipo anteriores a la fecha del encuentro a predecir. Este proceso 

requirió primero desagregar el dataset original, donde cada fila representa un partido 

completo con estadísticas de ambos equipos, en un formato de equipo-partido donde cada 

fila corresponde a la participación de un equipo específico en un partido dado. Esta 

transformación duplica el número de observaciones, pero permite rastrear la trayectoria 

temporal de cada equipo de manera independiente. Para cada equipo involucrado en un 

partido, se extrajeron sus cuatro partidos inmediatamente anteriores a la fecha del 

encuentro. Esta ventana de cuatro partidos se determinó balanceando dos 

consideraciones opuestas: ventanas más largas proporcionan más contexto histórico, pero 

pueden incluir información obsoleta debido a cambios en la plantilla o el esquema táctico; 

ventanas más cortas capturan el estado reciente, pero son más susceptibles a la 

variabilidad aleatoria de encuentros individuales. La elección de cuatro partidos representa 
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un compromiso razonable que captura aproximadamente un mes de actividad para equipos 

que juegan semanalmente. 

5.1.3.2. Incorporación de Contexto Ambiental y Arbitral 

En cuanto a los datos climáticos, la construcción de la ventana de temporalidad se 

realiza de manera similar. Los datos climáticos se cruzan exclusivamente según las 

características específicas de cada partido, es decir, el contexto climático del día del partido 

es asignado a la fecha del evento, considerando las variables climáticas de partidos 

pasados. 

La caracterización del árbitro siguió una lógica similar, pero con un enfoque 

diferente. Se recuperaron sus últimos cuatro partidos arbitrados, independientemente de 

los equipos involucrados, calculando el promedio de variables. Este promedio móvil 

captura el estilo arbitral reciente del oficial, que puede variar en el tiempo debido a 

directrices cambiantes de las asociaciones de árbitros o la evolución personal del criterio 

arbitral. 

Un desafío metodológico surgió con equipos que carecían de suficiente historial en 

el dataset. Particularmente, equipos recién ascendidos o aquellos con registros 

incompletos no podían proporcionar cuatro partidos previos. La decisión tomada fue excluir 

estas observaciones del entrenamiento, aceptando una reducción en el tamaño muestral 

a cambio de mantener la consistencia estructural de las secuencias. Esta exclusión afecta 

principalmente a las primeras temporadas del dataset y a competiciones con cobertura 

parcial. 

5.2. Evaluación para la predicción 

En base al objetivo general Ambos experimentos ("𝐹 − 1": base deportivo, "𝐹 − 𝐴1": 

enriquecido con clima) siguieron protocolos idénticos en términos de espacio de búsqueda 

de hiper parámetros, procedimientos de evaluación y estrategias de regularización, 

variando únicamente en la dimensionalidad de entrada. El experimento base procesó 

secuencias de 28 características derivadas exclusivamente de estadísticas deportivas y 

contexto arbitral. El experimento enriquecido incorporó 16 variables meteorológicas 
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adicionales, resultando en secuencias de 44 características. Esta estrategia de 

comparación controlada permite aislar el efecto atribuible a la inclusión de información 

ambiental, manteniendo constantes el resto de factores metodológicos.  

5.2.1 Búsqueda en rejilla de hiperparametros (Grid Search)  

El espacio de hiper parámetros explorado abarcó 12 combinaciones distintas, 

definidas por las siguientes configuraciones: 

5.2.1.1 Arquitectura Recurrente 

La base de la experimentación se centró en la evaluación de la arquitectura, 

comenzando con el Tipo de Célula recurrente, donde se utilizó la LSTM y la GRU ambas 

esenciales para la gestión efectiva de dependencias de largo alcance en las secuencias.  

La capacidad de representación del modelo fue modulada mediante la variación de las 

Unidades en la Primera Capa (24, 32 o 64), mientras que la profundidad y complejidad se 

ajustaron con la Segunda Capa, probando 0 (configuración simple), 16 o 32 unidades para 

la captura de patrones de orden superior. Por razones de causalidad temporal, inherente 

a los datos secuenciales, la Direccionalidad se mantuvo estrictamente Unidireccional 

(forward). 

5.2.1.2 Regularización 

Para mitigar el riesgo de sobreajuste (overfitting), se implementaron dos 

mecanismos clave de regularización. Primero, se aplicó el método Dropout con tasas de 

0.4 y 0.5 inmediatamente después de cada capa recurrente. Segundo, se evaluó la 

inclusión de una Capa Densa Intermedia con 8 unidades para realizar una transformación 

no lineal antes de la capa de clasificación final; alternativamente, se probó el valor 0, 

estableciendo una conexión directa entre las capas recurrentes y la salida. 

5.2.1.3 Optimización y Entrenamiento 

En cuanto al proceso de optimización, se seleccionó el algoritmo Adam debido a su 

probada eficiencia computacional y su robusta convergencia en una amplia variedad de 

tareas de Deep Learning. La Tasa de Aprendizaje se exploró con 0.001 buscando un 

balance adecuado entre la velocidad de convergencia y la estabilidad del proceso. El 
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Tamaño del Lote (Batch Size) se fijó en 128, impactando directamente en la estabilidad del 

gradiente y el tiempo total de entrenamiento. Finalmente, se estableció un límite de 100 

Épocas Máximas, complementado con una estrategia de Detención Temprana (Early 

Stopping) con una Paciencia de épocas sin observar mejora en el conjunto de validación, 

garantizando así una convergencia eficiente y la prevención del sobre entrenamiento. 

5.2.1.4 Función Objetivo 

Se seleccionó la precisión global como métrica de optimización, definida como la 

proporción de predicciones correctas sobre el total de instancias. Aunque esta métrica 

puede ser sensible al desbalance de clases, su uso se justifica al incorporar pesos de clase 

durante el entrenamiento, lo que compensa la distribución desigual de resultados 

deportivos 

Para cada configuración, se realizó el siguiente procedimiento: 

1. Inicialización del modelo con la arquitectura especificada 

2.  Entrenamiento sobre el conjunto de entrenamiento con monitorización en validación 

3. Evaluación de la métrica objetivo (accuracy) sobre el conjunto de validación 

4. Registro de métricas complementarias (precisión por clase, recall, F1-score) 

5. Almacenamiento de resultados y configuración para análisis posterior 

El proceso completo se instrumentó para medir tiempos de ejecución, permitiendo 

evaluar el costo computacional asociado a cada configuración. Los resultados se 

serializaron en formato JSON, facilitando su análisis comparativo y reproducibilidad 

experimental. 

5.2.2 Métricas de evaluación 

Para evaluar el desempeño del modelo LSTM en un escenario de clasificación 

multiclase con fuerte desbalance, es fundamental priorizar métricas que reflejen la calidad 

del aprendizaje en cada categoría y no solo el rendimiento global. Aunque la precisión 

general (accuracy) ofrece una referencia inicial, su utilidad es limitada porque favorece a 

la clase mayoritaria. En contraste, las métricas por clase precisión, recall y F1 permiten 



88 
 

 
 

identificar si el modelo reconoce adecuadamente las clases minoritarias, que suelen ser 

las más difíciles de predecir. 

Finalmente, la matriz de confusión complementa el análisis al mostrar 

explícitamente los patrones de error y las confusiones entre categorías, ofreciendo una 

comprensión más profunda del comportamiento del modelo. 

5.3. Experimento ‘F - 1’ (únicamente variables deportivas). 

El proceso de optimización mediante búsqueda en rejilla de hiperparámetros 

identificó una arquitectura óptima basada en unidades recurrentes cerradas (GRU, por sus 

siglas en inglés). La configuración resultante emplea una única capa recurrente con 24 

unidades, tasa de abandono del 50%, tasa de aprendizaje de 0.001 mediante el 

optimizador Adam, y tamaño de lote de 128 instancias. Esta arquitectura fue seleccionada 

tras evaluar sistemáticamente 36 combinaciones distintas de hiperparámetros durante un 

período de entrenamiento que abarcó 17 épocas antes de la activación del mecanismo de 

detención temprana. 

Figura 9 

Función de perdida experimento 'F-1' 
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La evolución del proceso de entrenamiento, ilustrada en la Figura 9, revela una 

convergencia progresiva de las funciones de pérdida tanto en el conjunto de entrenamiento 

como en el de validación. La pérdida de entrenamiento exhibe una reducción pronunciada 

durante las primeras cinco épocas, decreciendo desde 1.16 hasta aproximadamente 1.09, 

para posteriormente estabilizarse en valores cercanos a 1.09. De manera análoga, la 

pérdida de validación desciende desde 1.11 hasta 1.08 durante el mismo intervalo 

temporal, manifestando posteriormente oscilaciones controladas que sugieren un equilibrio 

adecuado entre capacidad de ajuste y generalización.  

Figura 10 

Disminución de la tasa de aprendizaje experimento 'F-1' 

 

La implementación del mecanismo de reducción adaptativa de la tasa de 

aprendizaje Figura 10 demuestra su activación en la época 13, disminuyendo el valor 

desde 0.001 hasta 0.0005, estrategia que contribuyó a la estabilización del proceso 

optimización sin comprometer la capacidad predictiva del sistema. 

5.3.1 Rendimiento Global  

El modelo optimizado alcanzó una exactitud del 43.7% en el conjunto de validación, 

métrica que constituyó el criterio de selección durante la búsqueda de hiperparámetros. 
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Esta cifra representa una mejora sustancial respecto a la línea base aleatoria (33.3% para 

un problema de tres clases equilibrado), evidenciando la capacidad del sistema para 

capturar patrones relevantes en los datos históricos. El puntaje F1-macro, que pondera 

equitativamente el rendimiento en las tres categorías de resultado (victoria local, empate, 

victoria visitante), se situó en 0.337, mientras que el F1-ponderado alcanzó 0.383, 

reflejando un desempeño diferenciado según la clase predictiva. 

Figura 11 

Matriz de confusión experimento 'F - 1' 

 

La evaluación del rendimiento del modelo mediante la matriz de confusión 

normalizada como se muestra en la figura 11 reveló que, si bien el clasificador exhibe una 

capacidad aceptable para identificar las victorias (alcanzando una precisión del 54.59% 

para la clase Local y un 50.00% para la clase Visita), existe una dificultad metodológica 

crítica centrada en la predicción de la clase Empate. Esta clase es clasificada 

correctamente en solo el 11.61% de las ocasiones, lo que se debe principalmente a un 

marcado sesgo del modelo que confunde los Empates reales con los resultados de Local 

52.23% y Visita 36.16% 
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5.3.2 Rendimiento por País 

Con el modelo ya entrenado, volvemos a evaluar con el conjunto de datos de test, 

para esta solución se cruza con los países de cada partido. La evaluación desagregada 

por contexto geográfico revela variaciones significativas en la capacidad predictiva del 

modelo (Figura 12). Perú emerge como el territorio con mayor exactitud (45.2%), seguido 

por Colombia (43.4%), Ecuador (41.5%) y Chile (40.5%). Esta disparidad, aunque 

moderada (rango de 4.7 puntos porcentuales), resulta estadísticamente relevante dado el 

volumen diferencial de instancias evaluadas: 230 partidos para Perú, 341 para Colombia, 

212 para Ecuador y 148 para Chile.  

El análisis de las métricas F1 por país Figura 12 muestra una consistencia notable 

entre los diferentes indicadores. Los valores de F1-macro oscilan entre 0.31 (Chile) y 0.37 

(Ecuador y Colombia), mientras que los puntajes F1-ponderados exhiben un rango 

ligeramente superior (0.36-0.44). Esta convergencia relativa entre métricas sugiere que el 

modelo no presenta sesgos pronunciados hacia clases mayoritarias en ninguno de los 

contextos evaluados. 

Figura 12 

Evaluación por país experimento 'F - 1' 
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Las matrices de confusión normalizadas (panel inferior de la Figura 12) revelan 

patrones sistemáticos en el comportamiento predictivo del sistema. En todos los países 

analizados, la clase correspondiente a victoria del equipo local presenta las tasas de 

acierto más elevadas, oscilando entre 0.53 (Ecuador) y 0.57 (Perú). Este fenómeno resulta 

consistente con la ventaja estadística documentada del factor localía en el fútbol 

sudamericano. Contrariamente, la categoría de empate exhibe las mayores dificultades de 

discriminación, con tasas de recuperación que fluctúan entre 0.38 (Chile) y 0.66 (Ecuador), 

evidenciando la naturaleza inherentemente impredecible de este resultado. La clase de 

victoria visitante muestra un rendimiento intermedio, con valores de sensibilidad entre 0.32 

(Perú) y 0.56 (ambos en Ecuador). 

5.4. Experimento ‘F – A1’ (incorporación de variables ambientales). 

El proceso de optimización mediante búsqueda en rejilla de hiperparámetros 

identificó una arquitectura óptima basada en unidades recurrentes cerradas (GRU, por sus 

siglas en inglés). La incorporación de variables meteorológicas al conjunto de predictores 
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condujo a la selección de una arquitectura alternativa durante el proceso de optimización. 

El modelo resultante emplea celdas LSTM (memoria a largo-corto plazo) con una 

configuración minimalista de 8 unidades en una única capa recurrente, manteniendo una 

tasa de abandono del 50% y parámetros de optimización idénticos al modelo base (tasa 

de aprendizaje de 0.001, optimizador Adam, tamaño de lote de 128). Esta simplificación 

arquitectural contrasta notablemente con las 24 unidades GRU del modelo exclusivamente 

futbolístico, sugiriendo que la información meteorológica permite alcanzar capacidad 

representacional comparable con menor complejidad estructural. 

Figura 13 

Función de perdida experimento 'F - A1' 

 

El análisis de las curvas de aprendizaje Figura 13 evidencia un comportamiento de 

convergencia diferenciado respecto al modelo base. La pérdida de entrenamiento 

desciende desde 1.119 hasta estabilizarse en 1.089 tras 18 épocas, exhibiendo 

oscilaciones más pronunciadas durante el proceso. La pérdida de validación muestra un 

patrón paralelo, disminuyendo desde 1.099 hasta 1.085, con fluctuaciones que sugieren 

mayor sensibilidad a la composición específica de lotes durante el entrenamiento.  
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Figura 14 

Disminución de la tasa de aprendizaje experimento 'F - A1' 

 

 

El mecanismo de reducción adaptativa de la tasa de aprendizaje, Figura 14 se 

activó en dos momentos críticos: época 10 (reducción a 5×10⁻⁴) y época 15 (reducción 

adicional a 2.5×10⁻⁴), estrategia que facilitó la exploración refinada del espacio de 

parámetros sin comprometer la estabilidad del proceso 

El modelo sugiere que el modelo captura adecuadamente señales asociadas con 

superioridad deportiva, pero enfrenta limitaciones al discernir situaciones de paridad 

competitiva. 

 

5.4.1 Rendimiento Global  

El sistema integrado alcanzó una exactitud promedio del 43.5% a través de los 

cuatro contextos geográficos evaluados, representando una disminución marginal de 0.2 

puntos porcentuales respecto al modelo base (43.7%). Esta variación, si bien 

contraintuitiva considerando la información adicional incorporada, resulta estadísticamente 

insignificante y se encuentra dentro del margen de variabilidad inherente a procesos 
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estocásticos de entrenamiento. Las métricas F1 reflejan un patrón análogo: el F1-macro 

promedio se mantuvo en valores comparables (diferencia inferior a 0.01 puntos), mientras 

que el F1-ponderado exhibió fluctuaciones similares entre ambas configuraciones. 

5.4.2 Análisis por País 

La evaluación desagregada por territorio revela patrones heterogéneos en la 

respuesta a la incorporación de variables meteorológicas (Figura 15).  

Figura 15 

Evaluación por país experimento 'F - A1' 

 

 

Perú experimentó la mejora más sustancial, incrementando su exactitud de 45.2% 

a 47.8% (+2.6 puntos porcentuales, +5.8% relativo). Este resultado adquiere particular 

relevancia considerando que constituye el contexto focal de la investigación, donde la 

diversidad climática inherente al territorio peruano podría proporcionar señales 

discriminativas más informativas. Ecuador y Chile manifestaron mejoras modestas de 1.9 
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y 2.7 puntos porcentuales respectivamente (43.9% y 43.2%), mientras que Colombia 

experimentó una reducción de 4.4 puntos (39.0%), constituyendo el único caso de deterioro 

notable en el desempeño predictivo. 

El análisis de métricas F1 por país (panel central, Figura 15) corrobora esta 

heterogeneidad. Perú exhibe los indicadores más robustos del conjunto evaluado (F1-

macro: 0.41, F1-ponderado: 0.46), representando incrementos del 11% y 10% 

respectivamente frente al modelo base. Ecuador mantiene valores estables (F1-macro: 

0.37), mientras que Chile muestra mejoras moderadas. Colombia, consistentemente con 

su reducción en exactitud, presenta los indicadores F1 más deteriorados del conjunto (F1-

macro: 0.33, F1-ponderado: 0.41), con decrementos del 11% en F1-macro. 

Las matrices de confusión normalizadas (panel inferior, Figura 15) revelan 

transformaciones específicas en los patrones de clasificación. En Perú, la sensibilidad para 

victorias locales se incrementó marginalmente (0.57 a 0.58), mientras que la capacidad de 

discriminación de empates mejoró sustancialmente (0.58 a 0.60), reduciendo 

simultáneamente confusiones con victorias locales (de 31 a 32 instancias, pero con mejor 

distribución proporcional). La clase de victoria visitante exhibió el cambio más significativo, 

incrementando su tasa de recuperación de 0.32 a 0.61 (+90% relativo), aunque con mayor 

confusión con empates (de 7 a 5 instancias correctamente clasificadas del total disponible). 

Colombia presenta el patrón más preocupante: la sensibilidad para victorias locales 

decreció de 0.54 a 0.42 (-22% relativo), con incremento concomitante de confusiones hacia 

empates (de 17 a 53 instancias). La categoría de empate mejoró marginalmente su 

discriminación (0.45 a 0.41, considerando normalización), pero a expensas de mayor 

confusión con victorias visitantes. Ecuador y Chile muestran comportamientos intermedios, 

con mejoras en ciertas clases compensadas por deterioros en otras, resultando en 

incrementos netos modestos de exactitud global. 

5.3. Importancia de Variables 

Para abordar los objetivos específicos planteados de identificar variables 

estadísticas deportivas con mayor relevancia predictiva y determinar el poder predictivo de 
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variables meteorológicas se implementó un análisis de importancia de características 

mediante el modelo de Bosque Aleatorio. Esta técnica permite cuantificar la contribución 

de cada variable al proceso de clasificación, proporcionando interpretabilidad al sistema 

predictivo sin comprometer su capacidad de generalización. 

5.3.1 Preparación de datos para análisis de importancia 

El conjunto de datos utilizado integra estadísticas deportivas históricas y variables 

ambientales correspondientes a múltiples partidos de fútbol. Dado que el problema se 

enmarca en el contexto de series temporales, se aplicó una estrategia de ventana móvil 

para capturar patrones de rendimiento reciente: para cada partido, se calculó el promedio 

de las estadísticas de los últimos cuatro encuentros de cada equipo. Este enfoque permite 

condensar información temporal en una representación tabular sin pérdida significativa de 

contexto, generando así una matriz de características adecuada para algoritmos que 

operan sobre datos estructurados. 

5.3.2 Configuración del modelo 

El modelo corresponde a un clasificador de bosque aleatorio entrenado sobre una 

representación bidimensional de las secuencias, lo cual elimina la dependencia temporal 

y permite tratar cada muestra como un estado estático del partido. Bajo este enfoque, los 

hiperparámetros cumplen un rol central en controlar el equilibrio entre complejidad y 

generalización:  se emplea un número elevado de árboles (𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 400) para 

asegurar estabilidad estadística; una profundidad máxima restringida (𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 12) y 

límites mínimos para dividir y formar hojas (𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 = 20, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 =

10) para evitar memorizar patrones espurios y reducir la varianza; una selección aleatoria 

acotada de variables en cada división (𝑚𝑎𝑥_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = "𝑠𝑞𝑟𝑡") para promover 

independencia entre árboles; y un ajuste automático del peso de clases (𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 =

"𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑") para mitigar el sesgo hacia resultados mayoritarios. En conjunto, esta 

configuración impone una estructura robusta que favorece la interpretabilidad y estabiliza 
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la predicción sin depender de la memoria secuencial, apoyándose en la riqueza informativa 

ya contenida en los atributos preprocesados. 

5.3.3 Resultados 

El modelo Árbol Aleatorio empleando las 44 variables disponibles permitió 

establecer una primera aproximación al peso relativo que ejercen tanto los indicadores de 

rendimiento deportivo como las variables ambientales en la predicción del resultado de los 

partidos logrando una precisión de 47.8% con el conjunto de validación. 

En relación con las variables de naturaleza deportiva respecto al primer objetivo 

específico, el modelo otorgó mayor relevancia a indicadores asociados con la creación y 

finalización de oportunidades ofensivas. Entre los predictores más destacados como se 

aprecia en la figura 16 se encuentran el porcentaje de balones largos ejecutados por el 

equipo local, la proporción de disparos realizados desde dentro del área y la frecuencia de 

remates desviados. Estas métricas, al reflejar tanto la orientación táctica como la 

capacidad de generar peligro de forma sostenida, aparecen consistentemente como 

elementos con capacidad discriminativa dentro del árbol de decisión. Su posición en el 

ranking sugiere que las dinámicas ofensivas inmediatas del encuentro constituyen señales 

particularmente informativas para anticipar el desenlace del partido. 

Respecto al segundo objetivo específico, vinculado al papel de las condiciones 

meteorológicas, el modelo identificó ciertos factores ambientales con contribución 

apreciable, aunque en menor magnitud en comparación con las variables estrictamente 

deportivas. La temperatura asociada al equipo visitante aparece entre las variables con 

mayor aporte dentro de esta categoría, lo que podría reflejar diferencias en la aclimatación 

o en la respuesta fisiológica frente a determinados contextos térmicos. Otras variables 

climáticas como aquellas relacionadas con humedad, viento o precipitación muestran un 

peso inferior y menos consistente, lo que sugiere que su influencia sobre el resultado es 

más tenue o indirecta dentro del marco del modelo empleado. 

En conjunto, estos resultados permiten concluir que, dentro de la aproximación 

basada en árboles de decisión, las características derivadas del rendimiento futbolístico 
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inmediato concentran la mayor capacidad explicativa, mientras que las condiciones 

ambientales aportan información adicional, pero de forma más moderada.  

 

Figura 16 

Ranking de importa de variables de futbol y ambientales 
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5.5. Comparación Directa Entre Experimentos 

5.5.1 Arquitectura y Complejidad del Modelo 

Existe una diferencia sustancial en la topología de red seleccionada por el proceso 

de optimización para cada caso. 

• Experimento F-1 (Solo Fútbol): La búsqueda de hiperparámetros seleccionó una 

arquitectura basada en GRU (Gated Recurrent Units) con 24 unidades en una capa oculta. 

• Experimento F-A1 (Con Variables Ambientales): La incorporación de datos 

meteorológicos derivó en una arquitectura más minimalista basada en celdas LSTM (Long 

Short-Term Memory) con solo 8 unidades. 

La inclusión de variables climáticas permitió una reducción de la complejidad 

estructural del modelo (de 24 a 8 unidades), sugiriendo que la información meteorológica 

aporta una riqueza representacional que permite al modelo aprender con menos neuronas, 

manteniendo parámetros de optimización idénticos (tasa de aprendizaje 0.001 y Dropout 

50%). 

5.5.2 Dinámica de Entrenamiento 

El comportamiento durante el aprendizaje mostró divergencias en estabilidad. 

• Convergencia: El modelo F-1 mostró una estabilización suave de la pérdida de 

validación alrededor de 1.08 tras 17 épocas. Por el contrario, el modelo F-A1, aunque 

alcanzó niveles similares de pérdida (1.085), exhibió oscilaciones más pronunciadas y una 

mayor sensibilidad a la composición de los lotes, requiriendo reducciones más agresivas 

en la tasa de aprendizaje (hasta 5𝑥10−4 ) para estabilizarse. 

5.2.3. Desempeño Predictivo Global vs. Local (Perú) 

A nivel global, la comparación arroja resultados contraintuitivos, pero al desagregar 

por el objetivo de la investigación (Perú), la diferencia es marcada. 

• Nivel Global: El modelo F-1 alcanzó una exactitud del 43.7%, superando 

marginalmente al modelo F-A1 que obtuvo un 43.5%. Esta diferencia de 0.2% es 

estadísticamente insignificante, indicando que, en promedio para toda Sudamérica, el 

clima no garantiza una mejora universal. 



101 
 

 
 

• Caso Perú (Objetivo central): Aquí radica la diferencia crítica. Mientras que el 

modelo F-1 logró una exactitud del 45.2% en Perú, el modelo F-A1 elevó esta métrica al 

47.8%. Esto representa una mejora relativa del 5.8% en la capacidad predictiva específica 

para el contexto peruano al incluir datos meteorológicos. 

5.2.4. Análisis de Clases (Matriz de Confusión) en Perú 

La calidad de la predicción cambió drásticamente en la identificación de resultados 

específicos en Perú: 

• Victorias Visitantes: El modelo F-1 tenía una sensibilidad baja de 0.32 para 

detectar victorias visitantes. El modelo F-A1 casi duplicó esta capacidad, subiendo a 0.61. 

• Empates: Ambos modelos luchan con esta clase, pero el F-A1 mejoró la 

discriminación de empates en Perú de 0.58 a 0.60. 

5.2.5. Análisis de métricas 

La comparación entre ambos experimentos revela una mejora consistente en el 

desempeño predictivo cuando se incorporan variables meteorológicas al modelo. El 

Experimento ’F - 1’, basado exclusivamente en variables deportivas, alcanzó una exactitud 

promedio de 0.427 con variabilidad notable entre países: Perú (0.452), Ecuador (0.415), 

Colombia (0.434) y Chile (0.405), este último representando el desempeño más bajo del 

conjunto. En contraste, el Experimento ‘F – A1’, que integra información ambiental, elevó 

la exactitud promedio a 0.435 y, significativamente, invirtió el ordenamiento de desempeño 

por país, situando a Perú como líder con 0.478 y a Colombia como el caso más desafiante 

con 0.390. 
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CAPITULO VI 

Discusión de resultados 

Esta investigación tuvo como objetivo evaluar el impacto de variables 

meteorológicas en la predicción de resultados de fútbol mediante redes neuronales 

recurrentes (GRU y LSTM). A continuación, se contrastan los hallazgos de los 

experimentos "F-1" (solo fútbol) y "F-A1" (fútbol + clima) con la evidencia científica reciente 

en la región y el mundo. 

4.1 Influencia de las Variables Meteorológicas en el Perú (Objetivo 1) 

Los resultados confirman que la influencia de las variables meteorológicas es 

positiva y significativa específicamente para el caso peruano, a diferencia de otros 

contextos geográficos evaluados. 

La mejora de la exactitud en Perú (del 45.2% al 47.8%) y el incremento sustancial 

en el puntaje F1-macro (de aprox. 0.37 a 0.41) sugieren que la diversidad climática del 

territorio peruano introduce "señales" discriminativas valiosas que no están presentes en 

las variables puramente deportivas. Es notable cómo la inclusión del clima permitió al 

modelo predecir mejor las victorias visitantes (incremento de sensibilidad del 90% relativo). 

Esto podría interpretarse como la capacidad de la red neuronal para identificar condiciones 

climáticas adversas o específicas que rompen la tradicional "localía" o ventaja de casa, 

permitiendo al visitante ganar. 

En contraste, el deterioro del modelo en Colombia (caída del 39.0% en exactitud) 

indica que la influencia meteorológica no es universalmente beneficiosa y puede introducir 

ruido en contextos donde el clima es más homogéneo o menos determinante para el juego. 

4.3. Heterogeneidad Geográfica: El Clima como Predictor Contextual 

Uno de los hallazgos más notables de esta investigación es que la inclusión de 

variables meteorológicas no generó una mejora universal, sino altamente dependiente del 

contexto geográfico. Mientras que a nivel global la exactitud se mantuvo estancada (43.7% 

vs 43.5%), en el caso específico de Perú se observó un incremento significativo del 

desempeño (de 45.2% a 47.8%). 
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Este comportamiento dual encuentra respaldo en la literatura contradictoria sobre 

el tema. Por un lado, (Stevens, 2024), al analizar la Copa Mundial Femenina, concluyó que 

agregar variables climáticas no mejoraba la precisión del modelo (manteniéndose en 0.65), 

sugiriendo que en torneos globales la señal climática se diluye. Sin embargo,  (Ditsuhi 

Iskandaryan , Francisco Ramos, 2020) demostraron que, en ligas nacionales específicas 

como la española, la integración de datos meteorológicos sí mejora significativamente la 

predicción. 

Nuestros resultados sugieren que el Perú se comporta de manera similar al caso 

español documentado por Iskandaryan, donde el clima es un factor determinante. Esto se 

alinea con la revisión de (Sarah Illmer; Frank Daumann, 2022), quienes indican que 

factores ambientales extremos, especialmente la altitud y el calor, afectan la distancia total 

recorrida y la intensidad de las carreras de los jugadores. Dado que el Perú posee una 

geografía diversa con ciudades de altura, es coherente que el modelo 𝐹 − 𝐴1 logre capturar 

patrones latentes asociados a la fatiga física descrita en la literatura, mejorando la 

predicción de victorias visitantes en un 90% relativo. 

4.4. Comparativa de Desempeño Predictivo en la Región (Colombia y Chile) 

Al situar nuestros resultados en el contexto sudamericano, las métricas obtenidas 

son competitivas y, en algunos casos, superiores a los benchmarks locales. 

Caso Chile: Contrastamos nuestros hallazgos con el Experimento 2 de Ovando 

Fuentealba (2025), el cual arrojó el mejor desempeño de su investigación utilizando un 

modelo Random Forest con características seleccionadas por importancia y ventanas 

móviles. Mientras que el mejor modelo de experimento de Ovando alcanzó una exactitud 

del 41.5% en el conjunto de prueba, nuestro modelo base (𝐹 − 1) logró un 40.5%, y la 

incorporación de variables meteorológicas (𝐹 − 𝐴1) elevó el rendimiento al 43.2% para 

chile. Esto demuestra que la arquitectura recurrente (LSTM/GRU) alimentada con datos 

climáticos supera a los métodos de ensamble (Random Forest/XGBoost) utilizados en 

Chile, incluso cuando estos últimos intentaron optimizaciones complejas de balanceo de 

datos (Experimentos 3 y 4) que resultaron en una caída del rendimiento (hacia el 34-35%). 



104 
 

 
 

Caso Colombia: El desempeño en Colombia fue el punto crítico de nuestro 

experimento, donde la inclusión del clima deterioró la exactitud del 43.4% al 39.0%. Esto 

resuena con la investigación de (Bustos, 2023) en la liga colombiana, quien reportó 

dificultades para superar el 43% de exactitud incluso con modelos SVM y ELO, citando 

limitaciones en la calidad de los datos. La caída en el rendimiento de nuestro modelo 𝐹 −

𝐴1 en Colombia podría explicarse por la homogeneidad climática relativa de ciertas 

regiones colombianas o la falta de precisión en los datos meteorológicos locales, un 

limitante también señalado por Stevens (2024) como causa de la falta de mejora en sus 

modelos. 

4.5. Eficiencia Arquitectónica y Adaptación Fisiológica 

Desde una perspectiva técnica, el experimento 𝐹 − 𝐴1 demostró que la inclusión 

de datos ambientales permitió reducir la complejidad de la red de 24 unidades GRU a solo 

8 unidades LSTM. Esto sugiere que las variables climáticas actúan como "atajos" 

informativos que reducen la carga computacional necesaria para encontrar patrones. 

Esta simplificación arquitectónica tiene un correlato biológico. (Walker J. Ross; 

Madeleine Orr, 2022) y (Bustos, 2023) establecen que existen condiciones límite (ej. 

temperaturas sobre 28°C o alta humedad) que obligan a los jugadores a modular su 

actividad física para preservar el rendimiento. Al alimentar al modelo con datos explícitos 

de temperatura o precipitación, la red neuronal no necesita "inferir" estas condiciones 

adversas a partir de las estadísticas de juego, sino que puede asociar directamente 

condiciones extremas (como las descritas por Ross y Orr para eventos futuros) con una 

mayor probabilidad de errores defensivos o baja intensidad, facilitando la predicción de 

resultados sorpresivos (como victorias visitantes). 
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4.6. Limitaciones y El Problema de la Universalidad 

A pesar del éxito en Perú, la falta de mejora global concuerda con lo observado por 

Stevens (2024). Esto indica que la influencia del clima no es una regla universal en el fútbol, 

sino una variable de interacción local. Como señalan (Sarah Illmer; Frank Daumann, 2022), 

aunque el clima afecta el rendimiento físico, los equipos profesionales adoptan "estrategias 

de ritmo" (pacing strategies) para mantener el rendimiento técnico (pases, posesión) a 

pesar del estrés ambiental. Es posible que, en ligas donde los equipos están mejor 

adaptados o las condiciones son menos extremas (como podría ser el caso de los datos 

de Colombia en nuestra muestra), esta adaptación técnica anule la ventaja predictiva de 

las variables meteorológicas. 

4.7. Conclusión de la Discusión 

La investigación valida que, tal como sugieren Iskandaryan et al. (2020), el clima 

contiene información valiosa para la predicción deportiva, pero este valor está 

condicionado geográficamente. Nuestros modelos superan los umbrales de exactitud 

reportados recientemente para Chile y Colombia, demostrando que una arquitectura LSTM 

ligera alimentada con datos ambientales es una estrategia efectiva para contextos de alta 

variabilidad climática y geográfica como el Perú, aunque su eficacia disminuye en entornos 

donde las variables físicas no son tan determinantes para el resultado final.  
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Conclusiones  

1. La incorporación de variables meteorológicas en modelos de redes neuronales 

recurrentes no garantiza una mejora universal, sino que su eficacia es altamente 

dependiente del contexto geográfico. A nivel global, el desempeño predictivo se 

mantuvo estable (variación marginal de 43.7% a 43.5%). Sin embargo, en el caso 

específico del Perú (territorio caracterizado por su alta variabilidad altitudinal y 

climática) la inclusión de estos datos generó un incremento significativo en la 

exactitud del 45.2% al 47.8% (una mejora relativa del 5.8%). Esto permite concluir 

que la información ambiental actúa como un discriminador eficaz únicamente en 

regiones donde las condiciones climáticas son lo suficientemente heterogéneas 

como para influir en el desarrollo del juego 

2. Sobre las variables estadísticas deportivas más informativas, mediante técnicas de 

aprendizaje supervisado basadas en Bosques Aleatorios (con una precisión de 

validación del 47.8%), se determinó que las dinámicas ofensivas inmediatas 

poseen la mayor carga de información (ganancia). Las variables más determinantes 

en primer lugar fueron el porcentaje de balones largos del equipo local, segundo 

lugar la proporción de disparos dentro del área y como tercer lugar la frecuencia de 

remates desviados. Esto indica que la capacidad del modelo para predecir el 

resultado depende primariamente de métricas que reflejan la orientación táctica y 

la finalización de jugadas, superando en relevancia a las variables de posesión o 

defensivas. 

3. Sobre la influencia de elementos meteorológicos, el análisis de importancia de 

características reveló que la influencia de las variables meteorológicas es 

moderada en comparación con las deportivas, siendo la ventana de temperatura 

asociada al equipo visitante el predictor ambiental más relevante. Variables 

ventanas como la humedad, el viento o la precipitación mostraron un peso inferior. 

Esto sugiere que el modelo captura patrones relacionados con la aclimatación física 

o el estrés térmico que sufren los equipos visitantes, más que efectos directos sobre 
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la física del balón (viento), lo cual es coherente con la mejora en la detección de 

victorias visitantes observada en los experimentos. 

4. Existe una heterogeneidad marcada en el desempeño del modelo según el país, 

revelando sesgos geográficos operativos. Perú demostró ser el contexto más 

beneficiado, alcanzando los indicadores más robustos (F1-macro: 0.41) y 

mejorando sustancialmente la discriminación de la clase "Victoria Visitante" (+90% 

relativo). Por otra parte, Chile y Ecuador mostraron mejoras modestas en exactitud 

(+2.7 y +1.9 puntos porcentuales respectivamente). Sin embargo, Colombia 

presentó un deterioro notable (-4.4 puntos en exactitud), sugiriendo que en este 

contexto las variables meteorológicas introdujeron ruido en lugar de señal. Esta 

variabilidad confirma que los modelos de predicción deportiva no son "talla única" 

y requieren calibración específica según la diversidad climática del territorio 

objetivo. 

5. El análisis comparativo entre el Modelo A, basado exclusivamente en variables 

deportivas y optimizado mediante 24 unidades GRU, y el Modelo B, que incorpora 

variables meteorológicas con arquitectura simplificada de 8 unidades LSTM, revela 

que la inclusión de información ambiental permite alcanzar capacidad predictiva 

comparable. Esta simplificación arquitectural, manteniendo idénticos parámetros 

de regularización y optimización (dropout, Adam, lotes de 128 instancias), sugiere 

que las variables meteorológicas aportan estructura informativa complementaria 

que facilita la discriminación de patrones de desempeño deportivo. La divergencia 

en el tipo de celda recurrente (GRU versus LSTM) y la dramática reducción 

dimensional constituyen evidencia empírica de que las condiciones ambientales 

capturan variabilidad ortogonal respecto a las estadísticas futbolísticas, reduciendo 

la complejidad necesaria mientras se mejora la generalización.  
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Recomendaciones 

1. Se recomienda establecer colaboraciones con federaciones deportivas nacionales 

para instalar estaciones meteorológicas permanentes en estadios representativos 

de diferentes zonas climáticas. Estas estaciones deben registrar temperatura 

ambiente y del césped, humedad relativa, velocidad y dirección del viento a nivel 

de superficie, radiación solar y precipitación con resolución de un minuto. La 

disponibilidad de datos in situ permitiría validar las estimaciones satelitales, calibrar 

factores de corrección específicos por estadio y capturar fenómenos micro 

climáticos no detectables remotamente. 

2. Se sugiere implementar procesos de cruce de estadísticas mediante comparación 

sistemática entre múltiples proveedores de datos. Las discrepancias significativas 

deberían activar procesos de revisión manual por analistas deportivos. Para 

variables subjetivas, se recomienda establecer protocolos estandarizados de 

registro y programas de entrenamiento para operadores, siguiendo estándares 

establecidos por ligas profesionales europeas. 

3. Para el contexto peruano específico, se recomienda priorizar la ingeniería de 

características sobre variables tácticas y físicas observables (cambios estratégicos 

durante el partido, patrones de presión defensiva, transiciones rápidas) sobre 

refinamientos meteorológicos. La inversión en análisis de video asistido por visión 

por computadora para extraer métricas avanzadas de posicionamiento y 

movimiento colectivo probablemente genere mayor retorno predictivo que datos 

climáticos adicionales. 

4. Los sistemas predictivos destinados a uso profesional por casas de apuestas o 

cuerpos técnicos deberían implementar lógica condicional que active o desactive 

módulos meteorológicos según características del contexto: activación en ligas con 

alta heterogeneidad climática (Chile, Argentina, Colombia) y desactivación en ligas 

homogéneas (Perú, Uruguay). Esta estrategia optimiza el balance sesgo-varianza 

del modelo según las características informativas del dominio. 
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5. Otra dirección prometedora consiste en explorar arquitecturas de modelado 

temporal más complejas, como Transformers o modelos híbridos que integren 

señales meteorológicas, dinámicas tácticas y métricas fisiológicas. Estas 

alternativas permitirían contrastar si el buen desempeño de las redes LSTM en 

territorios de alta heterogeneidad climática se debe a su capacidad para capturar 

dependencias no lineales o si arquitecturas más recientes pueden mejorar esa 

eficiencia. 

6. Asimismo, resultaría pertinente ampliar el estudio a ventanas temporales más 

extensas e incluir secuencias longitudinales de carga física, congestión de 

calendario o viajes interregionales, con el fin de analizar si estos factores moderan 

el impacto del clima en el rendimiento deportivo. La integración de datos de tracking 

o métricas de esfuerzo podría permitir evaluar la relación entre aclimatación, fatiga 

acumulada y probabilidad de resultados atípicos. 

7. La replicación del enfoque en otras ligas sudamericanas y europeas con diversidad 

geográfica contrastante permitiría delimitar con mayor precisión los umbrales 

ambientales necesarios para que las variables meteorológicas aporten valor 

predictivo. Este análisis comparado ayudaría a establecer criterios reproducibles 

para decidir cuándo conviene incorporar información ambiental en modelos de 

predicción deportiva y cuándo su efecto tiende a diluirse por adaptación táctica o 

homogeneidad climática. 

8. Finalmente integrar sistémicamente variables cinemáticas, como la velocidad de 

explosión y la capacidad aeróbica, orientadas a refinar la resolución de las 

predicciones de desempeño. Asimismo, la inclusión de indicadores biométricos de 

composición corporal y respuesta fisiológica a la altitud, junto con determinantes 

psicométricos como el estado anímico y los niveles de motivación, permitiría una 

caracterización integral y multidimensional del deportista. 
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Anexos 

• Obtener Ventana de Equipo 

def get_racha_equipo(historial: pd.DataFrame, equipo_id: int, 

fecha_actual: datetime, ventana=5): 

    """ 

    Extrae la racha (últimos N partidos) de un equipo antes de una fecha 

dada. 

    El DataFrame debe tener el índice como datetime. 

    """ 

 

    # Filtrar partidos del equipo antes de la fecha actual 

    historial_equipo = historial[ 

        (historial['id_team'] == equipo_id) & 

        (historial.index < fecha_actual) 

    ].sort_index(ascending=False) 

 

    if len(historial_equipo) < ventana: 

        return None 

 

    racha = historial_equipo.iloc[:ventana].copy() 

 

    # Calcular diferencia en días respecto al partido actual 

    #racha['delta_dias'] = (fecha_actual - racha.index).days 

 

    # Excluir columnas innecesarias 

    columnas_usar = FEATURES_RACHA_EQUIPO 

 

    # Retornar los valores en orden cronológico (más reciente primero) 

    return racha[columnas_usar].values 

 

• Obtener Ventana de Arbitro 

def get_ventana_arbitro(df_partidos, id_arbitro, fecha_actual, 

ventana=5): 

    df_enviroment = df_partidos[ 

        (df_partidos['id_arbitro'] == id_arbitro) & 

        (df_partidos.index < fecha_actual) 

    ].sort_index(ascending=False) 

 

 

    if len(df_enviroment) < ventana: 

        return None 

 

    enviroment = df_enviroment.iloc[:ventana].copy() 

 

    columnas_usar = FEATURES_ARBITRO 

 

    return enviroment[columnas_usar].values  

 

• Obtener Ventana de Ambiente 

def get_ventana_ambiente(df_partidos, team, fecha_actual, ventana=5): 



 
 

 
 

    df_enviroment = df_partidos[ 

        ((df_partidos['id_team_local'] == team) | 

         (df_partidos['id_team_visita'] == team))  & 

        (df_partidos.index < fecha_actual) 

    ].sort_index(ascending=False) 

 

    if len(df_enviroment) < ventana: 

        return None 

 

    enviroment = df_enviroment.iloc[:ventana].copy() 

 

    columnas_usar = FEATURES_AMBIENTE 

 

    # el más reciente esta primero 

    return enviroment[columnas_usar].values 

 

 

• Construye valores X como ventana y el target 

def construir_X_y(df_partidos, historial, ventana): 

    """ 

    Construye los arrays X (inputs) e y (targets) para entrenamiento o 

evaluación. 

 

    Parámetros: 

    - df_partidos: DataFrame de partidos a usar (ej: df_train o df_test) 

    - historial: DataFrame con partidos históricos de todos los equipos 

    - ventana: cuántos partidos anteriores usar por equipo 

 

    Retorna: 

    - X: array de shape (n_partidos, ventana, n_features_totales) 

    - y: array de shape (n_partidos,) 

    """ 

    X = [] 

    y = [] 

 

    # Ordenar 

    df_partidos = df_partidos.sort_index()   

 

    # Extraer ventana de cada partido 

    for idx, row in df_partidos.iterrows(): 

        # Enviroment 

        id_partido = row['id_partido'] 

        id_arbitro = row['id_arbitro'] 

        eq_local = row['id_team_local'] 

        eq_visita = row['id_team_visita'] 

        fecha_actual = idx 

        resultado = row['resultado']            #RESULTADO es respecto al 

local 

 

        # Obtenemos las rachas (últimos n partidos previos) 

        racha_local = get_racha_equipo(historial, eq_local, fecha_actual, 

ventana) 



 
 

 
 

        racha_visita = get_racha_equipo(historial, eq_visita, 

fecha_actual, ventana) 

        enviroment_local = get_ventana_ambiente(df_partidos, eq_local, 

fecha_actual, ventana)   #Estamos extrando la ventana de ambiente en base 

al equipo local 

        enviroment_visita = get_ventana_ambiente(df_partidos, eq_visita, 

fecha_actual, ventana) 

        arbitro = get_ventana_arbitro(df_partidos, id_arbitro, 

fecha_actual, ventana) 

 

        # Si alguno de los equipos no tiene suficientes partidos previos, 

se omite 

        if racha_local is None or racha_visita is None or 

enviroment_local is None or enviroment_visita is None or arbitro is None: 

            continue 

 

        #print(enviroment_local.shape, racha_local.shape, arbitro.shape) 

        # Concatenamos la racha local y la visitante horizontalmente (por 

timestep) 

        racha_completa = np.concatenate([racha_local, enviroment_local, 

racha_visita, enviroment_visita, arbitro], axis=1)  # shape: (ventana, 

n_features_local + n_features_visita) 

 

        X.append(racha_completa) 

        y.append(resultado) 

 

    X = np.array(X) 

    y = np.array(y) 

 

    #print(X.shape) 

 

    print(f"Construidos {X.shape[0]} muestras con shape {X.shape[1:]} 

(ventana={ventana}, features={X.shape[2]})") 

 

    return X, y 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

• Entrenamiento y resultados 

class RNNGridSearchOptimizer: 

    """ 

    Optimizador de Grid Search para modelos RNN con gestión eficiente de 

GPU. 

     

    Características: 

    - Limpieza automática de sesión entre experimentos 

    - Re-establecimiento de semilla para reproducibilidad 

    - Soporte para LSTM, GRU, Bidirectional 

    - Class weights automáticos 

    - Mixed Precision Training 

    """ 

     

    def __init__(self, n_classes: int = 3, seed: int = SEED): 

        """ 

        Inicializa el optimizador. 

         

        Args: 

            n_classes: Número de clases de salida 

            seed: Semilla para reproducibilidad 

        """ 

        self.n_classes = n_classes 

        self.seed = seed 

        self.param_grid = {} 

        self.results = [] 

        self.best_score = -np.inf 

        self.best_params = None 

        self.best_model = None 

        self.best_model_history = None  # Nuevo: Para guardar historial 

del mejor modelo 

        self.class_weights = None 

         

        print(f"  RNNGridSearchOptimizer inicializado") 

        print(f"  Clases: {n_classes}") 

        print(f"  Semilla: {seed}") 

     

    def set_param_grid(self, param_grid: Dict[str, List]) -> None: 

        """Define el espacio de búsqueda de hiperparámetros.""" 

        self.param_grid = param_grid 

        total_combinations = np.prod([len(v) for v in 

param_grid.values()]) 

        print(f"✓ Grid de parámetros configurado: {total_combinations} 

combinaciones") 

     

    def prepare_target_data( 

        self,  

        y_train: np.ndarray,  

        y_val: np.ndarray,  

        y_test: np.ndarray 

    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: 

        """ 



 
 

 
 

        Prepara datos de salida (one-hot encoding) y calcula class 

weights. 

         

        Args: 

            y_train, y_val, y_test: Arrays de etiquetas (enteros) 

         

        Returns: 

            Tupla de arrays one-hot encoded 

        """ 

        # Calcular class weights solo una vez 

        if self.class_weights is None: 

            self.class_weights = calcular_class_weights(y_train) 

         

        # One-hot encoding 

        y_train_cat = to_categorical(y_train, num_classes=self.n_classes) 

        y_val_cat = to_categorical(y_val, num_classes=self.n_classes) 

        y_test_cat = to_categorical(y_test, num_classes=self.n_classes) 

         

        return y_train_cat, y_val_cat, y_test_cat 

     

    def _build_model(self, params: Dict, input_shape: Tuple) -> 

Sequential: 

        """Construye modelo RNN según parámetros.""" 

        model = Sequential(name=f"{params['cell_type']}_model") 

         

        # Seleccionar tipo de celda recurrente 

        RecurrentLayer = LSTM if params['cell_type'] == 'LSTM' else GRU 

         

        # Primera capa recurrente 

        first_layer = RecurrentLayer( 

            units=params['units_layer1'], 

            return_sequences=params.get('units_layer2', 0) > 0, 

            name=f"{params['cell_type']}_1" 

        ) 

         

        if params.get('bidirectional', False): 

            first_layer = Bidirectional(first_layer, 

name='bidirectional_1') 

         

        model.add(first_layer) 

        model.add(Dropout(params['dropout_rate'], name='dropout_1')) 

         

        # Segunda capa recurrente (opcional) 

        if params.get('units_layer2', 0) > 0: 

            second_layer = RecurrentLayer( 

                units=params['units_layer2'], 

                return_sequences=False, 

                name=f"{params['cell_type']}_2" 

            ) 

             

            if params.get('bidirectional', False): 

                second_layer = Bidirectional(second_layer, 

name='bidirectional_2') 

             

            model.add(second_layer) 

            model.add(Dropout(params['dropout_rate'], name='dropout_2')) 

         



 
 

 
 

        # Capa densa oculta (opcional) 

        if params.get('dense_units', 0) > 0: 

            model.add(Dense(params['dense_units'], activation='relu', 

name='dense_hidden')) 

            model.add(Dropout(params['dropout_rate'], 

name='dropout_dense')) 

         

        # Capa de salida 

        model.add(Dense(self.n_classes, activation='softmax', 

name='output', dtype='float32')) 

         

        # Optimizador 

        optimizer_name = params.get('optimizer', 'adam').lower() 

        if optimizer_name == 'adam': 

            optimizer = Adam(learning_rate=params['learning_rate']) 

        elif optimizer_name == 'rmsprop': 

            optimizer = RMSprop(learning_rate=params['learning_rate']) 

        elif optimizer_name == 'sgd': 

            optimizer = SGD(learning_rate=params['learning_rate'], 

momentum=0.9) 

        else: 

            optimizer = Adam(learning_rate=params['learning_rate']) 

         

        # Compilar modelo 

        model.compile( 

            loss='categorical_crossentropy', 

            optimizer=optimizer, 

            metrics=['accuracy'] 

        ) 

         

        return model 

     

    def grid_search( 

        self, 

        X_train: np.ndarray, 

        y_train: np.ndarray, 

        X_val: np.ndarray, 

        y_val: np.ndarray, 

        X_test: np.ndarray, 

        y_test: np.ndarray, 

        metric: str = 'f1_macro', 

        verbose: int = 1 

    ) -> Dict: 

        """ 

        Args: 

            X_train, y_train: Datos de entrenamiento 

            X_val, y_val: Datos de validación 

            X_test, y_test: Datos de prueba 

            metric: Métrica para seleccionar mejor modelo 

            verbose: Nivel de verbosidad 

         

        Returns: 

            Diccionario con mejores parámetros, modelo y resultados 

        """ 

        if not self.param_grid: 

            raise ValueError("Debe definir param_grid usando 

set_param_grid()") 



 
 

 
 

         

        # Preparar datos 

        y_train_cat, y_val_cat, y_test_cat = self.prepare_target_data( 

            y_train, y_val, y_test 

        ) 

         

        # Generar combinaciones de parámetros 

        keys = list(self.param_grid.keys()) 

        values = [self.param_grid[k] for k in keys] 

        param_combinations = [dict(zip(keys, v)) for v in 

itertools.product(*values)] 

         

        total_combinations = len(param_combinations) 

         

        if verbose > 0: 

            print(f"\n{'='*70}") 

            print(f"Iniciando Grid Search con {total_combinations} 

combinaciones") 

            print(f"Métrica de optimización: {metric}") 

            print(f"{'='*70}\n") 

         

        # Archivo temporal para guardar el mejor modelo 

        temp_best_model_path = 'temp_best_model_grid_search.h5' 

         

        for idx, params in enumerate(param_combinations, 1): 

            if verbose > 0: 

                print(f"\n[{idx}/{total_combinations}] Evaluando 

configuración:") 

                print(f"  {params}") 

             

            try: 

                limpiar_sesion() 

                set_global_seed(self.seed) 

                 

                # Construir y entrenar modelo 

                model = self._build_model(params, 

input_shape=X_train.shape[1:]) 

                 

                history = entrenar_modelo( 

                    model=model, 

                    X_train=X_train, 

                    y_train=y_train_cat, 

                    X_valid=X_val, 

                    y_valid=y_val_cat, 

                    batch_size=params.get('batch_size', 

BATCH_SIZE_OPTIMO), 

                    epochs=params.get('epochs', EPOCHS_DEFAULT), 

                    patience=params.get('patience', PATIENCE_DEFAULT), 

                    class_weights=self.class_weights, 

                    verbose=0 if verbose == 0 else 1 

                ) 

                 

                # Evaluar en validación y prueba 

                val_metrics = evaluar_y_reportar( 

                    model, X_val, y_val_cat, plot_confusion_matrix=False 

                ) 

                test_metrics = evaluar_y_reportar( 



 
 

 
 

                    model, X_test, y_test_cat, 

plot_confusion_matrix=False 

                ) 

                 

                # Guardar resultados 

                result = { 

                    'params': params.copy(), 

                    'val_metrics': val_metrics, 

                    'test_metrics': test_metrics, 

                    'final_train_loss': float(history.history['loss'][-

1]), 

                    'final_val_loss': float(history.history['val_loss'][-

1]), 

                    'epochs_trained': len(history.history['loss']), 

                    'timestamp': datetime.now().isoformat() 

                } 

                 

                self.results.append(result) 

                 

                # Actualizar mejor modelo 

                current_score = val_metrics[metric] 

                if current_score > self.best_score: 

                    self.best_score = current_score 

                    self.best_params = params.copy() 

                     

                    # Guardar modelo en disco inmediatamente para 

sobrevivir a clear_session() 

                    model.save(temp_best_model_path) 

                    self.best_model_history = history.history 

                     

                    if verbose > 0: 

                        print(f"  ✓ Nuevo mejor modelo encontrado!") 

                        print(f"    {metric} validación: 

{current_score:.4f}") 

                        print(f"    {metric} prueba: 

{test_metrics[metric]:.4f}") 

                 

                elif verbose > 1: 

                    print(f"    {metric} validación: 

{current_score:.4f}") 

                    print(f"    {metric} prueba: 

{test_metrics[metric]:.4f}") 

             

            except Exception as e: 

                if verbose > 0: 

                    print(f"  ✗ Error durante entrenamiento: {str(e)}") 

                continue 

         

        # Cargar el mejor modelo desde el archivo temporal 

        if os.path.exists(temp_best_model_path): 

            print(f"\nCargando mejor modelo desde 

{temp_best_model_path}...") 

            # Limpiar sesión una última vez antes de cargar el mejor 

modelo 

            limpiar_sesion() 



 
 

 
 

            self.best_model = 

keras.models.load_model(temp_best_model_path) 

         

        if verbose > 0: 

            print(f"\n{'='*70}") 

            print("Grid Search completado") 

            print(f"{'='*70}") 

            print(f"\nMejor configuración encontrada:") 

            if self.best_params: 

                for key, value in self.best_params.items(): 

                    print(f"  {key}: {value}") 

                print(f"\nMejor {metric} en validación: 

{self.best_score:.4f}") 

                 

                best_result = next( 

                    r for r in self.results 

                    if r['params'] == self.best_params 

                ) 

                print(f"\nMétricas en prueba del mejor modelo:") 

                for key, value in best_result['test_metrics'].items(): 

                    if key not in ['classification_report', 

'confusion_matrix']: 

                        print(f"  {key}: {value:.4f}") 

     

    def plot_best_model_history(self, figsize: Tuple[int, int] = (12, 5), 

save_path: Optional[str] = None) -> None: 

        """ 

        Grafica la evolución de Loss y Learning Rate del mejor modelo. 

         

        Args: 

            figsize: Tamaño de la figura 

            save_path: Ruta donde guardar la imagen. Si es None, no 

guarda. 

        """ 

        if self.best_model_history is None: 

            print("No hay historial disponible para graficar.") 

            return 

             

        history = self.best_model_history 

        epochs = range(1, len(history['loss']) + 1) 

         

        plt.figure(figsize=figsize) 

         

        # Gráfica 1: Loss vs Epochs 

        plt.subplot(1, 2, 1) 

        plt.plot(epochs, history['loss'], 'b-', label='Training Loss') 

        plt.plot(epochs, history['val_loss'], 'r-', label='Validation 

Loss') 

        plt.title('Loss Evolution (Early Stopping)', fontsize=12, 

fontweight='bold') 

        plt.xlabel('Epochs') 

        plt.ylabel('Loss') 

        plt.legend() 

        plt.grid(True, alpha=0.3) 

         

        # Gráfica 2: Learning Rate vs Epochs 

        if 'lr' in history: 



 
 

 
 

            plt.subplot(1, 2, 2) 

            plt.plot(epochs, history['lr'], 'g-o', markersize=4, 

label='Learning Rate') 

            plt.title('Learning Rate Decay', fontsize=12, 

fontweight='bold') 

            plt.xlabel('Epochs') 

            plt.ylabel('Learning Rate') 

            plt.yscale('log')  # Escala logarítmica para ver mejor los 

cambios 

            plt.legend() 

            plt.grid(True, alpha=0.3) 

         

        plt.tight_layout() 

         

        # Guardar imagen si se proporciona ruta 

        if save_path: 

            plt.savefig(save_path, dpi=300, bbox_inches='tight') 

            print(f"Gráfica guardada en: {save_path}") 

         

            plt.show() 

            plt.yscale('log')  # Escala logarítmica para ver mejor los 

cambios 

            plt.legend() 

            plt.grid(True, alpha=0.3) 

         

        plt.tight_layout() 

        plt.show() 

 

    def save_results(self, filepath: str, save_model: bool = True) -> 

None: 

        """Guarda resultados en JSON y modelo en H5.""" 

        results_to_save = { 

            'best_params': self.best_params, 

            'best_score': float(self.best_score), 

            'all_results': self.results, 

            'n_classes': self.n_classes, 

            'param_grid': self.param_grid 

        } 

         

        with open(filepath, 'w') as f: 

            json.dump(results_to_save, f, indent=2) 

         

        print(f"\nResultados guardados en: {filepath}") 

         

        if save_model and self.best_model is not None: 

            model_path = filepath.replace('.json', '.h5') 

            self.best_model.save(model_path) 

            print(f"Mejor modelo guardado en: {model_path}") 

 

    def evaluate_by_country(self, df_test_paises: pd.DataFrame, 

                           df_historial: pd.DataFrame, 

                           construir_X_y_func, 

                           ventana: int = 4, 

                           verbose: int = 1) -> Dict: 

        """ 

        Evalúa el mejor modelo por país. 

 



 
 

 
 

        Args: 

            df_test_paises: DataFrame normalizado de test que incluye 

columna 'pais' 

            df_historial: DataFrame de historial de partidos 

            construir_X_y_func: Función para construir X e y 

            ventana: Tamaño de ventana temporal 

            verbose: Nivel de verbosidad 

 

        Returns: 

            Diccionario con métricas por país 

        """ 

        if self.best_model is None: 

            raise ValueError("Debe ejecutar grid_search() antes de 

evaluar por país") 

 

        if 'pais' not in df_test_paises.columns: 

            raise ValueError("El DataFrame debe contener la columna 

'pais'") 

 

        metricas_por_pais = {} 

 

        if verbose > 0: 

            print(f"\n{'='*70}") 

            print(f"Evaluando modelo por país") 

            print(f"{'='*70}\n") 

 

        for pais in df_test_paises['pais'].unique(): 

            df_test_pais = df_test_paises[df_test_paises['pais'] == pais] 

 

            if verbose > 0: 

                print(f"País: {pais} - Shape: {df_test_pais.shape}") 

 

            # Eliminar la columna 'pais' antes de construir X e y 

            X_test_pais, y_test_pais = construir_X_y_func( 

                df_test_pais.drop('pais', axis=1), 

                df_historial, 

                ventana=ventana 

            ) 

 

            if len(X_test_pais) == 0: 

                if verbose > 0: 

                    print(f"  ⚠ Sin datos suficientes para {pais}\n") 

                continue 

 

            # Predecir 

            y_test_pais_cat = to_categorical(y_test_pais, 

num_classes=self.n_classes) 

            y_pred_probs = self.best_model.predict(X_test_pais, 

verbose=0) 

            y_pred = np.argmax(y_pred_probs, axis=1) 

 

            # Calcular métricas 

            accuracy = accuracy_score(y_test_pais, y_pred) 

            f1_macro = f1_score(y_test_pais, y_pred, average='macro', 

zero_division=0) 

            f1_micro = f1_score(y_test_pais, y_pred, average='micro', 

zero_division=0) 



 
 

 
 

            f1_weighted = f1_score(y_test_pais, y_pred, 

average='weighted', zero_division=0) 

 

            # Matriz de confusión 

            cm = confusion_matrix(y_test_pais, y_pred) 

 

            # Guardar en diccionario 

            metricas_por_pais[pais] = { 

                'n_samples': len(X_test_pais), 

                'accuracy': accuracy, 

                'f1_macro': f1_macro, 

                'f1_micro': f1_micro, 

                'f1_weighted': f1_weighted, 

                'confusion_matrix': cm, 

                'y_true': y_test_pais, 

                'y_pred': y_pred 

            } 

 

            if verbose > 0: 

                print(f"  ✓ Muestras: {len(X_test_pais)}") 

                print(f"    Accuracy: {accuracy:.4f}") 

                print(f"    F1 Macro: {f1_macro:.4f}") 

                print(f"    F1 Weighted: {f1_weighted:.4f}\n") 

 

        self.metricas_por_pais = metricas_por_pais 

 

        if verbose > 0: 

            print(f"{'='*70}") 

            print("Evaluación por país completada") 

            print(f"{'='*70}\n") 

 

        return metricas_por_pais 

 

    def plot_metrics_by_country(self, save_path: str = None, figsize: 

Tuple[int, int] = (18, 12)): 

        """ 

        Genera visualizaciones de métricas por país usando matplotlib. 

 

        Args: 

            save_path: Ruta para guardar la figura (opcional) 

            figsize: Tamaño de la figura 

        """ 

        if not self.metricas_por_pais: 

            raise ValueError("Debe ejecutar evaluate_by_country() 

primero") 

 

        paises = list(self.metricas_por_pais.keys()) 

        n_paises = len(paises) 

 

        # Crear DataFrame para facilitar el graficado 

        df_metricas = pd.DataFrame([ 

            { 

                'pais': pais, 

                'n_samples': self.metricas_por_pais[pais]['n_samples'], 

                'accuracy': self.metricas_por_pais[pais]['accuracy'], 

                'f1_macro': self.metricas_por_pais[pais]['f1_macro'], 

                'f1_micro': self.metricas_por_pais[pais]['f1_micro'], 



 
 

 
 

                'f1_weighted': 

self.metricas_por_pais[pais]['f1_weighted'] 

            } 

            for pais in paises 

        ]) 

 

        # Crear figura con subplots 

        fig = plt.figure(figsize=figsize) 

        gs = fig.add_gridspec(3, n_paises, hspace=0.4, wspace=0.4) 

 

        # Fila 1: Gráfico de barras - Accuracy por país 

        ax1 = fig.add_subplot(gs[0, :]) 

        df_sorted = df_metricas.sort_values('accuracy', ascending=False) 

        colors = plt.cm.viridis(np.linspace(0.3, 0.9, len(df_sorted))) 

        bars = ax1.bar(df_sorted['pais'], df_sorted['accuracy'], 

color=colors, alpha=0.8) 

        ax1.set_ylabel('Accuracy', fontsize=12, fontweight='bold') 

        ax1.set_xlabel('País', fontsize=12, fontweight='bold') 

        ax1.set_title('Accuracy por País', fontsize=14, 

fontweight='bold', pad=15) 

        ax1.axhline(df_metricas['accuracy'].mean(), color='red', 

linestyle='--', 

                    linewidth=2, label=f'Media: 

{df_metricas["accuracy"].mean():.3f}') 

        ax1.legend(loc='upper right') 

        ax1.grid(axis='y', alpha=0.3, linestyle='--') 

        ax1.set_ylim([0, 1.0]) 

 

        # Añadir valores sobre las barras 

        for bar in bars: 

            height = bar.get_height() 

            ax1.text(bar.get_x() + bar.get_width()/2., height, 

                    f'{height:.3f}', 

                    ha='center', va='bottom', fontsize=9, 

fontweight='bold') 

 

        # Fila 2: Comparación de métricas F1 por país 

        ax2 = fig.add_subplot(gs[1, :]) 

        x = np.arange(len(paises)) 

        width = 0.25 

 

        bars1 = ax2.bar(x - width, df_metricas['f1_macro'], width, 

                       label='F1 Macro', alpha=0.8, color='#1f77b4') 

        bars2 = ax2.bar(x, df_metricas['f1_micro'], width, 

                       label='F1 Micro', alpha=0.8, color='#ff7f0e') 

        bars3 = ax2.bar(x + width, df_metricas['f1_weighted'], width, 

                       label='F1 Weighted', alpha=0.8, color='#2ca02c') 

 

        ax2.set_xlabel('País', fontsize=12, fontweight='bold') 

        ax2.set_ylabel('F1 Score', fontsize=12, fontweight='bold') 

        ax2.set_title('Comparación de Métricas F1 por País', fontsize=14, 

fontweight='bold', pad=15) 

        ax2.set_xticks(x) 

        ax2.set_xticklabels(df_metricas['pais'], rotation=45, ha='right') 

        ax2.legend(loc='upper right') 

        ax2.grid(axis='y', alpha=0.3, linestyle='--') 

        ax2.set_ylim([0, 1.0]) 



 
 

 
 

 

        # Fila 3: Matrices de confusión por país 

        for idx, pais in enumerate(paises): 

            ax = fig.add_subplot(gs[2, idx]) 

 

            cm = self.metricas_por_pais[pais]['confusion_matrix'] 

            accuracy = self.metricas_por_pais[pais]['accuracy'] 

            n_samples = self.metricas_por_pais[pais]['n_samples'] 

 

            # Normalizar matriz de confusión 

            cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, 

np.newaxis] 

 

            # Crear heatmap 

            im = ax.imshow(cm_normalized, cmap='Blues', aspect='auto', 

vmin=0, vmax=1) 

 

            # Añadir colorbar 

            cbar = plt.colorbar(im, ax=ax, fraction=0.046, pad=0.04) 

            cbar.ax.tick_params(labelsize=8) 

 

            # Añadir anotaciones 

            for i in range(cm.shape[0]): 

                for j in range(cm.shape[1]): 

                    text = ax.text(j, i, f'{cm_normalized[i, 

j]:.2f}\n({cm[i, j]})', 

                                 ha="center", va="center", 

                                 color="white" if cm_normalized[i, j] > 

0.5 else "black", 

                                 fontsize=9) 

 

            ax.set_xticks(np.arange(self.n_classes)) 

            ax.set_yticks(np.arange(self.n_classes)) 

            ax.set_xticklabels(['Local', 'Empate', 'Visita'], fontsize=9) 

            ax.set_yticklabels(['Local', 'Empate', 'Visita'], fontsize=9) 

 

            ax.set_title(f'{pais}\nAcc: {accuracy:.3f} | N: {n_samples}', 

                        fontsize=11, fontweight='bold', pad=10) 

            ax.set_ylabel('Real', fontsize=10, fontweight='bold') 

            ax.set_xlabel('Predicción', fontsize=10, fontweight='bold') 

 

            # Rotar labels 

            plt.setp(ax.get_xticklabels(), rotation=45, ha="right", 

rotation_mode="anchor") 

 

        plt.suptitle('Evaluación del Modelo por País', 

                    fontsize=16, fontweight='bold', y=0.995) 

 

        if save_path: 

            plt.savefig(save_path, dpi=300, bbox_inches='tight') 

            print(f"✓ Gráfico guardado en: {save_path}") 

 

        plt.tight_layout() 

        plt.show() 

 

    def get_country_metrics_dataframe(self) -> pd.DataFrame: 

        """ 



 
 

 
 

        Retorna un DataFrame con las métricas por país. 

 

        Returns: 

            DataFrame con métricas por país 

        """ 

        if not self.metricas_por_pais: 

            raise ValueError("Debe ejecutar evaluate_by_country() 

primero") 

 

        records = [] 

        for pais, metricas in self.metricas_por_pais.items(): 

            records.append({ 

                'pais': pais, 

                'n_samples': metricas['n_samples'], 

                'accuracy': metricas['accuracy'], 

                'f1_macro': metricas['f1_macro'], 

                'f1_micro': metricas['f1_micro'], 

                'f1_weighted': metricas['f1_weighted'] 

            }) 

 

        return pd.DataFrame(records).sort_values('accuracy', 

ascending=False) 

 

    def save_results_country(self, model_directory_path: str) -> None: 

        """ 

        Guarda los resultados de la búsqueda en formato JSON y el modelo 

de Keras/TF. 

         

        :param model_directory_path: La ruta donde se guardará el modelo 

(SavedModel, es un directorio). 

        """ 

         

        # 1. Definir la ruta del archivo JSON  

        json_filepath = f"{model_directory_path}_metrics.json" 

 

        results_to_save = { 

            'best_params': self.best_params, 

            'best_score': float(self.best_score), 

            'all_results': self.results, 

            'n_classes': self.n_classes, 

            'param_grid': self.param_grid 

        } 

 

        if self.metricas_por_pais: 

            # Convertir métricas por país (sin arrays numpy) 

            country_metrics = {} 

            for pais, metricas in self.metricas_por_pais.items(): 

                country_metrics[pais] = { 

                    'n_samples': int(metricas['n_samples']), 

                    'accuracy': float(metricas['accuracy']), 

                    'f1_macro': float(metricas['f1_macro']), 

                    'f1_micro': float(metricas['f1_micro']), 

                    'f1_weighted': float(metricas['f1_weighted']), 

                    'confusion_matrix': 

metricas['confusion_matrix'].tolist() 

                } 

            results_to_save['country_metrics'] = country_metrics 



 
 

 
 

 

        # 2. Guardar el archivo JSON usando su propia ruta 

(json_filepath) 

        with open(json_filepath, 'w') as f: 

            json.dump(results_to_save, f, indent=2) 

 

        print(f"\nResultados guardados en: {json_filepath}") 

 

        # 3. Guardar el modelo Keras usando su propia ruta 

(model_directory_path) 

        self.best_model.save(model_directory_path)  

        print(f"Modelo exportado como SavedModel en: 

{model_directory_path}") 

 

    def get_results_dataframe(self) -> pd.DataFrame: 

            """Convierte los resultados en un DataFrame de pandas para 

análisis.""" 

            if not self.results: 

                return pd.DataFrame() 

 

            records = [] 

            for result in self.results: 

                record = {} 

                for key, value in result['params'].items(): 

                    record[f'param_{key}'] = value 

 

                for key, value in result['val_metrics'].items(): 

                    record[f'val_{key}'] = value 

 

                for key, value in result['test_metrics'].items(): 

                    record[f'test_{key}'] = value 

 

                record['final_train_loss'] = result['final_train_loss'] 

                record['final_val_loss'] = result['final_val_loss'] 

                record['epochs_trained'] = result['epochs_trained'] 

 

                records.append(record) 

 

            return pd.DataFrame(records) 

 

 

 

 

 


