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Resumen

La prediccion de resultados futbolisticos, inherentemente estocastica, encuentra su
maxima complejidad en el contexto sudamericano por su variabilidad altitudinal extrema y
térmica. Esta investigacion aborda la subestimacion de los factores ambientales,
determinando la influencia predictiva de variables meteorolégicas mediante el uso de
Redes Neuronales Recurrentes (RNN) en cuatro ligas profesionales de la region andina:
Colombia, Chile, Ecuador y Peru.

Los hallazgos revelaron que la incorporacion de datos climaticos actua como un
catalizador de precision no uniforme, dependiente del contexto nacional. En la liga
peruana, esta adicidon no solo incrementé la potencia predictiva del modelo en un 6%
respecto a su base puramente deportiva, sino que también optimizé su eficiencia
computacional al permitir la simplificacion de la arquitectura neuronal. El impacto es
tangible, estableciendo referencias significativas en las ligas analizadas. Se concluye que,
si bien la mejora es contextual, la evidencia global demuestra que, en geografias variables,
el clima trasciende su rol secundario para erigirse como un determinante crucial del

resultado final.

Palabras clave: Prediccion de resultados futbolisticos, Redes neuronales

recurrentes, Variables ambientales, Andes.



Abstract

The prediction of football outcomes, inherently stochastic, reaches its greatest
complexity in the South American context due to extreme altitudinal and thermal variability.
This research addresses the underestimation of environmental factors, determining the
predictive influence of meteorological variables through the use of Recurrent Neural
Networks (RNN) across four professional leagues in the Andean region: Colombia, Chile,
Ecuador, and Peru.

The findings reveal that the incorporation of climate data functions as a non-uniform
accuracy catalyst, contingent on national context. In the Peruvian league, this addition not
only increased the model's predictive power by 6% compared to its purely sports-based
baseline, but also enhanced computational efficiency by allowing the simplification of the
neural architecture. The impact is tangible, establishing meaningful benchmarks within the
analyzed leagues. The study concludes that, although improvement is context-dependent,
the overall evidence demonstrates that in geographically variable settings, climate

transcends its secondary role to become a crucial determinant of the final outcome.

Keywords: Football match prediction, Recurrent neural networks, Meteorological

variables, Andean region / South America.



Introduccién

La prediccion de resultados en el futbol constituye un desafio cientifico de
considerable complejidad debido a la naturaleza estocastica inherente al deporte. A
diferencia de sistemas deterministas, los encuentros futbolisticos estan influenciados por
multiples factores que interactuan de manera no lineal: las capacidades técnicas y tacticas
de los equipos, el rendimiento individual de los jugadores, decisiones arbitrales, factores
psicologicos vy, crucialmente, las condiciones ambientales en las que se desarrolla el
encuentro. Esta multiplicidad de variables dificulta el establecimiento de patrones
predictivos robustos mediante métodos tradicionales basados en analisis subjetivo o en el
uso limitado de informacion histdrica.

El territorio peruano presenta caracteristicas geograficas excepcionales que lo
convierten en un laboratorio natural para estudiar la influencia de factores ambientales en
el rendimiento deportivo. La marcada zonificacion altitudinal del pais, consecuencia de la
presencia de la Cordilera de los Andes, genera condiciones atmosféricas
significativamente heterogéneas entre las distintas sedes donde se practican
competiciones futbolisticas. Esta variabilidad incluye diferencias sustanciales en presion
atmosférica, concentracién de oxigeno, temperatura y humedad relativa. Sin embargo, la
investigacion sistematica sobre cémo estas variables meteoroldgicas influyen
especificamente en los resultados de partidos de futbol en contextos andinos permanece
limitada.

La presente investigacion aborda esta laguna de conocimiento mediante la
aplicacion de técnicas avanzadas de aprendizaje profundo, especificamente redes
neuronales recurrentes tipo LSTM, para evaluar la capacidad predictiva de modelos que
incorporan variables meteorolégicas en comparacion con aproximaciones que utilizan
exclusivamente estadisticas deportivas tradicionales. El enfoque metodoldgico considera
datos de ligas de futbol en Peru, Chile, Ecuador y Colombia, paises que comparten
caracteristicas geograficas similares al estar ubicados sobre la Cordillera de los Andes,
permitiendo asi un analisis de los efectos ambientales en contextos comparables.

Vv
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CAPITULO |
Aspectos generales
1.1. Planteamiento del problema
1.1.1. Descripcioén del problema

La prediccion de resultados en encuentros futbolisticos enfrenta desafios
metodolégicos fundamentales derivados de la complejidad dinamica del deporte. Los
modelos tradicionales de prediccidén han tendido a concentrarse en variables endoégenas
al juego, tales como estadisticas histéricas de rendimiento, posesiéon de baldn, goles
esperados y otras métricas derivadas directamente de la accién deportiva. Si bien estos
factores indudablemente influyen en el resultado final, su poder predictivo se ve limitado
por la omision de variables contextuales que pueden modular significativamente el
rendimiento de los equipos.

Entre estas variables contextuales, los factores ambientales merecen particular
atencioén en el contexto geografico andino. La literatura cientifica en fisiologia de ejercicio
ha establecido que la altitud afecta la capacidad aerdbica, el metabolismo energético y la
recuperacion muscular. Similarmente estos factores pueden influir en aspectos técnicos
del juego como el control del baldn, la precision en pases y la resistencia fisica de los
jugadores. No obstante, la mayoria de los estudios predictivos en futbol han sido
desarrollados en contextos geograficos relativamente homogéneos, principalmente en
Europa, donde las variaciones altitudinales y climaticas son menos pronunciadas.

1.1.2. Identificacién del problema

El futbol peruano y, por extension, el futbol andino, se disputa en condiciones
ambientales marcadamente heterogéneas. Los estadios se ubican desde el nivel del mar
hasta altitudes que superan los tres mil metros, con amplitudes térmicas diarias que
pueden alcanzar veinticinco grados Celsius. Esta variabilidad genera condiciones de juego
sustancialmente diferentes que podrian no ser capturadas adecuadamente por modelos

predictivos desarrollados en contextos climaticamente uniformes.
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Particularmente relevante resulta el caso peruano, donde las caracteristicas
geograficas y climaticas exhiben una heterogeneidad espacial pronunciada. Los equipos
que compiten en la region norte del pais enfrentan las temperaturas mas elevadas del
territorio nacional, con condiciones de humedad caracteristica de zonas costero-
desérticas. Posteriormente, estos mismos equipos pueden verse obligados a disputar
encuentros en localidades serranas donde las condiciones atmosféricas contrastan
radicalmente como temperaturas préximas o bajo cero grados Celsius, precipitaciones
pluviales frecuentes y altitudes que superan ampliamente los tres mil quinientos metros
sobre el nivel del mar. Esta transicion abrupta entre microclimas geograficos impone
demandas de aclimatacién fisiolégica que exceden las experimentadas en circuitos
futbolisticos de regiones con menor diversidad orografica. La adaptacion metabdlica
requerida para el rendimiento 6ptimo en estas condiciones divergentes constituye un factor
que raramente ha sido incorporado en arquitecturas predictivas convencionales.

En consecuencia, resulta necesario desarrollar aproximaciones metodologicas que
integren explicitamente estas variables meteorolégicas y evalien su contribucion marginal
a la capacidad predictiva.

1.2. Formulacion del problema
1.2.1. Problema general

¢, En qué medida la incorporacién de variables meteoroldgicas influye la capacidad
de prediccién de resultados de partidos de futbol en contextos geogréficos caracterizados
por alta variabilidad altitudinal y climatica?

1.2.2. Problemas especificos

e ;Qué variables estadisticas del partido de futbol resultan mas informativas para

la prediccién en el contexto estudiado?

e ;Qué elementos meteorologicos ejercen mayor influencia en la capacidad

predictiva de partidos de futbol?
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¢, En qué medida la heterogeneidad geografica y climatica de las distintas ligas
estudiadas afecta la predictiva?

¢ En qué medida mejora la eficiencia predictiva al incluir variables ambientales,
al comparar sistematicamente dos experimentos: (a) un modelo que utiliza
exclusivamente variables deportivas que capturan tendencias recientes de los
equipos, y (b) un modelo que incorpora variables meteorolégicas agregadas
mediante ventanas temporales que reflejan las tendencias recientes del clima

asociado a los equipos?

1.3. Objetivos

1.3.1. Objetivo general

Determinar en qué medida la incorporacion de variables meteorologicas en

modelos de redes neuronales recurrentes mejora la capacidad de prediccién de resultados

de partidos de futbol en contextos geograficos con alta variabilidad altitudinal y climatica.

1.3.2. Objetivo especifico

Medir qué variables estadisticas del partido de futbol resultan mas informativas
para la prediccidn de resultados en el contexto estudiado, utilizando técnicas de
aprendizaje supervisado basadas en ganancia de informacion.

Determinar qué elementos meteoroldgicos ejercen mayor influencia en la
capacidad predictiva de los modelos, mediante técnicas de aprendizaje
supervisado basadas en ganancia de informacion.

Evaluar la variabilidad el rendimiento predictivo del modelo desagregado por
cada pais para identificar posibles sesgos geograficos o climaticos en la
prediccion

Comparar la eficiencia predictiva entre dos experimentos: (a) un modelo que
emplea exclusivamente variables deportivas que capturan tendencias recientes
de los equipos, y (b) un modelo que incorpora variables meteoroldgicas

agregadas mediante ventanas temporales que representan las tendencias
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recientes del clima asociado a los equipos, con el fin de establecer la mejora
atribuible a la inclusién de variables ambientales.
1.4. Justificacion.

Esta formulacion del problema permite abordar tanto la relevancia tedrica de los
factores ambientales en el rendimiento deportivo como su utilidad practica en sistemas de
prediccion, contribuyendo al desarrollo de modelos contextualmente adaptados a la
realidad geografica andina.

Esta investigacion representa un reto debido a la complejidad dinamica de un
partido de futbol y su relacion con el comportamiento ambiental. En este estudio, se aborda
y contribuye a llenar un vacio existente, analizando cémo las variables meteorolégicas
afectan la dinamica del futbol en Peru y en otros paises ubicados a lo largo de la Cordillera
de los Andes. Este andlisis no solo amplia el conocimiento cientifico, sino que también
tendra un impacto en el contexto cultural del pais, influyendo en estrategias deportivas,
decisiones econdémicas y en la conexion de las comunidades con su deporte mas querido.

Este trabajo se justifica por varias razones clave:

Brecha de Conocimiento: Se observa una evidente falta de comprension
detallada sobre cémo la zonificacion altitudinal influye en el rendimiento deportivo, las
estrategias de juego y las decisiones relacionadas con las apuestas, especificamente en
el contexto de Peru. La carencia de estudios profundos en esta area destaca la necesidad
urgente de abordar y llenar este vacio de conocimiento.

Desarrollo del Futbol: Para federaciones deportivas y organizadores de torneos,
los resultados pueden informar decisiones sobre programacién de partidos, especialmente
en contextos donde condiciones meteoroldgicas extremas podrian comprometer la calidad
del espectaculo o la seguridad de los participantes. Las implicaciones practicas de esta
investigacion se extienden a multiples ambitos del ecosistema futbolistico. Para cuerpos
técnicos y preparadores fisicos, los hallazgos pueden informar estrategias de preparacion

especificas para partidos en condiciones ambientales desafiantes. El conocimiento sobre
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como variables meteoroldgicas especificas afecta el rendimiento puede guiar decisiones
sobre aclimatacion, hidratacion, estrategias tacticas y rotacion de jugadores.

Desafios Unicos en Peru: Perl ofrece un entorno ideal para estudiar la relacion
entre los factores ambientales y el rendimiento en el futbol. Analizar estas dinamicas en un
pais con tan rica diversidad geografica tiene el potencial de generar conocimientos
aplicables a otras regiones con caracteristicas similares.

Aplicacion en Otros Deportes: Los resultados de este estudio podrian tener
aplicaciones mas alla del futbol. Otros deportes que se juegan en condiciones similares
podrian beneficiarse de este conocimiento, y los modelos desarrollados podrian adaptarse
para hacer predicciones en diferentes contextos geograficos.

Aplicacidon de Tecnologias Emergentes: La aplicacion de técnicas avanzadas de
aprendizaje profundo en el analisis y prediccion de eventos deportivos es un campo en
constante crecimiento. Este estudio contribuye a la literatura existente al explorar como
estas tecnologias pueden adaptarse a las particularidades de un pais con una marcada
zonificacion altitudinal, como Peru.

Motivacion

A medida que el futbol se convierte en un elemento clave de la identidad peruana,
surge la necesidad de comprender las complejidades que introduce la zonificacién
altitudinal propia del pais en este deporte. Desde las tacticas de los equipos hasta las
apuestas que generan un flujo econémico significativo, este estudio se posiciona como un
referente en un campo de investigacion poco explorado, impulsado por la implementacién
de tecnologias avanzadas de aprendizaje profundo. Su contribuciéon no solo enriquecera
la comprension del futbol en Peru, sino que también ofrecera conocimientos valiosos que
podran ser aplicados en otras regiones con caracteristicas geograficas similares.

Este trabajo aporta:

Cultural Deportivo: El futbol es un deporte que tiene un profundo impacto cultural
en numerosos paises. Comprender como la zonificacion altitudinal influye en las

predicciones de los resultados podria modificar la manera en que las comunidades se
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vinculan con el deporte, especialmente en regiones donde existen variaciones
significativas de altitud y temperatura.

Estrategia Deportiva: Los resultados de esta investigacion podrian influir
directamente en las estrategias de los equipos y entrenadores. La adaptacion a las
condiciones de altitud podria convertirse en un factor clave en la planificacion estratégica,
lo cual impactaria en la competitividad de los equipos y, por ende, en el interés de los
aficionados, jugadores y entrenadores. Ademas, este conocimiento mejoraria la toma de
decisiones tacticas y la apreciacion del juego.

Aporte Econdmico: En sociedades donde las apuestas deportivas son comunes,
esta investigacién podria influir en la manera en que se realizan las apuestas y en las
expectativas de los apostadores. Este impacto econdmico y social seria significativo, ya
que el interés en las apuestas deportivas esta estrechamente relacionado con el interés en
los eventos deportivos. En Peru, el sector de las apuestas genero un movimiento
econoémico cercano a los mil millones de délares, siendo el 90 % de las apuestas
relacionadas con el futbol. Segun estimaciones del Ministerio de Comercio Exterior y
Turismo (Mincetur), el movimiento econdémico ascenderia a 4,500 millones de soles.

Contribucién al Conocimiento Cientifico: La investigacién en la interseccion de
deportes, geografia y tecnologias emergentes es aun limitada. Este estudio tiene como
objetivo llenar este vacio, proporcionando una comprensién mas profunda de cémo la
altitud y las variables asociadas impactan en la capacidad predictiva de los modelos de
aprendizaje profundo en un contexto deportivo.

1.5. Alcances

La investigacion cubre partidos de futbol profesional disputados en las principales
ligas de Peru, Chile, Ecuador y Colombia durante el periodo comprendido entre los anos
2017 y parte del 2025, determinados por la disponibilidad de datos. La inclusion de
multiples paises permite evaluar la robustez de los hallazgos a través de diferentes
contextos dentro del marco geografico andino, aumentando la generalizacion de las

conclusiones.
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El analisis se restringe a partidos donde esta disponible informacion completa tanto
de estadisticas deportivas como de condiciones meteorolégicas, garantizando asi la
integridad del analisis multivariado. Las variables meteorolégicas son obtenidas de fuentes
satelitales, proporcionando mediciones objetivas y consistentes a través de las diferentes
ubicaciones geograficas.

1.6. Limitaciones

Falta de informacion detallada sobre el estado fisico de los jugadores, lesiones,
suspensiones, tacticas propuestas, el director técnico y otros factores de alineacion, los
cuales pueden influir considerablemente en el resultado de los partidos, pero no son
reflejados por las estadisticas agregadas del equipo. Asimismo, no se considera aspectos
tacticos, motivacionales y psicoldgicos que podrian ser clave en determinados encuentros.
Los datos utilizados provienen de fuentes que combinan recolecciéon manual y visién por
computadora, lo que puede generar errores e imprecisiones en las estadisticas y
cronologia de los eventos, afectando la calidad de los datos. Ademas, se limita a partidos
con transmision o cobertura oficial, excluyendo aquellos sin registros suficientes en
localidades remotas o con infraestructura limitada.

Las variables meteoroldgicas, aunque obtenidas de fuentes confiables, representan
mediciones para la ubicacion general del estadio en ventanas temporales especificas, y
pueden no capturar perfectamente las condiciones micro climaticas exactas en el terreno
de juego durante las dos horas de duracién del partido. Variaciones localizadas en
condiciones dentro del estadio o cambios rapidos durante el transcurso del encuentro no
son capturados completamente por las mediciones utilizadas.

Finalmente, la naturaleza observacional del estudio impide el establecimiento de
relaciones causales definitivas entre variables meteorolégicas y resultados. Las
asociaciones identificadas, aunque informativas, son interpretadas con la cautela
apropiada para estudios no experimentales donde no es posible controlar completamente

todas las variables confundentes.
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CAPITULO I
Marco teérico

2.1. Marco Teérico
2.1.1. El Fatbol y su Influencia Cultural

El futbol constituye un fenomeno sociocultural de primera magnitud en el Peru,
trascendiendo su dimension deportiva para convertirse en un catalizador de identidad
colectiva y cohesion social. A diferencia de otras manifestaciones culturales, este deporte
posee la capacidad unica de articular diversos estratos sociales, regiones geograficas y
tradiciones locales en torno a una experiencia compartida que refuerza el sentido de
pertenencia nacional. Los encuentros deportivos de las selecciones nacionales no se
reducen a meros eventos competitivos, sino que se configuran como rituales colectivos
donde las victorias o derrotas adquieren significados que trascienden el resultado
deportivo, consolidandose como experiencias que fortalecen los lazos de solidaridad
ciudadana y la construccion de una narrativa nacional compartida (Escalona, 2021). Este
fendbmeno se observa particularmente en paises sudamericanos donde el futbol representa
uno de los principales vehiculos de expresion identitaria y movilizacion social. Desde una
perspectiva econdémica, el futbol ha evolucionado hacia una industria globalizada que
genera valor econdémico sustancial mediante multiples canales: derechos de transmision,
patrocinios corporativos, comercializacion de productos oficiales y turismo deportivo. La
profesionalizacion creciente del deporte ha estimulado el desarrollo de infraestructura
especializada, creacién de empleos directos e indirectos, y transferencias econdémicas
significativas entre clubes y federaciones nacionales (Amaya Gémez; Luis Angel, 2022).

El analisis del rendimiento futbolistico ha experimentado una transformacion radical
durante las ultimas dos décadas, transitando desde observaciones cualitativas basadas en
la experiencia de entrenadores hacia sistemas cuantitativos sofisticados que integran
tecnologias de captura de datos en tiempo real. Esta evolucién responde a la creciente
competitividad del futbol profesional y la necesidad de optimizar el rendimiento mediante

decisiones fundamentadas en evidencia empirica. Los sistemas contemporaneos de
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analisis de rendimiento emplean tecnologias de rastreo dptico y dispositivos inerciales
portatiles que registran métricas fisicas, tacticas y técnicas con precision milimétrica (René
Manassé Galekwa; Jean Marie Tshimula; Etienne Gael Tajeuna; Kyamakya Kyandoghere,
2024). Estas herramientas permiten cuantificar variables como distancia recorrida,
velocidad de desplazamiento, aceleraciones, zonas de actividad en el campo, precisién en
pases y eficiencia en duelos individuales. La disponibilidad de estos datos ha
democratizado parcialmente el acceso a informacion previamente exclusiva de
organizaciones con recursos sustanciales. La incorporacion de paradigmas analiticos
provenientes de la ciencia de datos ha introducido metodologias estadisticas avanzadas y
algoritmos de aprendizaje automatico en el analisis futbolistico (René Manassé Galekwa;
Jean Marie Tshimula; Etienne Gael Tajeuna; Kyamakya Kyandoghere, 2024). Estos
enfoques permiten identificar patrones tacticos complejos, evaluar probabilidades de
eventos especificos durante el juego y desarrollar modelos predictivos que informan
decisiones estratégicas tanto en preparacién previa como durante la competicion (Daniel
Memmert ; Dominik Raabe, 2023).
2.1.2 Prediccion de Resultados en Futbol

2.1.2.1 Modelos estadisticos clasicos

El deporte ha evolucionado mucho mas alla de las estadisticas tradicionales como
goles anotados, tiros o porcentajes de posesién. En el juego actual, los conocimientos
basados en datos son indispensables para equipos, entrenadores y analistas que buscan
optimizar el rendimiento, mejorar la toma de decisiones tacticas y obtener una ventaja
competitiva. Los modelos basados en distribuciones de Poisson representan otro enfoque
clasico ampliamente utilizado para estimar probabilidades de diferentes marcadores
(Amadu, 2024) (Rory Bunker; Calvin Yeung; Teo Susnjak; Chester Espie; Keisuke Fuijii,
2023). Estos modelos asumen que el numero de goles anotados por cada equipo sigue
una distribucion de Poisson independiente, cuyos parametros de tasa se estiman mediante
regresion considerando variables como fuerza ofensiva, capacidad defensiva, valor en el

mercado, goles a favor, goles en contra y ventaja de localia. A pesar de su simplicidad
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conceptual, estos modelos han demostrado capacidad predictiva razonable en diversas
competiciones (Gémez & Reyes, 2024). Con el auge de las tecnologias de seguimiento y
la disponibilidad de grandes conjuntos de datos que registran cada movimiento de los
jugadores y del balén, el analisis del futbol ha pasado de métricas meramente descriptivas
a modelos complejos que evaluan las acciones de los jugadores, predicen resultados y
simulan estrategias de partido (Daniel Carrilho ; Micael Santos Couceiro; Joao Brito ; Pedro
Figueiredo ; Rui J. Lopes ; Duarte Araujo). El aprovechamiento del aprendizaje automatico
(Machine Learning) y la inteligencia artificial (IA) ha permitido obtener una comprensién
mas profunda del comportamiento de los jugadores, las formaciones tacticas y la dindmica
de los equipos, revolucionando la forma en que se analizan los encuentros y se desarrollan
las estrategias (Amadu, 2024).

2.1.2.2 Evolucion hacia enfoques basados en datos y aprendizaje profundo

La disponibilidad creciente de datos granulares sobre eventos de juego ha
catalizado el desarrollo de metodologias predictivas mas sofisticadas fundamentadas en
técnicas de aprendizaje automatico. Los algoritmos de clasificacion supervisada,
incluyendo bosques aleatorios, maquinas de vectores de soporte y métodos de ensamble,
han demostrado capacidad para capturar relaciones no lineales complejas entre multiples
variables predictoras y los resultados de partidos (Rory Bunker, Calvin Yeung, Keisuke
Fujii, 2024). Las redes neuronales profundas representan la frontera actual en
modelizacion predictiva deportiva. Estas arquitecturas multicapa pueden aprender
representaciones jerarquicas de caracteristicas, identificando automaticamente patrones
relevantes sin requerir ingenieria manual exhaustiva de variables. Las redes neuronales
recurrentes, especificamente disefiadas para procesar secuencias temporales, resultan
particularmente apropiadas para capturar dinamicas evolutivas del rendimiento de equipos
a lo largo de temporadas competitivas (Nallapa, 2022).

2.1.2.3 Limitaciones de los Modelos Tradicionales

Los enfoques predictivos tradicionales presentan limitaciones metodoldgicas

significativas derivadas de sus supuestos fundamentales que fueron construidos. Los
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modelos basados en estadisticas agregadas asumen implicitamente estacionariedad en el
rendimiento de equipos, ignorando fluctuaciones debidas a cambios en plantillas, lesiones,
variaciones en forma fisica o modificaciones tacticas implementadas por cuerpos técnicos.
Esta asuncién resulta particularmente problematica en competiciones extensas donde la
composicion y estrategia de equipos evoluciona sustancialmente (Spyridon Plakias ;
Themistoklis Tsatalas ; Xenofon Betsios; Giannis Giakas, 2025). La mayoria de modelos
tradicionales desestiman factores contextuales que la evidencia empirica sugiere que
ejercen influencia significativa sobre resultados. Variables como condiciones
meteoroldgicas adversas, altitud del estadio, fatiga acumulada por calendarios
congestionados, importancia relativa del encuentro dentro de la competicion y presion
psicologica asociada a derbi locales o partidos decisivos raramente se incorporan en
formulaciones clasicas. La naturaleza inherentemente estocastica del futbol impone un
limite fundamental a la precision alcanzable mediante cualquier sistema predictivo.
Eventos de baja probabilidad, pero alto impacto, como errores arbitrales controvertidos,
expulsiones tempranas o lesiones inesperadas durante el partido, pueden alterar
radicalmente el desarrollo y resultado de encuentros de manera dificilmente predecible a
priori (Mazi Essoloani Aleza; D. Vetrithangam, 2023). Esta irreductibilidad estocastica
sugiere que incluso los modelos mas sofisticados alcanzaran precisiones modestas en
términos absolutos.
2.1.3 Factores Ambientales y su Influencia en el Rendimiento Futbolistico

2.1.3.1 Variables meteoroldgicas relevantes

e Temperatura y humedad relativa: Las condiciones ambientales de temperatura y

humedad constituyen determinantes primarios del estrés térmico experimentado

por deportistas durante actividad fisica intensa. Las temperaturas ambientales

elevadas intensifican los procesos de deshidratacién y aceleran la aparicion de

fatiga prematura, reduciendo la capacidad aerdbica y aumentando el riesgo de

lesiones musculares y golpes de calor. Paralelamente, los niveles elevados de

humedad relativa comprometen la eficiencia de los mecanismos termorreguladores
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del organismo, obstaculizando la disipacién de calor corporal mediante evaporacion
cutanea (Jhonny Francisco Segovia Romero; Joseph Taro, 2025) (Philo U Saunders
; David B Pyne ; Christopher J Gore, 2009).

Precipitacion: Las condiciones pluviométricas modifican sustancialmente las
caracteristicas de la superficie de juego, afectando tanto el comportamiento del
balén como la biomecanica de los desplazamientos de jugadores. La presencia de
agua en el césped reduce el coeficiente de friccidn, incrementando la velocidad de
rodamiento del balén y dificultando el control técnico en recepciones y
conducciones. Simultdneamente, la saturacion del terreno aumenta el riesgo de
resbalones y caidas, modificando patrones de movimiento y potencialmente
incrementando la incidencia lesional.

Velocidad y direccion del viento: Las condiciones anemométricas ejercen influencia
directa sobre la trayectoria y velocidad del balén, particularmente en pases largos,
centros y disparos a distancia. Vientos con velocidades superiores pueden desviar
significativamente las trayectorias balisticas, introduciendo incertidumbre adicional
en la ejecucion técnica. Este efecto resulta especialmente relevante en estadios
descubiertos sin proteccion perimetral que mitigue la exposicion al viento
(Sungchan Hong ; Ryosuke Nobori, 2016).

Presion atmosférica y altitud: La altitud sobre el nivel del mar constituye una variable
ambiental particularmente critica en el contexto geografico andino. La disminucion
progresiva de la presién barométrica en funcion de la altura genera una reduccion
proporcional en la presién parcial de oxigeno atmosférico, fendmeno que
compromete la difusion alveolar de oxigeno y, consecuentemente, la saturacion de
oxigeno en hemoglobina. Esta disminucion de oxigeno en el organismo debido a la
reducida presion desencadena adaptaciones fisioldgicas agudas que incluyen

incremento de frecuencia respiratoria y cardiaca, reduccién del volumen sistélico y
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disminucion de la capacidad aerébica maxima (Sarah lllmer; Frank Daumann,

2022) (Ronaldo Kobal ; Irineu Loturco, 2022).

2.1.3.2 Efectos fisiologicos en el jugador

La exposicion a condiciones ambientales adversas activas respuestas fisiologicas
compensatorias que pueden comprometer el rendimiento deportivo cuando superan la
capacidad adaptativa del organismo. En ambientes calurosos, el incremento del flujo
sanguineo cutaneo para facilitar la disipacion térmica compite con las demandas
metabdlicas de la musculatura activa, resultando en una reduccion de la capacidad de
trabajo fisico. La deshidrataciéon progresiva, evidenciada mediante pérdidas hidricas del
peso corporal, deteriora tanto el rendimiento fisico como las funciones cognitivas
relevantes para la toma de decisiones tacticas (Jhonny Francisco Segovia Romero; Joseph
Taro, 2025).

La hipoxia de altitud induce adaptaciones hematolégicas agudas, incluyendo
incremento en la sintesis de eritropoyetina y consecuente estimulacién de la eritropoyesis.
Sin embargo, estas adaptaciones requieren periodos de aclimatacion de varias semanas
para desarrollarse completamente. En ausencia de aclimatacion adecuada, la exposicion
aguda a altitudes superiores a 2500 metros resulta en deterioro significativo de la
capacidad aerdbica, manifestandose en reduccion de la velocidad de carrera, menor
distancia total recorrida y tiempos de recuperacién prolongados entre esfuerzos de alta
intensidad (Ronaldo Kobal ; Irineu Loturco, 2022).

2.1.3.3 Impacto en la tactica, precision y ritmo del partido

Las condiciones ambientales no solamente afectan las capacidades fisicas
individuales, sino que también modulan aspectos tacticos y estratégicos del juego
colectivo. En condiciones de temperatura elevada, se observa tipicamente una reduccion
en el ritmo general del partido, menor densidad de acciones de alta intensidad y
modificaciones en patrones de posesion tendientes a economizar gasto energético. Los
equipos tienden a adoptar estrategias mas conservadoras, priorizando control de posesion

sobre presion intensiva constante. La precision técnica en pases y disparos puede verse
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comprometida por condiciones meteoroldgicas adversas. Terrenos de juego saturados por
lluvia incrementan la variabilidad en los rebotes del baldn, dificultando la anticipacion y
control. El viento introduce incertidumbre adicional en trayectorias aéreas, reduciendo la
efectividad de centros laterales y disparos lejanos. Estas perturbaciones pueden favorecer
estrategias basadas en juego directo y transiciones rapidas sobre elaboracidon prolongada
mediante pases cortos (Sarah lllmer; Frank Daumann, 2022). La altitud modifica
sustancialmente las propiedades fisicas del baléon y su comportamiento dinamico. La
menor densidad del aire en altura reduce la resistencia aerodinamica, incrementando la
velocidad de desplazamiento y modificando trayectorias de manera menos predecible.
Este fendmeno genera parabolas mas extendidas en pases largos y disparos a distancia,
demandando ajustes técnicos y tacticos especificos por parte de jugadores y cuerpos

técnicos (Sungchan Hong ; Ryosuke Nobori, 2016).

2.1.4 Fuentes de Datos y Herramientas

2.1.4.1 Plataformas de Estadisticas de Futbol

Los datos de rastreo posicional, obtenidos mediante sistemas 6pticos multicamara
o dispositivos GPS portatiles, capturan las coordenadas espaciales de todos los jugadores
y el balén con frecuencias de muestreo. Esta informacién permite cuantificar métricas
fisicas como distancias recorridas, velocidades maximas, aceleraciones, desaceleraciones
y mapas de calor que visualizan zonas de mayor actividad. Adicionalmente, facilita analisis
tacticos sofisticados como formaciones dinamicas, amplitud del equipo, profundidad
ofensiva y coordinacién de lineas (Wilton W Fok; Louis C Chan; Carol Chen, 2018). Los
datos de desempefio fisico, obtenidos mediante sensores inerciales integrados en
indumentaria especializada, registran variables fisiolégicas y biomecanicas como
frecuencia cardiaca, carga metabdlica, asimetrias en patrones de carrera y distribucion de
impactos. Esta informacion resulta valiosa para monitorear estados de fatiga, prevenir
lesiones y personalizar programas de entrenamiento (Daniel Carrilho ; Micael Santos

Couceiro; Jodo Brito ; Pedro Figueiredo ; Rui J. Lopes ; Duarte Araujo).
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Los principales proveedores de datos deportivos se diferencian por su enfoque y
alcance algunos garantizan alta precision mediante codificacion manual de eventos por
analistas especializados, aunque su cobertura se limita a competiciones de élite. Otros
combinan datos de eventos con video sincronizado, facilitando analisis contextualizados y
comparaciones internacionales, siendo util para scouting de jugadores. También ofrecen
datos bajo licencias académicas y ofreciendo métricas avanzadas como el valor esperado
de gol (xG) basado en modelos estadisticos contextuales. Por su parte, nuestra fuente de
datos actua como agregador global de informacion, proporcionando acceso sistematico a
estadisticas a través de su API, aunque con limitaciones en granularidad temporal y en
detalle de eventos individuales

2.1.4.2 NASA POWER

Fundamentos técnicos del sistema:

El proyecto POWER (Prediction Of Worldwide Energy Resources) de la NASA
constituye una fuente particularmente adecuada para investigacion que requiere datos
climaticos con cobertura global y consistencia temporal. El sistema integra informacién de
multiples fuentes satelitales y modelos atmosféricos para generar estimaciones de
variables meteorolégicas con resolucidon temporal horaria y resolucién espacial de
aproximadamente 0.5 grados de latitud-longitud (equivalente a aproximadamente 55 km
en el ecuador) (Center, 2025). Los productos de datos POWER se fundamentan
principalmente en MERRA-2 (Modern-Era Retrospective analysis for Research and
Applications, Version 2), un sistema de reanalisis atmosférico desarrollado por el Global
Modeling and Assimilation Office de la NASA. MERRA-2 asimila observaciones satelitales
y de estaciones terrestres en un modelo numérico de prediccion meteoroldgica, generando
campos meteorolégicos espacialmente completos y fisicamente consistentes que cubren
el periodo desde 1980 hasta el presente. Complementariamente, POWER incorpora
procesamiento especifico de datos satelitales para variables relacionadas con radiacién
solar y propiedades de nubes, derivados del proyecto CERES (Clouds and the Earth’s

Radiant Energy System) (Center, 2025). Esta combinacién de fuentes permite ofrecer un
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conjunto comprehensivo de variables relevantes para aplicaciones que requieren
caracterizacion detallada de condiciones atmosféricas.

Variables climaticas disponibles y su pertinencia:

El sistema POWER provee acceso a mas de 200 parametros meteorologicos y
solares, incluyendo variables directamente relevantes para andlisis de rendimiento
deportivo. Entre las variables de mayor pertinencia se encuentran la temperatura del aire
a 2 metros de altura (T2M), que representa condiciones térmicas experimentadas por
individuos en superficie; la humedad relativa a 2 metros (RH2M), indicativa del contenido
de vapor de agua atmosférico; la velocidad y direccion del viento a 2 y 10 metros (WS2M,
WD2M, WS10M, WD10M), la precipitacion total corregida (PRECTOT-CORR), que incluye
ajustes por subestimacion sistematica en productos satelitales; y la cobertura nubosa
(CLOUD_AMT). Adicionalmente, POWER ofrece variables radiactivas como la radiacién
solar incidente en superficie (ALLSKY_SFC_SW_DWN), relevante para evaluar exposicion
a radiacion ultravioleta y cargas térmicas radiactivas (Center, 2025). Estas variables se
distribuyen con resolucion temporal horaria, permitiendo sincronizacion precisa con
horarios de eventos deportivos y captura de variaciones diurnas en condiciones
meteoroldgicas.

Ventajas metodologicas para investigacion:

La utilizacion de datos POWER ofrece ventajas metodolégicas significativas para
investigacion cientifica. La cobertura global permite estudios comparativos entre regiones
geograficas diversas sin restricciones de disponibilidad de estaciones meteoroldgicas
locales. Las series historicas extensas, facilitan analisis retrospectivos comprehensivos y
permiten controlar variabilidad climatica interanual. La consistencia metodolégica derivada
del uso de sistemas de reanalisis que asimilan multiples fuentes observacionales en un
marco fisico consistente minimiza discontinuidades temporales y valores andémalos
artificiales. Esta propiedad resulta particularmente valiosa para analisis de series
temporales donde discontinuidades metodolégicas pueden introducir artefactos que

confunden senales reales. La accesibilidad mediante API publica permite automatizacion
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completa de procesos de descarga, facilitando la replicabilidad de estudios y la
actualizacién continua de bases de datos. La ausencia de costos de licenciamiento
democratiza el acceso a informacion climatica de calidad para investigacion académica,
contrastando con fuentes comerciales que imponen barreras econémicas significativas.

Limitaciones y consideraciones:

La resolucion espacial de aproximadamente 50 km implica que las estimaciones
corresponden a promedios sobre areas considerables, pudiendo no capturar microclimas
locales o efectos topograficos de pequefia escala. En contextos de topografia compleja,
como las zonas andinas del Peru, esta limitacion puede resultar en divergencias entre
condiciones estimadas y las efectivamente experimentadas en el estadio especifico. Los
datos POWER, al derivarse de productos modelados que combinan observaciones directas
con ecuaciones fisicas, incorporan incertidumbre inherente. Variables como la
precipitacién, particularmente dificiles de observar desde satélite sobre superficies
continentales, pueden presentar mayores errores que variables directamente medidas
como la temperatura. El sistema utiliza el valor -999 como indicador de dato faltante,
requiriendo manejo apropiado en analisis estadistico para evitar interpretaciones erroneas.

La latencia en la disponibilidad de datos representa otra consideracion relevante.
Aunque los productos POWER se actualizan regularmente, puede existir un desfase
temporal de varios dias entre la ocurrencia de condiciones meteorolégicas y su
disponibilidad en el sistema. Esta limitacion resulta menos relevante para estudios
retrospectivos, pero puede restringir aplicaciones que requieren informacion en tiempo casi
real.

2.1.5 Aprendizaje Automatico y Aprendizaje Profundo

Los algoritmos de aprendizaje automatico operan mediante la identificacion de
patrones estadisticos y estructuras latentes en conjuntos de datos, utilizando estos
patrones para realizar inferencias o predicciones sobre observaciones no contempladas
durante el proceso de entrenamiento. El aprendizaje supervisado representa el paradigma

mas directamente aplicable a problemas de predicciéon deportiva. Este enfoque utiliza
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conjuntos de datos etiquetados donde cada observacion comprende tanto las variables
predictoras como la variable objetivo conocida. El algoritmo aprende una funcién de mapeo
que relaciona entradas con salidas, optimizando sus parametros para minimizar el error
entre predicciones y valores reales observados. Los problemas de clasificacion, donde se
predice una etiqueta categérica y los problemas de regresién, donde se estima un valor
continuo, constituyen las dos vertientes principales del aprendizaje supervisado (Huyen,
2022).

2.1.5.1 Seleccion de caracteristicas

La seleccion de caracteristicas constituye un proceso fundamental en el desarrollo
de modelos de aprendizaje automatico que busca identificar el subconjunto éptimo de
variables predictoras que maximizan el desempefio del modelo mientras minimizan la
complejidad computacional y el riesgo de sobreajuste. En dominios con alta
dimensionalidad, como el analisis deportivo donde multiples estadisticas y variables
contextuales pueden registrarse, la inclusion indiscriminada de todas las caracteristicas
disponibles introduce riesgos sustanciales: incremento de requisitos computacionales,
mayor propension al sobreajuste debido a la captura de correlaciones espurias, y
degradacion de la interpretabilidad del modelo. La seleccion hacia adelante (forward
selection) comienza con un conjunto vacio, agregando secuencialmente la caracteristica
que mas mejora el desempefio. La eliminacion hacia atras (backward elimination) inicia
con todas las caracteristicas, removiendo iterativamente aquella cuya ausencia menos
degrada el desempefio. Aunque estos métodos consideran la relevancia especifica para el
modelo empleado, resultan computacionalmente costosos al requerir multiples ciclos de
entrenamiento (Alice Zheng; Amanda Casari, 2018).

2.1.5.2 Proceso de modelado

El desarrollo de modelos de aprendizaje automatico sigue un flujo estructurado que
comienza con el preprocesamiento de datos. Esta etapa comprende limpieza de valores
faltantes o anémalos, normalizacién o estandarizacién de variables para homogenizar

escalas, codificacion de variables categdricas en representaciones numéricas, Yy
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potencialmente ingenieria de caracteristicas para crear variables derivadas que capturen
relaciones relevantes. La fase de entrenamiento emplea algoritmos de optimizacién que
ajustan iterativamente los parametros del modelo para minimizar una funcién de pérdida
que cuantifica la discrepancia entre predicciones y valores reales. La eleccién del algoritmo
de optimizacion (gradiente descendente estocastico, Adam, RMSprop) y la configuracion
de hiper parametros (tasa de aprendizaje, tamafio de lote, nUmero de épocas) influyen
significativamente en la convergencia y desemperio final del modelo (Huyen, 2022). La
validacién mediante conjuntos de datos independientes permite evaluar la capacidad de
generalizaciéon del modelo a datos no vistos durante el entrenamiento. La deteccion
temprana de sobreajuste, donde el modelo memoriza patrones especificos del conjunto de
entrenamiento sin capturar relaciones generalizables, constituye un aspecto critico de esta
fase. La evaluacion final emplea métricas cuantitativas apropiadas al tipo de problema.
Para clasificacion multiclase, métricas como precisién, recall, F1-score y matrices de
confusién permiten caracterizar el desempefio diferenciado en cada categoria. Para
regresion, métricas como error cuadratico medio, error absoluto medio y coeficiente de
determinacion R2 cuantifican la precision de las estimaciones numéricas (Huyen, 2022).
2.1.5.3 Redes Neuronales Recurrentes (RNN)

Las redes neuronales recurrentes representan una clase especializada de
arquitecturas disefadas especificamente para procesar datos secuenciales donde el orden
temporal o espacial contiene informacién relevante. A diferencia de las redes feed forward
que asumen independencia entre observaciones, las RNN incorporan conexiones ciclicas
que permiten mantener un estado interno o memoria que captura informacién de pasos
temporales anteriores.
2.1.5.3.1 Concepto de dependencia temporal

La dependencia temporal surge cuando el valor apropiado de una prediccién en un
momento determinado depende no solamente de las caracteristicas observadas en ese
instante, sino también del contexto proporcionado por observaciones previas (Wilton W

Fok; Louis C Chan; Carol Chen, 2018). En el analisis deportivo, esta propiedad resulta
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fundamental, el resultado esperado de un partido depende no Unicamente de las
estadisticas actuales de los equipos, sino también de su trayectoria reciente, secuencias
de victorias o derrotas, y evolucion de forma fisica a lo largo de la temporada. Las RNN
abordan esta dependencia temporal mediante un mecanismo de estado oculto que se
actualiza en cada paso temporal, integrando informacién de la entrada actual con el estado
heredado del paso anterior. Esta recursidon permite, en principio, que la red capture
dependencias temporales de longitud arbitraria, aunque en la practica las RNN
tradicionales presentan dificultades para aprender dependencias muy extensas ( Roger
Grosse ; Jimmy Ba's, 2017).
2.1.5.3.2 Arquitecturas de Redes Neuronales

Las redes neuronales artificiales constituyen sistemas computacionales inspirados
en la arquitectura del sistema nervioso bioldgico, disehadas para reconocer patrones
complejos mediante el procesamiento jerarquico de informacion. La unidad fundamental,
la neurona artificial, implementa una transformacion no lineal de una combinacion
ponderada de sus entradas, emulando conceptualmente el comportamiento de neuronas
bioldgicas que integran sefiales sinapticas y generan potenciales de accion.

Una red neuronal tipica organiza neuronas en capas diferenciadas funcionalmente.
La capa de entrada recibe las caracteristicas o variables predictoras, codificandolas en
representaciones numéricas apropiadas. Las capas ocultas ejecutan transformaciones
sucesivas de la informacion mediante operaciones matriciales ponderadas seguidas de
funciones de activacion no lineales. La capa de salida genera las predicciones finales,
adaptandose a la naturaleza del problema (activacién softmax para clasificacion multiclase,
activacion lineal para regresion). Cada neurona calcula una suma ponderada de sus
entradas mas un término de sesgo, aplicando posteriormente una funcién de activacion
que introduce no linealidad. Funciones de activacion comunmente empleadas incluyen la
tangente hiperbdlica (tanh), la unidad lineal rectificada (ReLU) y sus variantes (Leaky

ReLU, ELU). La eleccion de la funcién de activacion influye tanto en la capacidad expresiva
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de la red como en la eficiencia del entrenamiento (lan Goodfellow ; Yoshua Bengio ; Aaron
Courville, 2016).
2.1.5.3.3 Retro propagacion y optimizacién

El entrenamiento de redes neuronales emplea el algoritmo de retro propagacion,
que calcula eficientemente los gradientes de la funcion de pérdida respecto a todos los
parametros mediante aplicacion repetida de la regla de la cadena del calculo diferencial.
Estos gradientes dirigen la actualizacion de pesos mediante algoritmos de optimizacién
basados en descenso de gradiente, que ajustan iterativamente los parametros en la
direccion que reduce la funcion de pérdida. Los optimizadores adaptativos modernos,
como Adam (Adaptive Moment Estimation) y RMSprop, mantienen estimaciones de primer
y segundo momento de los gradientes, ajustando dinamicamente las tasas de aprendizaje
por parametro. Esta adaptabilidad acelera la convergencia y mejora la robustez frente a
hiper parametros mal configurados, aunque requiere memoria adicional para almacenar
los momentos (lan Goodfellow ; Yoshua Bengio ; Aaron Courville, 2016).
2.1.5.3.4 Regularizacién y prevencion de sobreajuste

El sobreajuste constituye un desafio fundamental en redes neuronales profundas,
manifestandose cuando el modelo desarrolla representaciones excesivamente especificas
a los datos de entrenamiento que no generalizan a datos nuevos. Multiples estrategias de
regularizacion mitigan este problema. El dropout desactiva aleatoriamente una fraccién de
neuronas durante el entrenamiento, forzando la red a aprender representaciones
redundantes mas robustas. La parada temprana interrumpe el entrenamiento cuando el
desempeno en el conjunto de validacion comienza a deteriorarse, previniendo ajuste
excesivo a ruido en los datos de entrenamiento ( Roger Grosse ; Jimmy Ba's, 2017). La
augmentacion de datos, cuando resulta aplicable al dominio especifico, incrementa
artificialmente el tamafio efectivo del conjunto de entrenamiento mediante
transformaciones que preservan la etiqueta correcta. En contextos deportivos, esto podria
incluir reflexiones de posiciones en el campo o agregacién de ruido calibrado a estadisticas

numeéricas.
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2.1.5.3.5 Problema del desvanecimiento y explosion del gradiente:

El entrenamiento de RNN mediante retro propagacion temporal enfrenta desafios
significativos de la propagacién de gradientes a través de muchos pasos temporales.
Durante la retro propagacion, los gradientes se multiplican repetidamente por las mismas
matrices de pesos, resultando en dos fendmenos patolégicos. El desvanecimiento del
gradiente ocurre cuando productos repetidos de valores menores que uno conducen a
gradientes exponencialmente decrecientes que efectivamente anulan la sefial de
aprendizaje para dependencias largas. Conversamente, la explosién del gradiente surge
cuando productos de valores mayores que uno generan gradientes exponencialmente
crecientes que desestabilizan el proceso de optimizacién ( Roger Grosse ; Jimmy Ba's,
2017).
2.1.5.3.6 Long Short-Term Memory (LSTM)

Las redes LSTM, fueron disefiadas especificamente para resolver el problema del
desvanecimiento del gradiente mediante la introduccion de una arquitectura de celda de
memoria con mecanismos de control de flujo de informacién. La innovacién fundamental
radica en la separacion entre el estado de celda (memoria a largo plazo) y el estado oculto
(salida a corto plazo), junto con un sistema de puertas que regulan selectivamente qué
informacion se retiene, actualiza o descarta.

Esta arquitectura modular permite que las LSTM mantengan informacion relevante
durante periodos temporales extensos, evitando el desvanecimiento del gradiente
mediante el flujo constante de informacién a través del estado de celda. La capacidad
resultante para capturar dependencias a largo plazo ha consolidado las LSTM como
arquitectura preferida para multiples aplicaciones de procesamiento secuencial (Wilton W
Fok; Louis C Chan; Carol Chen, 2018).
2.1.5.3.6 Gated Recurrent Unit (GRU)

Las unidades GRU, representan una simplificacién arquitecténica de las LSTM que
mantiene su capacidad de modelar dependencias a largo plazo mientras reduce la

complejidad computacional. La innovacion principal consiste en la consolidacion de las
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puertas de entrada y olvido en una unica puerta de actualizacion, eliminando ademas la
distincion entre estado de celda y estado oculto (Ariana Yunita ; MHD Igbal Pratama, 2025).
La arquitectura GRU implementa dos mecanismos de control.

Gracias a esta estructura compacta, la GRU logra un desempefno comparable al de
la LSTM con menor complejidad computacional y menos parametros a entrenar (Ariana
Yunita ; MHD Igbal Pratama, 2025).

2.1.5.4 Arboles de Decision

Los algoritmos basados en arboles de decisién constituyen una familia de métodos
de aprendizaje supervisado que modelan relaciones entre variables mediante estructuras
jerarquicas de decisiones sucesivas. Estos algoritmos poseen propiedades
particularmente valiosas para analisis de caracteristicas: capacidad innata para manejar
no linealidades e interacciones complejas sin transformaciones explicitas, robustez ante
variables en diferentes escalas sin requerir normalizacion, y generaciéon natural de métricas
de importancia de caracteristicas.

Un arbol de decisidn particiona recursivamente el espacio de caracteristicas
mediante reglas de decision binarias, construyendo una estructura jerarquica donde cada
nodo interno representa una prueba sobre una caracteristica especifica, cada rama
corresponde al resultado de esa prueba, y cada nodo hoja asigna una etiqueta de clase o
valor de regresién. El proceso de construccion emplea algoritmos greedy que seleccionan
en cada paso la particion que maximiza la pureza de los subconjuntos resultantes. Para
clasificacion, criterios como el indice de Gini o la entropia de Shannon cuantifican la
homogeneidad de clases en cada nodo (Alice Zheng; Amanda Casari, 2018).

Los arboles de decision individuales tienden a desarrollar estructuras profundas
que memorizan el conjunto de entrenamiento, manifestando alto sobreajuste. Técnicas de
poda limitan este problema removiendo ramas que proporcionan mejoras marginales
insuficientes o estableciendo restricciones sobre profundidad maxima, nimero minimo de

instancias por nodo, o0 ganancia minima requerida para particionar.
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2.1.5.5 Métricas y Evaluacion de Modelos Multiclase

Métricas fundamentales:

La evaluacion de modelos de clasificacién multiclase requiere métricas que
capturen diferentes aspectos del desempefio predictivo. La exactitud (accuracy)
representa la proporcion de predicciones correctas sobre el total de observaciones,
constituyendo la métrica mas intuitiva pero potencialmente engafosa en presencia de
desbalance de clases (Huyen, 2022).

La precision (precision) cuantifica la proporcion de predicciones positivas que
resultan correctas para cada clase, respondiendo a la pregunta: "De todos los casos que
el modelo predijo como clase k, ¢cuantos realmente pertenecian a esa clase?"
Formalmente, para la clase k:

Precisié VPy
recision, = ———
KT VP, +FP,
Donde VP, denota los verdaderos positivos y FP,, los falsos positivos para la clase k
El recall (sensibilidad o exhaustividad) mide la proporcién de instancias reales de

cada clase que el modelo identifica correctamente, respondiendo: “; De todos los casos

reales de la clase k, ¢ cuantos identificd correctamente el modelo?”

VP,
VP + FN,

Recall), =
Donde FN, denota los falsos negativos.
El F1-score combina precision y recall mediante su media armonica,

proporcionando una meétrica balanceada particularmente util cuando ambos aspectos

resultan igualmente importantes:

Precision,. Recall,
Fl, = 2 —
Precision,+ Recall;,

Para obtener métricas globales en problemas multiclase, se emplean esquemas de
agregacion. El promedio macro calcula la métrica independientemente para cada clase y

promedia sin ponderacién, tratando todas las clases equitativamente. El promedio
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ponderado (weighted) pondera las métricas por clase segun su frecuencia en el conjunto
de datos, resultando mas representativo del desempefio global cuando las clases
presentan tamafos desiguales. La matriz de confusién proporciona una visualizacién
comprehensiva del desempefio, mostrando en cada celda (i, j) el nimero de instancias de
la clase verdadera i que fueron predichas como clase j. El analisis de esta matriz revela
patrones de confusion especificos, como si el modelo confunde sistematicamente empates
con victorias del equipo visitante, informacién valiosa para interpretar limitaciones del
modelo (Huyen, 2022).

Manejo del desbalance de clases:

El desbalance de clases, donde ciertas categorias (tipicamente empates en futbol)
ocurren con frecuencia sustancialmente menor que ofras, introduce sesgos que degradan
el desempefio de modelos entrenados con funciones de pérdida estandar. Multiples
estrategias abordan este problema. La asignacién de pesos de clase (class weights)
modifica la funcidn de pérdida para penalizar mas severamente errores en clases
minoritarias. Durante el entrenamiento, el error asociado a cada ejemplo se multiplica por
un factor inversamente proporcional a la frecuencia de su clase. En frameworks como
TensorFlow y PyTorch.

El oversampling (sobre muestreo) de clases minoritarias replica instancias de estas
categorias para balancear artificialmente la distribucién. Técnicas sofisticadas como
SMOTE (Synthetic Minority Over-sampling Technique) generan ejemplos sintéticos
mediante interpolacion entre instancias existentes de la clase minoritaria, aumentando la
diversidad del conjunto aumentado.

El submuestreo (under sampling) reduce el numero de instancias de clases
mayoritarias para equilibrar la distribucién. Aunque simple, esta técnica descarta
informacion potencialmente valiosa, pudiendo degradar el desempefio cuando los datos
resultan limitados. La focal loss, introducida constituye una modificacién de la funcion de
pérdida de entropia cruzada que reduce automaticamente el peso de ejemplos bien

clasificados, concentrando el aprendizaje en casos dificiles.
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Esta formulacién resulta particularmente efectiva en escenarios de desbalance
extremo sin requerir ponderaciones manuales. La evaluacion estratificada asegura que los
conjuntos de entrenamiento, validacion y prueba mantengan proporciones similares de
cada clase, previniendo que conjuntos de evaluacién pequeinos resulten dominados por
clases especificas y proporcionando estimaciones mas estables del desempefio.

2.2. Antecedentes de estudio

(Stevens, 2024). Predicting the outcome of Women’s World Cup matches
taking weather conditions into account, using K-Nearest Neighbors, Random Forest
and Support Vector Machines. Tilburg University, Paises Bajos

Conclusiones:

Esta tesis aborda la prediccion de resultados en partidos de la Copa Mundial
Femenina de la FIFA mediante la integracion de variables meteorolégicas, utilizando tres
técnicas de Aprendizaje Automatico (ML): K-Nearest Neighbors (KNN), Random Forest y
Support Vector Machines (SVM). La investigacion utilizé un conjunto de datos que abarca
resultados de partidos, clasificaciones FIFA y condiciones meteorolégicas (sensacion
térmica, viento, humedad) de los Mundiales Femeninos desde 2011 (Alemania), 2015
(Canada), 2019 (Francia) y 2023 (Australia/Nueva Zelanda). El objetivo principal fue
determinar el impacto de incluir las condiciones climaticas como una caracteristica
adicional en la capacidad predictiva de los modelos. Respecto a la variable meteoroldgica,
el hallazgo central fue que la inclusion de las condiciones climaticas no mejoré la precision
predictiva del modelo de Aprendizaje Automatico KNN. La precision en el conjunto de
prueba se mantuvo en 0.65 cuando se incluyd la sensacidon térmica. En un analisis
secundario para evaluar si el impacto era diferente para los equipos europeos en
comparacion con los no europeos, la mayor precision se obtuvo en el modelo para equipos
no europeos sin la inclusion de la variable meteoroldgica (0.615), y los resultados para los
equipos europeos con o sin datos meteorolégicos fueron inferiores o comparables, lo que
no sustenta la hipétesis de que el clima influya significativamente en el resultado del partido

en este contexto. El autor atribuye la falta de impacto del clima a dos limitaciones
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principales: el tamafo reducido del conjunto de datos (solo cuatro Mundiales) y la
imprecision de los datos meteorolégicos, que fueron medidos a nivel de pais o ciudad y no
en la ubicacién especifica del estadio.

Comentario: Este documento es metodolégicamente relevante, ya que aplica
técnicas de ML similares directamente al problema de la prediccion de resultados de futbol
internacional, incluyendo especificamente el factor climatico. El resultado central, la
ausencia de una mejora significativa en la precisién al incorporar la sensacion térmica, es
un hallazgo empirico crucial para la investigacion propuesta. Este resultado plantea la
hipotesis nula para el uso de variables meteorolégicas en contextos de ML para predicciéon
de partidos internacionales, lo que obliga a la investigacién con RNN a justificar y explorar
por qué su metodologia o conjunto de datos podria arrojar resultados diferentes. La critica
metodoldgica del autor sobre la granularidad de los datos climaticos (medicion a nivel de
pais en lugar de estadio) es vital. Esto sugiere que para que las RNN detecten una senal
climatica, es imperativo utilizar datos meteorolégicos mas precisos y localizados, un
desafio que debe abordarse si la investigacion actual busca superar las limitaciones

observadas por este autor.

(Ditsuhi Iskandaryan , Francisco Ramos, 2020),The effect of weather in soccer
results: an approach using machine learning techniques. Universitat Jaume |,
Espana

Conclusiones:

Esta investigacion determina el efecto de las condiciones climaticas en los
resultados de partidos de futbol mediante la implementaciéon de técnicas de Aprendizaje
Automatico (ML), analizando datos de Laliga y la Segunda Divisién espafiola de las
temporadas 2013-2014 a 2017-2018. El estudio se estructur6 en dos tareas de
clasificacion: Multivariante (Predecir victoria local, victoria visitante o empate) y Bivariante
(Predecir empate o no empate). Utilizo algoritmos de ML como Random Forest (RF),

Support Vector Machines (SVM), K-Nearest Neighbors (KNN) y Extra-Trees. Los datos de



40

futbol se complementaron con informaciéon meteoroldgica altamente localizada, obtenida
de 775 estaciones cercanas a los 25 estadios utilizados. Las variables climaticas
consideradas incluyen temperatura maxima, minima y media, rafagas de viento, velocidad
maxima del viento y precipitacion, ademas de caracteristicas derivadas como las
diferencias entre las condiciones del equipo local y el visitante. Los resultados demostraron
una precision significativamente mayor en la prediccion de resultados en comparacién con
los modelos que excluian estas caracteristicas. Para el Caso de Estudio 1, el clasificador
Extra — Trees fue superior, alcanzando una precision del 65.9 % con datos
meteoroldgicos, frente a solo 53.3 % sin ellos (para RF, que fue el mejor sin datos
climaticos). Para el Caso de Estudio 2, SVM fue el mas eficiente con una precision del 79.3
% con datos meteorolégicos. Se concluye que la inclusion de datos meteoroldgicos es util
para predecir el resultado de un partido de futbol, siendo la diferencia de temperatura
promedio (Tmed_Diff) y la diferencia maxima de velocidad del viento (Vmax_Diff)
algunas de las caracteristicas finales mas relevantes.

Comentario: Este trabajo es fundamental porque proporciona una evidencia em-
pirica directa y cuantitativa de que las condiciones meteorologicas si pueden mejorar
significativamente la precision de la prediccién de resultados de futbol cuando se utilizan
técnicas de ML. Metodoldgicamente, se diferencia del estudio de Stevens por su contexto
(liga doméstica vs. Copa Mundial) y, crucialmente, por la granularidad de sus datos. El uso
de 775 estaciones meteoroldgicas en Esparfia para cubrir 25 estadios minimiza el problema
de la imprecision de la ubicacion del partido. Esta diferencia en la recoleccion de datos
sugiere que la senal climatica es detectable solo cuando se mide con precision, lo que tiene
implicaciones directas para la investigacién con RNN, la cual debera priorizar la calidad
espacial de los datos meteoroldgicos. Este documento apoya la premisa de trabajo de la
investigacion propuesta (que las variables meteoro-logicas influyen en el resultado) y
justifica la exploracion de modelos avanzados (como las RNN) para capturar estas

correlaciones de manera mas efectiva.
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(Niek Tax; Niek Tax, 2015). Predicting The Dutch Football Competition Using
Public Data: A Machine Learning Approach. Universidad de Twente, Paises bajos

Conclusiones:

El estudio identificd una amplia gama de factores con valor predictivo (rendimiento
histérico, rachas, cambio de DT, ventaja de localia, fatiga y distancia de viaje). El modelo
con datos publicos alcanz6 una precision maxima de 54.702 % (Naive Bayes o Multilayer
Perceptron combinado con PCA). Al igual que en otros estudios, los modelos tuvieron
serias dificultades para predecir el empate, ya que las caracteristicas utilizadas no ofrecian
valor predictivo para esta clase minoritaria. La combinacién de datos publicos con
probabilidades de apuestas (modelo hibrido) mejoré ligeramente la precision al 56.054 %,
sugiriendo que las probabilidades incluyen factores no capturados por los datos publicos.

Comentario: La metodologia empleada, que incluye una revision sistematica de
factores y un enfoque retrodictivo que parte por el objetivo final construyendo un plan hacia
atras para el entrenamiento, es directamente aplicable a la investigacion con RNN, dado
el caracter temporal de los datos climaticos. Aunque el estudio no incluye variables
meteoroldgicas, si considera el factor "Fatiga", que se modela a partir de la dureza del
partido anterior y el tiempo transcurrido desde el ultimo encuentro. Las condiciones
meteoroldgicas extremas (calor, humedad) son conocidas por inducir fatiga y estrés
fisiolégico, lo que sugiere que la meteorologia es una variable cuantificable que
complementa el andlisis de rendimiento fisico y la fatiga, justificando su inclusién para
refinar la capacidad predictiva. Ademas, los autores excluyeron datos dificiles de recuperar
automaticamente, lo que implica que las variables meteoroldégicas deben ser
rigurosamente cuantificables para ser utiles.

(Walker J. Ross; Madeleine Orr, 2022). Predicting climate impacts to the
Olympic Games and FIFA Men’s World Cups from 2022 to 2032. Sport in Society.
Universidad de Edimburgo, Reino Unido.

Conclusiones:



42

Este estudio se centra en la proyeccion de las condiciones climaticas y de calidad
del aire para los mega eventos deportivos programados entre 2022 y 2032, incluyendo los
Juegos Olimpicos y la Copa Mundial Masculina de la FIFA. El trabajo establece condiciones
limite ambientales criticas para garantizar la seguridad y la integridad competitiva, el
trabajo establece criterios para evaluar los riesgos ambientales en eventos deportivos
mediante umbrales. Futbol (FIFA World Cups): La Copa Mundial de Qatar 2022 fue
reprogramada a noviembre/diciembre debido al calor extremo, aunque las temperaturas
histéricas sugieren que casi todos los dias aun superan el umbral de riesgo. La regién
enfrentara probablemente un aumento de dias calurosos y olas de calor en los afos
posteriores, comprometiendo el uso de las instalaciones si no se mantienen las
adaptaciones (como el aire acondicionado en estadios). Para la Copa Mundial UNITED
2026 (Canada, EE. UU., México), el calor extremo sera la principal preocupacién en casi
todas las ciudades anfitrionas. Juegos Olimpicos: Beijing 2022 enfrenté mala calidad del
aire e insuficientes temperaturas frias para la nieve natural. El estudio concluye enfatizando
la necesidad de que los organizadores creen eventos, infraestructura y legados resilientes
al clima, implementando planes de contingencia para proteger a los atletas y mantener la
integridad competitiva.

Comentario: Este documento establece un marco conceptual robusto, la ecologia
del deporte, al postular una relacion bidireccional entre el deporte y el medio ambiente: el
impacto del deporte en el clima y el impacto del clima en la operacién deportiva. Su
relevancia para la investigacion propuesta reside en dos aspectos: 1. Cuantificacion de
Variables de Riesgo: Proporciona umbrales de riesgo cuantitativos especificos. Estos
limites definidos por especialistas pueden ser utilizados para categorizar los datos
meteoroldgicos de entrada en el modelo RNN, transformando variables continuas en
variables categoéricas o binarias de riesgo. 2. Contexto de Mega eventos: Documenta que
el calor extremo es un factor disruptivo recurrente en el futbol a nivel de Copa Mundial. Si
las condiciones de calor extremo obligan a los jugadores a adoptar estrategias de ritmo o

aumentan el riesgo de enfermedades relacionadas con el calor, esta variable debe ser
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inherentemente predictiva de cambios en el rendimiento y, potencialmente, en el resultado
final.

(Jimenez, 2023) Sistema para pronosticar resultados de partidos de futbol en
opciones dobles. Universidad de Lima, Peru.

Conclusiones:

El proyecto desarrolld un sistema de prondstico para la liga peruana, enfocado en
maximizar la probabilidad de acierto utilizando la modalidad de opciones dobles como
Local Gana o Empata. El sistema logré un 82 % de acierto para las recomendaciones de
mayor peso (PRO-PESO = 7). El modelo busca una estrategia de ganancia incremental a
largo plazo (multiplicador semanal de 1.20 a 1.25). En cuanto a las variables utilizadas, el
sistema se basa en resultados historicos, tablas de posiciones y estadisticas agregadas.

Comentario: La relevancia principal radica en la exclusion explicita de variables
contextuales. El disefio del sistema no contemplo "Factores climatolégicos de las ciudades
donde se efectua el partido de futbol", ni el "Factor emocional de los jugadores”, ni las
lesiones. Esta exclusion, frecuente en los sistemas de prediccion que se basan en datos
deportivos estandar, justifica plenamente la necesidad de integrar y cuantificar la influencia
de estas variables exdgenas. Se cuenta con detalles de la implementacién del sistema,
mas no sobre el modelo de predicciones por lo que no se tiene detalles de la arquitectura
ni experimentos que realizo. Ademas, la recomendacion para futuros trabajos incluye la
incorporacion del aprendizaje de maquina para refinar las sugerencias de combinaciones,
lo que valida la exploracion de modelos avanzados como las RNN para la clasificaciéon y
prediccion de resultados.

(Bustos, 2023) Sistema de Prediccion de Resultados para los Partidos de
Futbol de la Liga Profesional Colombiana. Universitaria de Bogota Jorge Tadeo
Lozano, Colombia.

Conclusiones:

La investigaciéon evalué la capacidad predictiva de Redes Neuronales Artificiales

(ANN), Maquinas de Soporte Vectorial (SVM), Arboles de Decision (DT) y el Sistema de
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Clasificacién ELO para la liga colombiana. Los resultados de precisién obtenidos fueron
limitados para la clasificacion de tres clases (gana local, empate, gana visitante), con el
mejor rendimiento logrado por el modelo ELO (43 % de accuracy) y DT (42 % de accuracy).
La RNN mostré el rendimiento mas bajo (34 % de accuracy), lo que sugiere que, con las
variables histéricas utilizadas, este modelo no logré capturar patrones efectivos. La
conclusion central es que la precision no superé el 45 %, lo que demanda la necesidad de
incorporar un conjunto mas amplio de variables para robustecer la prediccion.

Comentario: Este documento es de capital importancia, ya que aborda
directamente la implementacién de un algoritmo de Redes Neuronales Recurrentes en la
prediccion de partidos de futbol. La baja precision del modelo (34 % de accuracy) sugiere
que las variables de entrada tradicionales (resultados histéricos, goles, posicién) son
insuficientes en este contexto. La principal relevancia radica en la justificaciéon de la
introduccion de nuevas variables, ya que los autores recomiendan explicitamente explorar
y evaluar la inclusién de mas variables en el analisis". El bajo rendimiento de la RNN con
datos estadisticos estandar justifica la hipotesis de que la inclusion de factores externos
no correlacionados, como las variables meteorolégicas, podria ser la clave para que la
RNN desarrolle un poder discriminatorio superior.

(FUENTEALBA, 2025) Prediccion de Resultados de Partidos de la Liga
Profesional de Futbol Chileno usando Algoritmos de Machine Learning. Universidad
del Desarrollo, Chile.

Conclusiones:

El proyecto reafirma la complejidad inherente a la prediccion de resultados de
futbol, siendo la clase empate la mas dificil de identificar, una limitacién que persiste incluso
tras aplicar técnicas avanzadas de balanceo de clases (SMOTE, ADASYN) y optimizacion
de hiper parametros. Los modelos utilizados y métrica de precisién son: Random Forest
(0.3693), XGBoost (0.4156), CatBoost (0.4140) y Regresién Logistica (0.3740) mostraron
un rendimiento modesto, manteniéndose cerca del nivel de un clasificador aleatorio. Este

patron se replicod en la Premier League, confirmando que el desafio es intrinseco al
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dominio, no a una liga especifica. Se concluye que se requiere la incorporacion de "nuevas
fuentes de informaciéon mas ricas (variables contextuales, tacticas, calidad individual de
jugadores, condiciones externas)"para lograr una mejora significativa.

Comentario: Este estudio provee la justificacion mas explicita y directa para la
investigacion propuesta. La mencién de condiciones externas como un requisito para
mejorar el desempefio predictivo valida directamente la inclusion de variables
meteoroldgicas. El fracaso consistente de los modelos en predecir el empate es crucial.
Dado que los métodos basados en arboles y regresion logistica no lograron superar este
obstaculo, se justifica la exploracién de modelos RNN, los cuales son mas adecuados para
manejar datos secuenciales y relaciones no lineales sutiles, buscando precisamente la

sefnal climatica que podria diferenciar los resultados en condiciones extremas.
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CAPITULO Il
Metodologia

3.1. Enfoque metodoldgico

La metodologia empleada en este estudio se inscribe en un enfoque cuantitativo,
utiliza la estadistica como herramienta.
3.1.1. Diseno de investigacion

La investigacion tiene un nivel descriptivo segin (Hernandez, Fernandez, &
Baptista, 2014) Estudios descriptivos Busca especificar propiedades y caracteristicas importantes
de cualquier fendmeno que se analice. Describe tendencias de un grupo o poblacion. (p.92)
3.1.2 Nivel de investigacion

Los estudios descriptivos pretenden especificar las propiedades, caracteristicas y
perfiles de personas, grupos, comunidades, procesos, objetos o cualquier otro fenémeno
que se someta a un andlisis. (Hernandez-Sampieri & Mendoza, 2019) Es decir, miden o
recolectan datos y reportan informacion sobre diversos conceptos, variables, aspectos,
dimensiones o componentes del fenomeno o problema a investigar (p.108)
3.1.3. Poblacién

Nuestra poblacién esta constituida por datos estadisticos de partidos de futbol de
las ligas profesionales de Colombia Chile Ecuador y Peru “Es el conjunto de todos los
elementos (unidades de analsis9 que pertenecen al ambito espacial donde se desarrolla
el trabajo de investigacion” (Carrasco, 2019)
3.1.4. Muestra

Se ha considerado como muestra a los datos de la stemporadas del 2017 al 2025
por su parte (Supo, 2024) El tamafno de la muestra “esta determinado por el nivel de
precision que deseamos para los resultados y las conclusiones, mientras mayor sea el
tamano de la muestra tendremos mayor precision y mientras menos precision se exija,

menos tamano tendra la muestra” (p161).
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3.1.5. Muestreo por conveniencia

El muestreo es por conveniencia en vista que la disponibilidad de datos estadisticos
de partidos de futbol en un nivel detallado se encuentra en las fechas disponibles (Supo,
2024) Recibe también el nombre muestreo deliberado, porque no cuenta con ningun
procedimiento estandarizado, ninguna accion especifica que realzar, ni razéon mas que la
comodidad o unica oportunidad de muestrear; en suma, no hay ninguna forma de
seleccionar la muestra, es simplemente deliberado (p. 190)
3.1.6. Disefo

El disefio corresponde al experimental puesto que se ha realizado mediciones a los
resultados del entrenamiento de aprendizaje automatico. Segun (Bernal, 2010). En la
investigacion experimental existen diversos tipos de disefo, que se clasifican de diferentes
formas. Sin embargo, la clasificaciéon mas usada, segun Salkind (1998) e investigadores
como Briones (1985), es la de Campbell y Stanley, quienes identifican tres categorias
generales de disefios de investigacion: preexperimentales, cuasi experimentales y
experimentales verdaderos.
3.2. Etapas del proceso metodolégico
3.2.1. Etapa 1 Extraccion de Datos

Esta etapa es el punto de partida para la recoleccion de un conjunto diverso de
datos, que incluye estadisticas detalladas de futbol como informacién adicional,
calendarios de partidos y alineaciones correspondientes a las ligas profesionales de futbol
de Chile, Colombia, Ecuador y Peru. La recopilacién abarca desde el 3 de febrero de 2017,
fecha del primer partido de esas ligas en dicho ano, hasta el 19 de mayo de 2025, cuando
concluyé la extraccion tanto de los datos futbolisticos. Estas fechas de calendario de
partidos se cruza con los datos de condiciones ambientales proporcionadas por la NASA
POWER API. La informacion deportiva se almacend en una base de datos no relacional
MongoDB, mientras que los datos ambientales se guardaron en archivos CSV, tal como se

aprecia en la figura 1.
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Figura 1

Etapa 1 Extraccion de datos

3.3.2. Etapa 2 Procesamiento de Datos de Futbol

Ejecuta un proceso de transformacion multietapa que incluye la normalizacion de
formatos inconsistentes, la implementacion de un esquema de imputacion jerarquica que
aprovecha similitudes contextuales entre equipos, competiciones y el conjunto global, asi
como la aplicacion de ingenieria de caracteristicas, donde se obtiene un total de 44

variables, esta etapa podemos resumir en la figura 2

Figura 2

Etapa 2: Procesamiento de Datos Deportivos
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ETAPA 2: PROCESAMIENTO DE DATOS DEPORTIVOS

Procesamiento de Datos Deportivos Ingenieria de Caracteristicas

« Generacion de porcentajes
» Normalizacién de formatos « Generacion de features generales

« Conversion de porcentajes (diferencia de goles, total de
* Imputacion jerarquica interrupciones, etc)
+ Correccién de manual de ubicacién de estadios « Cliping de outliers

A
Construccién de Tablas Dimensionales

dim_player_oxterno
aim_eawipo P | s sxema iy DWH_futbol.CSV

¥

™™
s j = \ e
IIIIJ“ —rx]u_um-m

3.3.3. Etapa 3 Procesamiento de Datos de Ambiente

Procesa especificamente las variables meteoroldgicas mediante extraccion
paralela con gestidn de reintentos, calculando promedios temporales de tres horas durante
cada encuentro, descomponiendo vectorialmente el viento en componentes cartesianas y
generando variables categéricas que identifican condiciones climaticas adversas segun

umbrales fisicamente fundamentados, como se muestra en la figura 3.

Figura 3

Etapa 3: Procesamiento de Datos Ambientales
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ETAPA 3: PROCESAMIENTO DE DATOS AMBIENTALES

Extraccion Paralela

* Modo n: promedio de n horas desde inicio del partido
« Coordenadas: latitud/longuitud del estadio
* Reintentos automaticos con backoff exponencial

\ 4
Ingenieria de Caracteristicas

» Descomposicién de variables
* Nueva variables

« Categorizacion de variables

= Binarizacion de variables

+ Cliping de outlier

AN

ambiente.CSV

3.3.4. Etapa 4 Preparacion para Modelado

Consolida ambos conjuntos de datos mediante operaciones de cruce de datos
mediante espacio temporal basadas en coordenadas de estadio y marcas temporales,
implementa una division cronoldgica estricta que preserva la estructura temporal (70 %
entrenamiento, 15 % validacién, 15 % prueba) y aplica normalizacion diferenciada segun
la naturaleza estadistica de cada variable, ajustando exclusivamente sobre el conjunto de
entrenamiento para evitar filtracion de informacién, como se muestra en la figura 4.

El conjunto de entrenamiento esta compuesto por 6 563 registros, desde el 2017-
02-03 22:45:00 hasta el 2023-03-04 23:15:00; el conjunto de validacién incluye 1 406
registros, desde el 2023-03-05 00:00:00 hasta el 2024-03-30 17:15:00; y el conjunto de

prueba contiene 1 408 registros, con un intervalo que va desde el 2024-03-30 18:15:00
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hasta el 2025-05-19 01:15:00. Todos en formato de horas UTC conformando un total de

9377 partidos.
Figura 4

Etapa 4: Preparacién para Modelado

3.3.5. Etapa 5 Generacion de Secuencias Temporales (X, y)
Transforma los datos tabulares en secuencias temporales tridimensionales
mediante la extraccion de ventanas deslizantes de cuatro partidos previos, concatenando

horizontalmente las rachas de rendimiento de ambos equipos, las condiciones ambientales
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histéricas asociadas a cada equipo en su condicion locall/visitante y el comportamiento
histérico del arbitro asignado, generando tensores con dimensiones (n_muestras, 4
timesteps, F caracteristicas), como se muestra en la figura 5.

Figura 5

Etapa 5 Generacién de Secuencias Temporales (X, y)
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3.3.6. Etapa 6 Importancia Relativa de Caracteristicas

Tenemos construido los dataframes que contiene estadisticas deportivas y
ambientales, se procede a implementar Random Forest, este modelo nos ayuda con la
interpretabilidad ya que mediante la métrica Gini obtenemos la importancia de cada una
de las variables del dataframe. Ya que estamos en un problema de series temporales, para
simular o replicar una ventana de tiempo procedemos a ingresar al modelo el promedio de
las estadisticas de los ultimos 4 partidos, para esta etapa nos basamos en la etapa 5 que
obtiene las ventanas de tiempo, pero para este caso ingresa promediado.
3.3.7. Etapa 7 Optimizacion de hiper parametros (Grid Search)

Para el desarrollo del presente estudio, se seleccionaron las Redes Neuronales
Recurrentes (RNN), especificamente las arquitecturas LSTM y GRU. Se descartaron los
modelos de Machine Learning convencionales debido a su incapacidad para modelar de
forma nativa las dependencias temporales largas, tales como las rachas de victorias o
derrotas de los equipos. Como sefala la literatura especializada, estas arquitecturas con
mecanismos de memoria son fundamentales para capitalizar la informacion historica,
permitiendo que el modelo aprenda patrones evolutivos que los modelos estaticos
ignorarian.

Implementa una estrategia de optimizacion exhaustiva mediante Grid Search sobre
un espacio de 128 configuraciones de hiper parametros, evaluando arquitecturas LSTM y
GRU con diferentes profundidades, tasas de dropout, optimizadores y tamanos de lote.

Este proceso se ejecuta de forma independiente para dos experimentos:
Experimento "F-1" utilizando unicamente 28 caracteristicas deportivas y de arbitro, y
Experimento "F-A1” incorporando 16 caracteristicas ambientales adicionales (8 por
equipo), identificando para cada uno la configuracion dptima segiin métricas de validacion,

como se muestra en la figura 6.



Figura 6

Etapa 6: Optimizacién de hiperparametros

ETAPA 7: OPTIMIZACION DE HIPERPARAMETROS (GRID SEARCH)

Espacio de Busqueda

param_grid = {
‘cell_type': [LSTM', 'GRU',
'units_layer1': [32, 64],
'units_layer2': [16, 32],
"dropout_rate” [0.4, 0.5],
‘learning_rate” [0.001, 0.0001],
'optimizer ['adam’,
‘batch_size™ [32, 64],
‘epachs” [70],
‘patience™ [5].
'dense_units'; [0, 8],
‘bidirectional”: [False]

H

Combinaciones totales:
2x = dud=] =g x=2=] = 128

Y Y
Experimento 1F~A Experimento 1F&A
{5in ambients} {Con ambiente)
Features: Features:
+ Racha Local (26) + Racha Local (26)
+ Racha Visita (26) + Racha Visita (26)
+ Contexto (4) + Contexto (4)
« Ambiente Local (4)
« Ambiente Visita (4)
Mejor Modelo Experimento 1F~A: Mejor Modelo Experimento 1F&A:
+ Parametros optimos guardados + Parametros optimos guardados
+ Metricas de validacion registradas + Métricas de validacion registradas
L 4

Registro de Resultados Grid Search

Para cada experimenta:
= Lista con 128 configuraciones evaluadas
= Diccionario con hiperparametros optimos
= Métrica de validacion del mejor modelo
= Exportacion: JSON + C5V




55

3.3.8. Etapa 8 Evaluacion de Resultados

Se realiza una evaluacion estratificada geograficamente, desagregando el conjunto
de prueba segun el pais de origen de la competicién y calculando métricas de rendimiento
individuales para cada estrato. También se realiza un analisis comparativo sistematico
entre ambos experimentos, contrastando rendimientos globales y estratificados,
documentando exhaustivamente las condiciones bajo las cuales la incorporacion de
informacién meteorolégica resulta beneficiosa, neutral o contraproducente para la

capacidad predictiva del modelo.
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CAPITULO IV
Desarrollo
Este capitulo describe el proceso de desarrollo e implementacion empleado para la
recopilacién, procesamiento y analisis de datos deportivos y meteorolégicos en el contexto
de esta investigacién. El desarrollo experimental siguié una estructura basada en la
metodologia CRISP-DM, adaptada a las particularidades de los datos deportivos vy
ambientales. El proceso comprende diferentes etapas de procesamiento de datos,
organizadas en capas de madurez (bronce, plata y oro) para el procesamiento de datos
deportivos y para los datos meteoroldgicos, que transforman datos crudos en informacion
estructurada lista para el modelado predictivo.
4.1. Enfoque General
La estrategia metodolégica de esta investigacion se fundamenta en la integracion
de dos lineas de datos complementarias: estadisticas deportivas de partidos de futbol y
variables meteoroldgicas. El objetivo principal consiste en construir un modelo predictivo
capaz de anticipar los resultados de encuentros deportivos, considerando tanto el
rendimiento historico de los equipos como las condiciones ambientales durante los
partidos.
El proceso de desarrollo e implementaciéon se estructura en tres capas de
procesamiento, siguiendo una arquitectura de lakehouse basada en el modelo medallon:
e Capa Bronce: Almacenamiento de datos crudos extraidos directamente de
las fuentes
e Capa Plata: Transformacién y normalizacion de datos en estructuras
relacionales
o Capa Oro: Preparacion final de datos con ingenieria de caracteristicas para
analisis

35
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Esta arquitectura permite mantener la trazabilidad completa de los datos desde su
origen hasta su uso en modelos predictivos, facilitando la reproducibilidad del proceso vy la
identificacion de inconsistencias en etapas tempranas.

4.2. Extraccion de Datos Deportivos (Capa Bronce)
4.2.1. Seleccioén de Fuentes de Datos

La identificacion de fuentes confiables de datos deportivos representoé el primer
desafio metodoldgico. Aunque existen multiples plataformas que ofrecen estadisticas de
futbol, como Transfermarkt, WhoScored, BFREF y Understat, se selecciond Sofascore
como fuente principal por tres razones fundamentales:

1. Cobertura temporal extensa: Proporciona datos histéricos de la liga peruana

desde 2008, periodo significativamente mas amplio que el ofrecido por

competidores.

2. Granularidad de estadisticas: A partir de 2017, incorporé métricas avanzadas

como posiciones promedio de jugadores, mapas de calor y estadisticas detalladas

de pases.

3. Disponibilidad de API no documentada: Aunque no cuenta con documentacién

oficial, su arquitectura REST permite el acceso programatico mediante ingenieria

inversa.

La seleccion de Sofascore implicd aceptar ciertas limitaciones en términos de
disponibilidad de datos para jugadores menos conocidos, equipos recién llegados al futbol
profesional y partidos no televisados, particularmente en temporadas anteriores a 2017.Se
recolecto un conjunto diverso de datos, incluyendo estadisticas detalladas de futbol,
calendarios de partidos y alineaciones de las ligas profesionales de Chile, Colombia,
Ecuador y Peru, abarcando desde el 3 de febrero de 2017 hasta el 19 de mayo de 2025.
4.2.2. Diseno del Sistema de Extraccion

El sistema de extraccion se construyd sobre la libreria Botasaurus Driver, que

proporciona capacidades de navegacion automatizada resistentes a mecanismos anti
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robot. La implementacion se estructuré en torno a cinco funciones principales de
extraccion:
1. Extraccion de temporadas validas: Esta funcion identifica las temporadas
disponibles para cada liga mediante consulta al endpoint de temporadas. Retorna
un diccionario que mapea afos a identificadores internos de temporada,
permitiendo la iteracién sistematica sobre periodos histéricos.
2. Extraccién de fixtures: Recupera la lista completa de partidos para una
temporada especifica mediante paginacion incremental. El proceso continta
solicitando paginas hasta recibir una respuesta de error para aplicar técnicas de
reintentos, cuando finaliza el proceso finaliza se determina que se han recuperado
todos los partidos disponibles.
3. Extraccion de informacion adicional del partido: APl que obtiene detalles
complementarios de cada encuentro, incluyendo informacién del estadio, arbitro,
directores técnicos y condiciones especificas del partido.
4. Extraccion de estadisticas detalladas: APl que recupera métricas de
rendimiento agrupadas en categorias: visidon general del partido, pases, duelos,
tiros, defensa y porteria. Estas estadisticas se estructuran en formato JSON
anidado que posteriormente requiere transformacion.
5. Extraccion Completa: Integra las 4 funciones anteriores para realizar la
extraccion de cada uno de los partidos de una determinada temporada de una
liga, tal como se aprecia en el algoritmo 1.
4.2.3. Implementacion de la Estrategia de Extracciéon
La funcion principal extract_ingestion_All orquesta el proceso de extraccion
completo mediante un disefio de tres bucles anidados:

Algoritmo 1 Extraccion de Datos de Ligas y Temporadas
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Algorithm 1 Extracciéon de Datos de Ligas y Temporadas.

1: procedure EXTRACCIONDATOS(L, T, F, P)

2 Entrada: L = lista de ligas, T' = lista de temporadas validas, F' = fixture
3: Salida: Datos ingeridos en MongoDB

4 for cada ligal € L do

5 for cada temporada valida t € T do

6: Extraer fixture completo F(I,t)

7: for cada partido p € F(l,t) do

8: Extraer informacion adicional de p
9: Extraer estadisticas detalladas de p
10: end for

11: Ingerir datos en MongoDB

12: end for

13: end for

14: return Datos ingeridos

15: end procedure

Se implementd un retardo de 2 segundos entre solicitudes consecutivas para evitar
la activacion de mecanismos de limitacién de tasa del servidor y se ejecuto el pipeline cada
2 temporadas. Esta decision, aunque incrementa el tiempo total de extraccion, resultd
fundamental para mantener la estabilidad del proceso.

4.2.4. Gestion de Restricciones del API

El acceso a la APl de Sofascore presentd varios desafios técnicos que requirieron
soluciones especificas:

Limitacion de tasa: Los servidores implementan restricciones que bloquean
direcciones IP tras detectar patrones de solicitudes automatizadas. Para mitigar este
problema, se incorpord la simulacion de trafico legitimo desde el navegador.

Cambios en estructura de datos: La estructura JSON de las respuestas varia segun
la temporada y liga, particularmente para datos histéricos. Se implementaron bloques try —
except que capturan excepciones de indexacion o claves faltantes, registrando
advertencias sin interrumpir el proceso global.

Datos incompletos: No todos los partidos cuentan con informaciéon completa,

especialmente en competiciones menores o temporadas antiguas. La estrategia adoptada
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consistié en almacenar valores nulos cuando los datos no estan disponibles, permitiendo
su posterior imputacion en fases de transformacién
4.2.5. Alimacenamiento en MongoDB

Los datos extraidos se almacenaron en MongoDB, sistema de base de datos
NoSQL orientado a documentos. La eleccion de MongoDB sobre bases de datos
relacionales se fundamento en:

o Flexibilidad de esquema: Permite almacenar documentos JSON con estructura
variable sin necesidad de definir esquemas rigidos previamente

e Consultas eficientes: Soporta indices compuestos que aceleran busquedas por
multiples campos simultaneamente.

e Escalabilidad horizontal: Facilita la distribucion de datos entre multiples nodos si el
volumen de informacién crece significativamente. Logrando asi un aislamiento por
pais que permite realizar ingestas para nuevos paises, esta capacidad permite
realizar la re ingesta de datos de un solo pais y no realizar el pipeline completo.
Se crearon tres colecciones principales por liga:

1. {nombre_liga}_match: Informacién basica de partidos

2. {nombre_liga}_event: Detalles ampliados de encuentros

3. {nombre_liga}_statistics: Estadisticas de rendimiento

Esta estructura de colecciones separadas, aunque introduce cierta redundancia,
facilita la verificacion de integridad de datos y permite la reconstruccion incremental en
caso de fallos parciales del proceso de extraccion.
4.2.6. Evaluacion de Calidad en Datos Deportivos

La evaluacion de calidad de los datos deportivos se realizé siguiendo los principios
del DAMA-DMBOK (International, 2017) , adaptados al contexto de datos no estructurados
y semiestructurados extraidos de APIs web.

Exactitud: La verificacion de exactitud se realiz6é mediante muestreo aleatorio,

comparando los datos extraidos con fuentes alternativas (Transfermarkt, BFREF, ESPN).
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Se observo concordancia en resultados finales (goles anotados) y en estadisticas basicas
(tiros, corneres, tarjetas). Las discrepancias identificadas se concentraron en métricas
derivadas como precisién de pases, posesion de balén donde la definicion puede variar
entre proveedores. Las coordenadas de estadios presentaron una tasa de error,
identificandose tres patrones principales:

-Coordenadas nulas para estadios nuevos

-Coordenadas invertidas (latitud/longitudes intercambiadas)

-Coordenadas incorrectas que situaban estadios fuera de su ubicacion real

Completitud: El analisis de valores faltantes reveld patrones heterogéneos segun
la temporada y variable:

-La completitud mejoré dramaticamente a partir de 2017 coincidiendo con la

adopcion de sistemas de tracking automatico por parte de Sofascore. Los valores

nulos en estadisticas basicas correspondieron exclusivamente a partidos de ligas

menores o fases eliminatorias no cubiertas.

Consistencia: Se identificaron inconsistencias en el formato de datos que
requirieron normalizacion:

-Variables porcentuales expresadas como texto ("67 %") en lugar de decimales

-Métricas fraccionarias en formato mixto ("12/28 (43 %)")

-Timestamps en multiples zonas horarias que requirieron estandarizacion a UTC

Unicidad: No se detectaron duplicados en partidos unicos. Sin embargo, la
estructura de documentos anidados en MongoDB introducia redundancia intencional
(informacién de equipos replicada en cada partido) que fue normalizada durante la
transformacion a modelo dimensional.

Validez: Los valores numéricos se encontraron dentro de rangos esperados. Los
casos atipicos identificados correspondieron a partidos con circunstancias excepcionales
(expulsiones tempranas, condiciones climaticas extremas) que fueron preservados tras

verificacion manual.
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4.3. Transformacién de Datos Deportivos (Capa Plata)
4.3.1. Esquena del Modelo Estrella del Data Warehouse

La transformacién de datos crudos almacenados en MongoDB hacia estructuras
relacionales sigui6 un modelo dimensional tipo estrella, compuesto por tablas de
dimensiones y una tabla de hechos como se muestra en la figura 7. Este disefio responde
a la necesidad de mantener integridad referencial mientras se optimiza el rendimiento de
consultas analiticas.

4.3.1.1. Dimensiones

Las dimensiones identificadas fueron:

Dimension Equipo: Almacena informacion estatica de los equipos participantes,
incluyendo identificador unico, nombre oficial, cédigo abreviado, pais de origen, fecha de
fundacion y colores representativos. La verificacion de existencia.

Dimensiéon Personal Externo: Agrupa arbitros y directores técnicos bajo una
estructura comun que diferencia tipos mediante un campo categérico. Esta decisién de
disefio reconoce las similitudes estructurales entre ambos roles desde una perspectiva de
modelado de datos.

Dimensién Estadio: Contiene informacion geogréafica y de capacidad de los
recintos deportivos. Incluye coordenadas geograficas que posteriormente permitiran la
integracion con datos meteoroldgicos.

Dimensiéon Competicion: Identifica las ligas y torneos, vinculandolos con el pais
organizador.

Dimensiéon Tiempo: Registra informacién temporal del partido, incluyendo
temporada, jornada, timestamp de inicio y tiempo afadido.

4.3.2. Construccién de la Tabla de Hechos

La tabla de hechos constituye el nucleo analitico del modelo, integrando claves

fordneas a todas las dimensiones y métricas de rendimiento. Su construccién involucro tres

procesos principales:
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Extraccion de valores anidados: Las estadisticas en MongoDB se almacenan en
estructuras JSON anidadas donde cada métrica se identifica por una clave textual. Se
implementé la funcion obtener_valor_por_clave que navega estos diccionarios anidados
para extraer valores especificos tanto del equipo local como visitante. Esta funcién maneja
gracefully la ausencia de claves, retornando None cuando una estadistica no esta
disponible.

Normalizacion de métricas: Algunas estadisticas presentan formatos heterogéneos
que requieren transformacion. Por ejemplo, los duelos aéreos se expresan como
"ganados/totales (porcentaje %)", mientras que otros porcentajes aparecen solo como "67
%". La estrategia de normalizacion se pospuso para la capa oro, almacenando en esta
fase los valores tal como aparecen en la fuente.

Gestion de referencias nulas: No todos los partidos cuentan con informacion
completa de arbitros o estadios. EI modelo permite valores nulos en claves foraneas no
criticas, priorizando la preservacion de datos disponibles sobre la integridad referencial

estricta.
Figura 7

Modelo Estrella

dim_player_externo

dim_equipo PK | id_player_externo dim_estadio
PK | id_team Columnas PK | id_estadio
Columnas Columnas

=
>t

hechos_estadisticas_partidos

PK | id_partido

Columnas

dim_tiempo dim_competicion
PK | id_tiempo PK | id_competicion
Columnas Columnas

Transformacién
Se realizo la correccion de los estadios quedando los puntos dentro de la cordillera

de los Andes como se muestra en la figura 8. Por otra parte, la implementacion de
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validaciones automaticas detecté 23 registros con inconsistencias légicas (por ejemplo,
disparos al arco superiores a disparos totales), que fueron corregidos asignando el valor
de disparos totales a disparos al arco.

Validacion y Exportacion

Antes de exportar los datos a CSV, se realizaron validaciones de integridad,
incluyendo verificacién de unicidad de identificadores, conteo de valores nulos, validacién
de rangos en meétricas numéricas y comprobacion de claves foraneas. Los datos validados
se exportaron a archivos CSV individuales por tabla, formato que facilita la inspeccion
manual y la carga en herramientas de analisis. Esta decision de disefio, aunque incrementa
el numero de archivos, mejora la trazabilidad y permite la recarga selectiva de tablas
especificas sin afectar el conjunto completo.

Figura 8

Estadios en Colombia, Chile, Ecuador y Peru
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4.4. Preparacion Final de Datos Deportivos (Capa Oro)
4.4.1. Integracion de Dimensiones

La preparacion final inicié con la integracion de las tablas de dimensiones con la
tabla de hechos mediante operaciones de combinacién secuenciales. Este proceso
enriquecio el dataset con informacion contextual necesaria para el analisis

Se cruza los registros para garantizar que solo se mantengan registros con
informacién completa en todas las dimensiones relevantes.

4.4.2. Transformacion de Formatos Heterogéneos

El analisis exploratorio reveld que multiples columnas contenian valores en
formatos no numéricos que impedian su uso directo en modelos predictivos. Se
identificaron dos patrones principales:

Formato fraccién con porcentaje: Variables como duelos aéreos se expresaban
como "12/28 (43 %)", conteniendo simultaneamente valores absolutos y proporcion. La
transformacion aplicada extrajo numerador y denominador mediante expresiones
regulares, calculé la proporcion manualmente y descarté los valores absolutos para evitar
multicolinealidad.

Formato porcentaje simple: Variables como posesién del balén aparecian como "67
%". La transformacién consisti6 en remover el simbolo porcentual y convertir a
representacion decimal.

Este proceso se aplicéd sistematicamente a variables de duelos aéreos, duelos
ganados, balones largos, posesion, centros acertados y regates acertados, tanto para
equipos locales como visitantes.

4.4.3. Estrategia de Imputacion Jerarquica

La presencia de valores nulos en estadisticas numéricas requirio el disefio de una
estrategia de imputacién que respetara la estructura jerarquica de los datos deportivos.

El método implementado opera en tres niveles de especificidad decreciente:

. Nivel 1 - Distribucion por equipo: Para cada valor faltante, el algoritmo

primero intenta construir una distribucion empirica basada en los partidos histéricos del
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equipo especifico (local o visitante segun corresponda). Si esta distribucion contiene al
menos 5 observaciones validas, se realiza un muestreo aleatorio de ella para imputar el
valor faltante. Este enfoque preserva las caracteristicas particulares de rendimiento de
cada equipo.

* Nivel 2 - Distribucién por competicién: Si el equipo carece de suficientes
observaciones histéricas, el algoritmo recurre a la distribucion de la métrica en la
competicion completa. Esto es particularmente util para equipos recién ascendidos o con
datos histéricos limitados.

* Nivel 3 — Distribucion global: Como ultimo recurso se utiliza la distribucion
observada en el dataset completo, independientemente de equipo o competicion.

La implementacién pre calcula las distribuciones antes de iniciar la imputacion para
mejorar la eficiencia computacional: Esta estrategia reconoce que las caracteristicas de
juego varian entre equipos y competiciones, evitando la homogenizacion artificial que
produciria una imputacion global directa. Un ejemplo es que la liga de Ecuador no posee
las mismas distribuciones estadisticas que la liga peruana en una temporada determinada.
4.4.4. Correccion de Datos Geogréficos

La validacion de las coordenadas de estadios reveld inconsistencias
significativas que requerian correccion manual. Los problemas identificados incluyeron:

e Coordenadas invertidas: Algunos estadios presentaban latitud y longitud
intercambiadas

e Coordenadas nulas: Estadios nuevos 0 menos conocidos carecian
completamente de informacion geografica

e Coordenadas erroneas: Ubicaciones que situaban estadios en océanos o
paises incorrectos

La correccion se realizé6 mediante verificacion manual en Google Maps y posterior

actualizacion directa en el DataFrame:
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Este proceso, aunque laborioso, resulté fundamental para la posterior integracion
con datos meteorolégicos, que dependen criticamente de coordenadas geogréficas
precisas. Los puntos de los estadios se encuentran situados sobre los paises a estudiar
que a su vez se encuentra sobre la Codillera de los Andes como se mostro en la figura 8.
4.4.5. Ingenieria de Caracteristicas

La transformacion de variables estadisticas brutas en caracteristicas predictivas
significativas constituyo una fase crucial del preprocesamiento. Se identificaron relaciones
funcionales entre variables que, al ser explicitadas, podrian mejorar la capacidad predictiva
del modelo. Por ejemplo, se calculé la proporcion de pases acertados dividiendo los pases
completados exitosamente entre el total de pases intentados, aplicando un término de
suavizado pequeiio en el denominador para evitar divisiones por cero. Esta misma légica
se extendié a otras métricas como los disparos al arco, donde se calcularon proporciones
especificas para disparos dentro del area, fuera del area, bloqueados y dirigidos al marco.
Un aspecto relevante surgié durante el analisis de estas proporciones calculadas: algunas
excedian el valor unitario, lo cual resulta matematicamente inconsistente para una
proporcion genuina. Esta anomalia sugiere posibles errores en los datos fuente o
diferencias en los criterios de conteo entre variables relacionadas. Para mantener la
coherencia del modelo, se aplicd una funcion de recorte que limité estos valores al rango
valido entre cero y uno, documentando la frecuencia de estas correcciones para cada
variable. La caracterizacién del estilo arbitral representd otra dimensién importante de la
ingenieria de caracteristicas. Se construyeron variables agregadas que capturan la
severidad y el patrén de intervencidn de cada arbitro. La variable "tarjetas por falta
cuantifica la propension del arbitro a sancionar disciplinariamente, mientras que "total de
interrupciones “suma todas las detenciones del juego, incluyendo faltas, tiros libres y
saques de banda. Estas métricas permiten al modelo capturar indirectamente el ritmo e
intensidad del partido, aspectos que pueden influir en el resultado final.

La construccion de variables derivadas se fundamentd en el conocimiento del

dominio futbolistico y la estructura de correlacién observada en los datos:
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4.4.5.1. Pases

Estas caracteristicas son fundamentales para modelar el ritmo de juego de los
equipos en el partido. Los pases representan estrategias de juego como también la
asociacion de los equipos.

e Porcentaje de pases acertados: El porcentaje de pases acertados mide la
precision de los pases realizados por un equipo en relacion con el total de pases
intentados. Este indicador es crucial para evaluar la calidad del juego en equipo
y la capacidad de los jugadores para mantener la posesién del balén y avanzar
en el campo. Un alto porcentaje de pases acertados generalmente refleja un
equipo bien organizado y con buena coordinacion, mientras que un bajo
porcentaje puede indicar problemas en la comunicacién, la precision o el ritmo
del juego, a entender cdmo un equipo gestiona la posesion del balén, su
capacidad para organizar jugadas y su efectividad en la creacion de

oportunidades.

pases_acertados_equipo

orc_pases_acertados_equipo = -
porcp - -equip pases_totales_equipo + €

4.4.5.2. Disparos

Estas caracteristicas son fundamentales para modelar la efectividad ofensiva de
los equipos en el partido. Los disparos representan oportunidades para marcar goles, y las
redes neuronales recurrentes son muy buenas para capturar patrones temporales y
secuenciales en estos eventos. Al incluir estas caracteristicas, el modelo puede aprender
cémo el rendimiento ofensivo de un equipo medido a través de la cantidad y calidad de los
disparos, evoluciona a lo largo del tiempo y como esta relacionado con el rendimiento
general del equipo en el partido, identifique cuando un equipo tiene un rendimiento ofensivo
fuerte o débil, y cdmo las tacticas ofensivas de ambos equipos y sus defensas pueden

influir en el resultado del partido.
o Porcentaje de disparos al arco: El porcentaje de disparos al arco refleja la

efectividad de un equipo al realizar disparos dirigidos al area del portero
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contrario. Un valor alto indica que el equipo esta disparando con precisién hacia
el arco, lo que generalmente es un indicador positivo de su capacidad ofensiva.
Esta caracteristica es util para modelar el rendimiento ofensivo de los equipos,
ya que los disparos al arco son uno de los eventos mas importantes para generar
oportunidades de gol. La RNN puede aprender patrones sobre como los disparos
al arco afectan la probabilidad de anotar, y como el estilo de juego de un equipo
se ve reflejado en su habilidad para generar oportunidades claras.

disparos_arco_equipo

orc_disparos_arco_equipo =
porc_aisp - -equp total_disparos_equipo + €

Porcentaje de disparos dentro del area: El porcentaje de disparos dentro del area
es crucial, ya que los disparos desde el area suelen ser mas efectivos debido a
la mayor proximidad al arco. Un alto porcentaje de disparos dentro del area
indica que el equipo esta realizando jugadas mas directas y esta generando
oportunidades mas claras de gol. Esta caracteristica ayuda a la RNN a identificar
cdmo las tacticas ofensivas de un equipo afectan la calidad de sus disparos y su

capacidad para crear oportunidades de gol desde zonas mas peligrosas.

disparos_area_equipo

orc_disparos_area_equipo =
pore_aisp - -Cqutp total_disparos_equipo + €

Porcentaje de disparos fuera del area: El porcentaje de disparos fuera del area
mide la tendencia de un equipo a realizar disparos desde larga distancia, los
cuales, aunque pueden ser espectaculares, generalmente tienen menos
probabilidad de ser efectivos. Esta variable ayuda a la RNN a modelar el
comportamiento ofensivo del equipo, especialmente cuando se enfrentan a
defensas solidas o cuando no pueden penetrar en el area contraria. La RNN
puede aprender si un equipo tiene éxito o no con disparos de larga distancia y
como eso afecta sus posibilidades de ganar el partido.

disparos_fuera_area_equipo

orc_disparos_fuera_area_equipo =
pore_disp S - -equip total_disparos_equipo + €
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o Porcentaje de disparos bloqueados: El porcentaje de disparos bloqueados refleja
cuantos de los disparos realizados por el equipo fueron interceptados o
bloqueados por los defensores del equipo contrario. Un alto porcentaje de
disparos bloqueados puede indicar que el equipo esta teniendo dificultades para
superar la defensa contraria, lo que limita su capacidad para crear oportunidades
de gol. Esta caracteristica permite que la RNN aprenda como la defensa
adversaria afecta la capacidad de disparo del equipo y como esto influye en el
resultado del partido.

disparos_bloqueados_equipo

porc_disparos_bloqueados_equipo = total disparos_equipo + ¢

4.4.5.3. Arbitro

Para estas nuevas caracteristicas no se realiza el calculo para local y visita ya que
representan caracteristicas globales que surgieron del juego y no corresponde a ningun
equipo, pero es producto del enfrentamiento. Las caracteristicas creadas por el arbitro
reflejan decisiones clave durante el partido que afectan el ritmo, la dinamica y la estrategia
del juego. Las faltas, tarjetas, saques y tiros libres son eventos que modifican
constantemente el flujo del partido, y comprender su influencia es esencial para la
prediccion de los resultados. La RNN puede aprender cémo estos eventos influyen en la
secuencia temporal del partido, ayudando a modelar patrones complejos relacionados con
las sanciones y las interrupciones. En conjunto, estas caracteristicas permiten a la RNN
captar la influencia del arbitro en la dinamica global del juego, proporcionando una mejor
comprension de cédmo los factores relacionados con las sanciones y las interrupciones
afectan el comportamiento de los equipos y, en ultima instancia, el resultado del partido.

o Total de tarjetas: El total de tarjetas es una métrica combinada que da una vision
completa de las sanciones aplicadas a los jugadores durante el partido. Tanto
las tarjetas rojas como las amarillas afectan al desarrollo del juego, ya que las
amonestaciones y expulsiones pueden influir en la moral de los jugadores y en

la estrategia del equipo. Esta variable es importante para que la RNN aprenda
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como las sanciones afectan la dinamica del juego a lo largo del tiempo y como
estas interacciones pueden influir en la prediccién del resultado del partido.
total_tarjetas = total_tarjetas_rojas + total_tarjetas_amarillas

Tarjetas por falta: Esta caracteristica mide la relacion entre el numero de tarjetas
tanto rojas como amarillas y el niUmero total de faltas cometidas. Un alto valor de
tarjetas por falta sugiere que el arbitro esta sancionando agresivamente las
faltas, mientras que un valor bajo puede indicar un arbitraje mas permisivo. Esta
métrica es importante para comprender la tendencia del arbitro en cuanto a las
sanciones por faltas, lo cual puede influir en el ritmo del juego y en las decisiones
tacticas de los equipos. Ayuda a la RNN a identificar cémo las decisiones del
arbitro afectan la dinamica general del juego.

total_tarjetas
total_faltas + €

tarjetas_por_falta =

Total de interrupciones: El total de interrupciones es una métrica que agrega
faltas, tiros libres y saques de banda, lo que da una idea general del numero de
veces que el flujo del juego se ve interrumpido. Un alto numero de interrupciones
puede ser un indicador de un juego mas fragmentado y de mayor tension, lo que
puede afectar la fluidez del partido. Esta caracteristica ayuda a la RNN a
identificar como los cambios frecuentes en el flujo del juego pueden afectar la
dinamica y el resultado del partido.
total_interrupciones
= total_faltas + total_tiros_libres + total_saques_banda

Donde ¢ = 10~° una constante pequefia afiadida para evitar la division por cero
y equipo representa “local” y "visita", segun corresponda.

Através de estos pasos, los datos fueron finalmente preparados y estructurados

para ser alimentados en los modelos de aprendizaje supervisado
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4.5. Extraccion de Datos Meteorolégicos (Capa Bronce)
4.5.1. Seleccién de Fuente de Datos Ambientales

Para la integracién de variables climaticas se selecciond la plataforma NASA
POWER (Prediction Of Worldwide Energy Resources), que proporciona datos
meteorologicos globales derivados de observaciones satelitales. Esta eleccion se
fundamentoé en tres ventajas principales sobre estaciones meteorolégicas terrestres:

1. Cobertura espacial completa: Los satélites proporcionan datos en cualquier

coordenada geografica, eliminando el problema de estadios ubicados lejos de

estaciones meteoroldgicas

2. Consistencia temporal: Los datos satelitales estan disponibles desde 1981 con

metodologia consistente, mientras que estaciones terrestres presentan periodos de

operacion variables

3. Acceso programatico: La APl REST de NASA POWER permite la extraccion

automatizada sin restricciones severas de tasa de solicitud

La principal limitacién de esta fuente radica en la resolucion espacial de

aproximadamente 0.5° x 0.5° (aproximadamente 50 km en el ecuador), que puede

introducir imprecisiones en areas con microclimas marcados
4.5.2. Diseno del Sistema de Extraccion Paralela

La extraccion de datos meteoroldgicos presenta un desafio computacional
significativo debido al volumen de solicitudes requeridas. Para cada partido, se necesita
consultar multiples horas de datos meteoroldgicos, lo que para un dataset de varios miles
de partidos puede resultar en decenas de miles de llamadas al API.

Para abordar este desafio, se disefi® un sistema de extraccion basado en
concurrencia mediante ThreadPoolExecutor de Python. La arquitectura se estructura en
tres componentes principales:

Clase contenedora: Encapsula toda la l6gica de extraccion y manejo de errores. Se
inicializa con la lista de variables meteorologicas deseadas, numero maximo de workers

paralelos y limite de reintentos por solicitud. Motor de solicitudes con reintentos:
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Implementa una estrategia de backof f exponencial para manejar fallos transitorios de red.
Si una solicitud falla, el sistema espera 2 x n segundos antes de reintentar, donde n es el
numero de intento. Esta estrategia reduce la probabilidad de exceder limites de tasa del

servidor el algoritmo utilizado es el 2.

Algorithm 2 Reintentos de Peticién a la API.

1: procedure REALIZARPETICIONAPI(url, max_retries)

2: Entrada: URL de la API wrl, nimero maximo de reintentos max_ retries

3: Salida: Respuesta de la API en formato JSON o None en caso de error

4 for attempt = 0 to max_retries — 1 do

5: Intentar realizar la peticion HTTP GET a wurl con tiempo de espera de 30
segundos

6 Si la respuesta tiene un codigo de estado exitoso:

T: Retornar la respuesta en formato JSON

8 Si ocurre una excepcion RequestException:

9 if attempt = max_retries — 1 then

10: Loguear error definitivo con el mensaje de la excepcién

11: return None

12: else

13: Calcular el tiempo de espera wait_time = 2°ttempt

14: Esperar wait_time segundos antes de reintentar

15: end if

16: end for

17 return None

18: end procedure

Sistema de procesamiento paralelo: Utiliza ThreadPoolExecutor para procesar multiples
registros simultdneamente, manteniendo un pool de workers que procesan solicitudes de
manera concurrente. La implementacion incluye una barra de progreso que proporciona
retroalimentacion visual del avance, el procesamiento implementado se muestra en el

algoritmo 3.
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Algorithm 3 Procesamiento Concurrente de Registros.

1: procedure PROCESARREGISTROSCONCURRENTEMENTE(records,
maxworkers, mode)
2: Entrada: Lista de registros records, nimero maximo de trabajadores

max__workers, modo de procesamiento mode

Salida: Lista de resultados procesados

Inicializar una lista vacia results

Crear un ThreadPoolExecutor con max_workers trabajadores

Crear un diccionario vacio future to record

for cada registro record en records do

Enviar la tarea de procesamiento del registro record al

ThreadPoolExecutor, asociando el resultado con el registro en el dicciona-
rio future to record

o N

0: end for

10: for cada tarea completada future en as_completed(future _to_record) do
11: Obtener el resultado de la tarea result < future.result()

12: Agregar result a la lista results

13: end for

14: return results

15: end procedure

4.5.3. Estrategias de Agregacién Temporal

La API de NASA POWER proporciona datos horarios, mientras que los partidos de
futbol tienen duracién aproximada de 2 horas. Se implementaron dos modos de agregacion
temporal para capturar las condiciones meteoroldgicas relevantes:

Modo de 3 horas (mode = '3h’): Calcula el promedio de 3 horas consecutivas antes
de la hora de inicio del partido. Este enfoque proporciona una representacion mas precisa
de las condiciones durante el encuentro, particularmente relevante para variables como
velocidad del viento que pueden cambiar significativamente en periodos cortos.

4.5.4. Evaluacion de Calidad en Datos Meteoroldgicos

Después de la ejecucion del algoritmo de ingesta paralela se analiza estas series
temporales al igual que se realizdé con los datos estadisticos de futbol para analizar la
calidad de datos obtenidos, siguiendo los principios del DAMA-DMBOK (International,

2017), adaptados al contexto de datos de series temporales extraidos de APIs web.
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Exactitud: La validacion de datos meteoroldgicos presentd desafios Unicos debido
a la ausencia de verdad fundamental absoluta. Se implemento una estrategia de validacion
cruzada comparando los datos satelitales de NASA POWER con:

o Estaciones meteoroldgicas cercanas.

e Rangos historicos esperados para cada ubicacién geografica.

e Coherencia fisica entre variables relacionadas (temperatura-humedad,
precipitacién-nubosidad).

e Las series temporales muestran correlaciones.

Completitud: Se cuenta con la data completa, la APl de NASA POWER utiliza el
valor -999 para indicar datos faltantes o invalidos. El sistema de extraccion filtra estos
valores automaticamente antes de calcular promedios, evitando que contaminen las
estadisticas agregadas.

Consistencia: Se implementaron las siguientes validaciones de coherencia fisica.
Precipitacién no nula implica nubosidad, radiacion solar inversamente proporcional a
nubosidad y humedad relativa entre 0-100 %. Los casos inconsistentes fueron tratados
mediante imputacién basada en patrones temporales como interpolacién de horas
adyacentes.

Temporalidad: Un desafio particular fue la sincronizacion horaria. Los datos
deportivos utilizan hora local del estadio, NASA POWER emplea UTC que es igual al
mismo formato horario los partidos. Se considerando zona horaria del pais y diferencias
entre hora programada y hora real de inicio.

4.6. Transformacion de Datos Meteorolégicos (Capa Plata)
4.6.1. Variables Meteorolégicas Seleccionadas

Se seleccionaron siete variables meteorolégicas en base a su relevancia

documentada en la literatura deportiva y su disponibilidad en la plataforma NASA POWER:
o Temperatura a 2 metros: Afecta el rendimiento fisico de los jugadores y la dinamica

del balén
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¢ Humedad relativa a 2 metros: Influye en la sensacion térmica y la fatiga

e \Velocidad del viento a 2 metros: Impacta la trayectoria del balon, especialmente en
pases largos y tiros

e Direccién del viento: Permite identificar ventajas direccionales

e Cobertura nubosa: Afecta la visibilidad y condiciones de juego

e Precipitacion corregida: Determina si el campo esta humedo o seco

¢ Radiacién solar descendente: Relacionada con temperatura percibida y visibilidad

4.6.2. Gestion de Errores y Trazabilidad
El sistema implementa multiples niveles de manejo de errores para

garantizar robustez ante fallos parciales:

1. Validacién de coordenadas: Verifica que las coordenadas geograficas sean va

lidas antes de intentar la extraccion

2. Manejo de timeouts: Cada solicitud tiene un timeout de 30 segundos para

evitar bloqueos indefinidos

3. Registro de fallos: Los errores se registran con nivel de detalle suficiente para

diagnostico posterior

4. Campo de éxito: Cada registro resultante incluye un campo api_success que

indica si la extraccion fue exitosa

Al finalizar el proceso, se genera una columna api_success estadistica que indica
la tasa de éxito global. Este disefio permite identificar patrones sistematicos de fallo, por
ejemplo, ciertos rangos de coordenadas o periodos temporales, que puedan requerir
atencioén especial.
4.6.3. Limpieza y Normalizacion

El proceso de preparacién de datos meteoroldgicos inicié con la eliminacion de la

columna api_success, utilizada unicamente para control de calidad durante la extraccion.
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Posteriormente, se reconstruyd un indice temporal unificado combinando las columnas
fecha y hora.

Esta transformacion facilita la sincronizacion temporal con los datos deportivos y
permite analisis de series temporales si se requieren.

La renombrado de columnas se realizé siguiendo convenciones descriptivas en
espafiol para mantener consistencia con el dataset deportivo.
4.7. Preparacion Final de Datos Meteorolégicos (Capa Oro)
4.7.1. Ingenieria de Caracteristicas Meteorolégicas

Estas nuevas caracteristicas es incorporar datos ambientales que puedan tener un
impacto significativo en el juego de futbol. Las redes neuronales recurrentes son
especialmente adecuadas para este tipo de tareas, ya que permiten modelar secuencias
temporales y patrones dependientes del tiempo. En este caso, las caracteristicas
ambientales como el viento, la lluvia y las condiciones climaticas adversas pueden afectar
la dindmica del partido de manera no lineal y de forma continua a lo largo del tiempo.

Componente x del viento: El viento tiene una direccién y una velocidad. Para
entender mejor su efecto en el juego de futbol, es util descomponer la velocidad del viento
en sus componentes en los ejes x y y La componente x (u horizontal) es crucial para
entender como el viento afecta a los movimientos horizontales del balén (como en los tiros
o el pase). Esta caracteristica ayudara a la red neuronal recurrente a captar los patrones
temporales relacionados con la influencia del viento en el desplazamiento del balén durante
el partido.

viento, = velocidad_viento . cos(direccidn_viento)

Componente y del viento: La componente y del viento representa la direccion
vertical del viento. Al igual que la componente x esto se descompone para estudiar como
el viento afecta los movimientos verticales del balén, como cuando el viento puede hacer

que el balén se desplace en el aire de arriba hacia abajo. Al incorporar esta caracteristica,
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podemos modelar la relacién entre la direccién del viento y los patrones de juego, lo cual
es crucial para predicciones precisas en condiciones adversas.
viento, = velocidad_viento .sin(direccion_viento)

Lluvia (1 si hay lluvia, 0 si no): La lluvia tiene un impacto directo en el terreno de
juego, haciendo que el balén se desplace de manera diferente y afectando la capacidad
de los jugadores para controlar el balon. Esta caracteristica es binaria (1 si hay lluvia, 0 si
no) y ayuda a la RNN a reconocer patrones de juego en condiciones de lluvia, lo que puede
afectar el rendimiento de ambos equipos, especialmente en cuanto a precision y control
del balon.

, {1, precipitacion > UMBRAL_LLUVIA
lluvia = o
0, precipitacion < 0

Clima adverso (1 si se cumple alguna condicién adversa, 0 si no): El clima adverso
se define como una combinacién de condiciones que pueden afectar el desarrollo del
partido, como lluvia, viento fuerte o temperaturas extremas. Esta variable binaria captura
la presencia de condiciones climaticas adversas. La RNN puede aprender como estos
factores combinados influyen en el rendimiento y la estrategia de los equipos. Por ejemplo,
el viento fuerte o la lluvia pueden hacer que el juego sea mas impredecible, afectando tanto
el control del balon como la toma de decisiones de los jugadores.

Viento severo (cuadrado de la velocidad del viento): El viento severo es un indicador
del impacto potencial del viento en el juego. Cuanto mayor sea la velocidad del viento, mas
dificil sera controlar el balén y predecir su trayectoria. Al usar el cuadrado de la velocidad
del viento, esta caracteristica amplifica el efecto de vientos fuertes, lo que puede ser crucial
para la RNN al modelar situaciones de viento extremo, donde la influencia es mucho mas
significativa. Esto también ayuda a identificar patrones de juego donde los equipos tienen
que adaptarse a un viento mas fuerte, como en el caso de disparos o pases largos.

viento_severo = velocidad_viento?
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Esta transformacion ampilifica la diferencia entre condiciones ventosas moderadas
y severas, reflejando que el impacto del viento sobre la trayectoria del balén escala
aproximadamente con el cuadrado de la velocidad segun principios aerodinamicos.

4.7.2. Tratamiento de Valores Atipicos

El andlisis exploratorio mediante graficos de caja reveld la presencia de valores
extremos en varias variables meteorolégicas. Para mantener la distribucién natural de los
datos mientras se limitan observaciones potencialmente erroneas, se implementé un
clipping basado en el rango intercuartilico.

Este método, basado en el criterio de Tukey, preserva los datos bajo distribucion
normal mientras restringe valores extremos que podrian representar errores de medicién
o condiciones excepcionales no representativas.

La decision de utilizar clipping en lugar de eliminacion de outliers se fundamenté en
dos consideraciones:

e Preservacion del tamano muestral: La eliminacion de registros completos por
outliers en una sola variable reduciria significativamente el dataset
o Naturaleza de datos satelitales: Los valores extremos pueden representar
fendmenos meteoroldgicos reales como tormentas u olas de calor, son raros pero
relevantes para el analisis.
4.7.3. Integracién Datos Deportivos con Datos Ambientales

La incorporacion de datos meteoroldgicos requirio un flujo de procesamiento
independiente pero complementario. Complementario por que se requiere la finalizacion
del procesamiento de los datos de futbol mediante la transformacion, ya se imputan datos
faltantes de manera jerarquica como se aprecia en el algoritmo 5 para poder cruzar la
informacion y sea consistente. Los datos ambientales se obtuvieron mediante consultas a
servicios de informacion climatica histérica, sincronizados temporalmente con cada partido
en ventanas de tres horas alrededor del horario de inicio. Esta sincronizacion temporal
precisa resulté critica para garantizar que las condiciones registradas correspondieran

efectivamente a las experimentadas durante el evento deportivo. Las variables climaticas
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crudas incluian temperatura, humedad relativa, velocidad del viento, direccién del viento,
nubosidad, precipitacion y radiacion solar. Sin embargo, estas mediciones directas no
necesariamente capturan los efectos fisicos relevantes para el rendimiento deportivo.
La fusion de los datos meteoroldgicos y deportivos se realizé mediante combinacion
por identificador de partido, garantizando la correspondencia temporal exacta.
Se cruzan los datos para asegurar que solo se mantengan partidos con informacién
meteoroldgica completa.
El dataset integrado resultante contiene los siguientes features:
e Variables identificadoras: id_partido, id_estadio, id_arbitro, id_team_local,
id_team_visita.
o Estadisticas deportivas: 28 variables que describen el rendimiento de los
equipos.
o Variables meteorolégicas: 16 variables que capturan las condiciones
ambientales.
e Variables derivadas: Diferencias de rendimiento e indicadores categoricos.
El analisis se estructura en tres segmentos principales: en el ambito del Equipo, se
evaluan métricas de rendimiento como despejes, tiros de esquina, atajadas y disparos
fuera del arco, junto con los porcentajes de balones largos, centros, regates, pases,
disparos al arco, disparos en el area, fuera de ella y bloqueados. Respecto al Arbitro, se
consideran las tarjetas por falta y el total de interrupciones, mientras que en la dimensién
del Ambiente se analiza la diferencia en duelos aéreos, temperatura, porcentaje de
humedad, direccién de viento, porcentaje de nubosidad, radiacion, viento de sur a norte,
viento de oeste a este y viento severo.
4.7.4. Validacién Final de Calidad
Previo a la exportacion del dataset integrado, se ejecutd una bateria de

verificaciones de calidad:
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o \Verificacion de completitud: Se confirmé la completitud de variables criticas para el
modelo, aceptando nulos unicamente en campos opcionales.
¢ Validacion de rangos: Se verificaron rangos esperados para variables numéricas:
o Temperatura entre -10°C y 45°C
o Humedad relativa entre 0 % y 100 %
o Velocidad del viento entre 0 y 30 m/s
o Precipitacion entre 0 y 50 mm/hora
o Consistencia temporal: Se validé que todos los registros tuvieran timestamps
validos dentro del periodo de estudio (2017-2025).
o Integridad referencial: Se confirmé que todos los identificadores de equipos,
estadios y competiciones existieran en sus respectivas tablas dimensionales.
El dataset final se export6 en formato CSV con codificacion UTF-8,
preservando caracteres especiales en nombres de equipos y estadios
Este archivo constituye el punto de entrada para las fases posteriores de modelado
predictivo, conteniendo 9294 registros de partidos con 44 variables explicativas y una

variable objetivo que es el resultado del partido.
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CAPITULO V
Pruebas y resultados

En este capitulo, nos centramos en las pruebas y resultados, cuyo conjunto de
entradas estd compuesto por estadisticas del partido de fatbol, asi como datos
relacionados con el equipo local, el equipo visitante y las condiciones generales del partido,
como la caracterizacion del arbitro, los cuales fueron definidos en el capitulo de ingenieria
de caracteristicas.

Por otro lado, se incluye el modelo Enchantress elaborado en el experimento
denominado "F — A1", que utiliza las mismas entradas que el modelo base denominado
"F — 1", pero con la adicion de caracteristicas ambientales. Los experimentos presentados
en este capitulo abarcan diferentes variaciones en la arquitectura de los modelos. Cada
uno de estos experimentos se lleva a cabo tanto para el modelo base como para el modelo
Enchantress, con el fin de evaluar su desempefio y comparar los resultados obtenidos.

Ademas, los experimentos incluyen datos provenientes de diversos paises, tales
como Colombia, Ecuador, Chile y Pert, lo que permite analizar el comportamiento del
modelo en contextos nacionales especificos. Parte de este analisis se enfoca en examinar
como varian las métricas de desempefo entre los diferentes paises, lo que proporciona
una vision mas detallada sobre la influencia de las caracteristicas contextuales en los
resultados de las predicciones.

5.1. Preparacion para pruebas
5.1.1. Divisién de Dataset

El flujo general de los modelos de aprendizaje supervisado se inicia con un proceso
fundamental: la division de los datos en tres subconjuntos, requirié una estructuracion
cuidadosa para evitar fugas de informacion del futuro hacia el pasado, destinados al
entrenamiento, validacion y prueba del modelo. En primer lugar, se lleva a cabo una
division de los datos de acuerdo con una proporcion estandar de 75 % para entrenamiento,

10 % para validacion y 15 % para prueba. Este enfoque de particién asegura que el modelo
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sea entrenado sobre un conjunto de datos suficientemente grande, al tiempo que se
conserva una porcién representativa de los datos para validacion y evaluacion.

En este proceso, se ha dado especial atencién a la temporalidad de los partidos.
En lugar de realizar una particién arbitraria de los datos, se ha respetado el orden temporal
de los partidos, de manera que el conjunto de entrenamiento incluye los partidos mas
antiguos, mientras que los conjuntos de validacién y prueba contienen los partidos mas
recientes. Este enfoque garantiza que el modelo sea evaluado en datos futuros a partir de
los datos histdéricos, un aspecto crucial para problemas de prediccién de eventos
deportivos, donde la naturaleza secuencial de los datos no debe ser ignorada.

5.1.2. Normalizacién

A continuacion, se realiza el proceso de normalizacién de los datos, que se lleva a
cabo de acuerdo con el tipo de columna y su distribucion especifica. La normalizacion es
esencial para garantizar que las variables con diferentes escalas no dominen el proceso
de entrenamiento del modelo, ya que muchas técnicas de aprendizaje automatico, como
los algoritmos basados en distancias o redes neuronales, son sensibles a la magnitud de
las caracteristicas. Este proceso se realiza para cada tipo de dato, asegurando que los
valores sean ajustados de manera que todas las caracteristicas tengan una distribucion
similar, lo que facilita la convergencia del modelo durante el entrenamiento.

La normalizacion de las caracteristicas numéricas se realizd6 exclusivamente
basandose en las estadisticas del conjunto de entrenamiento. Se aplicé estandarizacion
robusta a la mayoria de las variables para soportar valores atipicos. Las variables que
representan proporciones naturales recibieron un tratamiento diferente mediante
escalamiento min — max, que preserva su interpretacion como valores entre cero y uno.
Los escaladores ajustados en el entrenamiento se aplicaron posteriormente de manera
idéntica a los conjuntos de validacion y prueba, manteniendo la consistencia en la

representacion de las caracteristicas.
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5.1.3. Arquitectura de series temporales

Ademas, se lleva a cabo la construccion de la ventana de temporalidad, que se
calcula especificamente por grupo. La transformacién del dataset tabular en secuencias
temporales adecuadas para redes neuronales recurrentes representd uno de los aspectos
mas complejos del disefio experimental. El objetivo consistia en capturar la dinamica
temporal del rendimiento de los equipos mediante ventanas histéricas de cuatro partidos
previos. Esta ventana se refiere al historial de los partidos, es decir, los datos previos a un
partido especifico, lo cual es crucial para la prediccién de eventos futuros basados en el
comportamiento histérico. Para los partidos de equipo local y visitante, se busca en el
historial de partidos previos de esos mismos equipos, de modo que las caracteristicas
utilizadas para predecir los resultados futuros provienen de datos pasados de las mismas
entidades deportivas. Esta estrategia permite aprovechar el contexto histérico de cada
equipo, lo que mejora la capacidad predictiva del modelo.

5.1.3.1. Historial por Equipo.

Se desarrollé un mecanismo de extraccion de rachas que recupera los ultimos N
partidos de cada equipo anteriores a la fecha del encuentro a predecir. Este proceso
requirid primero desagregar el dataset original, donde cada fila representa un partido
completo con estadisticas de ambos equipos, en un formato de equipo-partido donde cada
fila corresponde a la participacion de un equipo especifico en un partido dado. Esta
transformacion duplica el nimero de observaciones, pero permite rastrear la trayectoria
temporal de cada equipo de manera independiente. Para cada equipo involucrado en un
partido, se extrajeron sus cuatro partidos inmediatamente anteriores a la fecha del
encuentro. Esta ventana de cuatro partidos se determind balanceando dos
consideraciones opuestas: ventanas mas largas proporcionan mas contexto histérico, pero
pueden incluir informacion obsoleta debido a cambios en la plantilla o el esquema tactico;
ventanas mas cortas capturan el estado reciente, pero son mas susceptibles a la

variabilidad aleatoria de encuentros individuales. La eleccion de cuatro partidos representa
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un compromiso razonable que captura aproximadamente un mes de actividad para equipos
que juegan semanalmente.

5.1.3.2. Incorporacién de Contexto Ambiental y Arbitral

En cuanto a los datos climaticos, la construccion de la ventana de temporalidad se
realiza de manera similar. Los datos climaticos se cruzan exclusivamente segun las
caracteristicas especificas de cada partido, es decir, el contexto climatico del dia del partido
es asignado a la fecha del evento, considerando las variables climaticas de partidos
pasados.

La caracterizacién del arbitro siguié una loégica similar, pero con un enfoque
diferente. Se recuperaron sus ultimos cuatro partidos arbitrados, independientemente de
los equipos involucrados, calculando el promedio de variables. Este promedio movil
captura el estilo arbitral reciente del oficial, que puede variar en el tiempo debido a
directrices cambiantes de las asociaciones de arbitros o la evolucién personal del criterio
arbitral.

Un desafio metodoldgico surgié con equipos que carecian de suficiente historial en
el dataset. Particularmente, equipos recién ascendidos o aquellos con registros
incompletos no podian proporcionar cuatro partidos previos. La decision tomada fue excluir
estas observaciones del entrenamiento, aceptando una reduccion en el tamafio muestral
a cambio de mantener la consistencia estructural de las secuencias. Esta exclusién afecta
principalmente a las primeras temporadas del dataset y a competiciones con cobertura
parcial.

5.2. Evaluacion para la predicciéon

En base al objetivo general Ambos experimentos ("F — 1": base deportivo, "F — A1":
enriquecido con clima) siguieron protocolos idénticos en términos de espacio de busqueda
de hiper parametros, procedimientos de evaluacion y estrategias de regularizacion,
variando unicamente en la dimensionalidad de entrada. El experimento base procesé
secuencias de 28 caracteristicas derivadas exclusivamente de estadisticas deportivas y

contexto arbitral. El experimento enriquecido incorpor6 16 variables meteoroldgicas
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adicionales, resultando en secuencias de 44 caracteristicas. Esta estrategia de
comparacion controlada permite aislar el efecto atribuible a la inclusion de informacién
ambiental, manteniendo constantes el resto de factores metodoldgicos.
5.2.1 Busqueda en rejilla de hiperparametros (Grid Search)

El espacio de hiper parametros explorado abarcé 12 combinaciones distintas,
definidas por las siguientes configuraciones:

5.2.1.1 Arquitectura Recurrente

La base de la experimentacion se centré en la evaluacién de la arquitectura,
comenzando con el Tipo de Célula recurrente, donde se utilizé la LSTM y la GRU ambas
esenciales para la gestion efectiva de dependencias de largo alcance en las secuencias.
La capacidad de representacion del modelo fue modulada mediante la variacion de las
Unidades en la Primera Capa (24, 32 o 64), mientras que la profundidad y complejidad se
ajustaron con la Segunda Capa, probando 0 (configuracién simple), 16 o 32 unidades para
la captura de patrones de orden superior. Por razones de causalidad temporal, inherente
a los datos secuenciales, la Direccionalidad se mantuvo estrictamente Unidireccional
(forward).

5.2.1.2 Regularizacion

Para mitigar el riesgo de sobreajuste (overfitting), se implementaron dos
mecanismos clave de regularizacién. Primero, se aplicd el método Dropout con tasas de
0.4 y 0.5 inmediatamente después de cada capa recurrente. Segundo, se evalud la
inclusion de una Capa Densa Intermedia con 8 unidades para realizar una transformacién
no lineal antes de la capa de clasificacion final; alternativamente, se probo el valor 0,
estableciendo una conexion directa entre las capas recurrentes y la salida.

5.2.1.3 Optimizacién y Entrenamiento

En cuanto al proceso de optimizacion, se selecciono el algoritmo Adam debido a su
probada eficiencia computacional y su robusta convergencia en una amplia variedad de
tareas de Deep Learning. La Tasa de Aprendizaje se exploré con 0.001 buscando un

balance adecuado entre la velocidad de convergencia y la estabilidad del proceso. El
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Tamano del Lote (Batch Size) se fijo en 128, impactando directamente en la estabilidad del
gradiente y el tiempo total de entrenamiento. Finalmente, se establecié un limite de 100
Epocas Maximas, complementado con una estrategia de Detenciéon Temprana (Early
Stopping) con una Paciencia de épocas sin observar mejora en el conjunto de validacion,
garantizando asi una convergencia eficiente y la prevencion del sobre entrenamiento.
5.2.1.4 Funcién Objetivo
Se selecciond la precision global como métrica de optimizacion, definida como la
proporcion de predicciones correctas sobre el total de instancias. Aunque esta métrica
puede ser sensible al desbalance de clases, su uso se justifica al incorporar pesos de clase
durante el entrenamiento, lo que compensa la distribucion desigual de resultados
deportivos
Para cada configuracion, se realizo el siguiente procedimiento:
1. Inicializacion del modelo con la arquitectura especificada
2. Entrenamiento sobre el conjunto de entrenamiento con monitorizacion en validacion

3. Evaluacién de la métrica objetivo (accuracy) sobre el conjunto de validaciéon

B

Registro de métricas complementarias (precision por clase, recall, F1-score)
5. Almacenamiento de resultados y configuracion para analisis posterior

El proceso completo se instrumento para medir tiempos de ejecucién, permitiendo
evaluar el costo computacional asociado a cada configuracién. Los resultados se
serializaron en formato JSON, facilitando su analisis comparativo y reproducibilidad
experimental.
5.2.2 Métricas de evaluacién

Para evaluar el desempefio del modelo LSTM en un escenario de clasificacion
multiclase con fuerte desbalance, es fundamental priorizar métricas que reflejen la calidad
del aprendizaje en cada categoria y no solo el rendimiento global. Aunque la precision
general (accuracy) ofrece una referencia inicial, su utilidad es limitada porque favorece a

la clase mayoritaria. En contraste, las métricas por clase precision, recall y F1 permiten
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identificar si el modelo reconoce adecuadamente las clases minoritarias, que suelen ser
las mas dificiles de predecir.

Finalmente, la matriz de confusion complementa el andlisis al mostrar
explicitamente los patrones de error y las confusiones entre categorias, ofreciendo una
comprension mas profunda del comportamiento del modelo.

5.3. Experimento ‘F - 1’ (inicamente variables deportivas).

El proceso de optimizacion mediante busqueda en rejilla de hiperparametros
identificd una arquitectura 6ptima basada en unidades recurrentes cerradas (GRU, por sus
siglas en inglés). La configuracién resultante emplea una Unica capa recurrente con 24
unidades, tasa de abandono del 50%, tasa de aprendizaje de 0.001 mediante el
optimizador Adam, y tamano de lote de 128 instancias. Esta arquitectura fue seleccionada
tras evaluar sistematicamente 36 combinaciones distintas de hiperparametros durante un
periodo de entrenamiento que abarcd 17 épocas antes de la activacion del mecanismo de
detencion temprana.

Figura 9

Funcién de perdida experimento 'F-1'
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La evoluciéon del proceso de entrenamiento, ilustrada en la Figura 9, revela una
convergencia progresiva de las funciones de pérdida tanto en el conjunto de entrenamiento
como en el de validacion. La pérdida de entrenamiento exhibe una reduccién pronunciada
durante las primeras cinco épocas, decreciendo desde 1.16 hasta aproximadamente 1.09,
para posteriormente estabilizarse en valores cercanos a 1.09. De manera analoga, la
pérdida de validacién desciende desde 1.11 hasta 1.08 durante el mismo intervalo
temporal, manifestando posteriormente oscilaciones controladas que sugieren un equilibrio
adecuado entre capacidad de ajuste y generalizacion.

Figura 10

Disminucién de la tasa de aprendizaje experimento 'F-1'

La implementacion del mecanismo de reduccién adaptativa de la tasa de
aprendizaje Figura 10 demuestra su activacion en la época 13, disminuyendo el valor
desde 0.001 hasta 0.0005, estrategia que contribuyo a la estabilizacion del proceso
optimizacion sin comprometer la capacidad predictiva del sistema.

5.3.1 Rendimiento Global
El modelo optimizado alcanzé una exactitud del 43.7% en el conjunto de validacién,

métrica que constituyo el criterio de seleccién durante la busqueda de hiperparametros.
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Esta cifra representa una mejora sustancial respecto a la linea base aleatoria (33.3% para
un problema de tres clases equilibrado), evidenciando la capacidad del sistema para
capturar patrones relevantes en los datos histéricos. El puntaje F1-macro, que pondera
equitativamente el rendimiento en las tres categorias de resultado (victoria local, empate,
victoria visitante), se situ6 en 0.337, mientras que el F1-ponderado alcanzé 0.383,
reflejando un desempefio diferenciado segun la clase predictiva.

Figura 11

Matriz de confusion experimento 'F - 1'

La evaluacion del rendimiento del modelo mediante la matriz de confusion
normalizada como se muestra en la figura 11 revel6 que, si bien el clasificador exhibe una
capacidad aceptable para identificar las victorias (alcanzando una precision del 54.59%
para la clase Local y un 50.00% para la clase Visita), existe una dificultad metodolégica
critica centrada en la predicciéon de la clase Empate. Esta clase es clasificada
correctamente en solo el 11.61% de las ocasiones, lo que se debe principalmente a un
marcado sesgo del modelo que confunde los Empates reales con los resultados de Local

52.23% y Visita 36.16%



91

5.3.2 Rendimiento por Pais

Con el modelo ya entrenado, volvemos a evaluar con el conjunto de datos de test,
para esta solucion se cruza con los paises de cada partido. La evaluacién desagregada
por contexto geografico revela variaciones significativas en la capacidad predictiva del
modelo (Figura 12). Peru emerge como el territorio con mayor exactitud (45.2%), seguido
por Colombia (43.4%), Ecuador (41.5%) y Chile (40.5%). Esta disparidad, aunque
moderada (rango de 4.7 puntos porcentuales), resulta estadisticamente relevante dado el
volumen diferencial de instancias evaluadas: 230 partidos para Peru, 341 para Colombia,
212 para Ecuador y 148 para Chile.

El analisis de las métricas F1 por pais Figura 12 muestra una consistencia notable
entre los diferentes indicadores. Los valores de F1-macro oscilan entre 0.31 (Chile) y 0.37
(Ecuador y Colombia), mientras que los puntajes F1-ponderados exhiben un rango
ligeramente superior (0.36-0.44). Esta convergencia relativa entre métricas sugiere que el
modelo no presenta sesgos pronunciados hacia clases mayoritarias en ninguno de los
contextos evaluados.

Figura 12

Evaluacion por pais experimento 'F - 1'
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Las matrices de confusion normalizadas (panel inferior de la Figura 12) revelan
patrones sistematicos en el comportamiento predictivo del sistema. En todos los paises
analizados, la clase correspondiente a victoria del equipo local presenta las tasas de
acierto mas elevadas, oscilando entre 0.53 (Ecuador) y 0.57 (Peru). Este fendmeno resulta
consistente con la ventaja estadistica documentada del factor localia en el futbol
sudamericano. Contrariamente, la categoria de empate exhibe las mayores dificultades de
discriminacion, con tasas de recuperacion que fluctuan entre 0.38 (Chile) y 0.66 (Ecuador),
evidenciando la naturaleza inherentemente impredecible de este resultado. La clase de
victoria visitante muestra un rendimiento intermedio, con valores de sensibilidad entre 0.32
(Peru) y 0.56 (ambos en Ecuador).

5.4. Experimento ‘F — A1’ (incorporacién de variables ambientales).

El proceso de optimizacion mediante busqueda en rejilla de hiperparametros

identificd una arquitectura 6ptima basada en unidades recurrentes cerradas (GRU, por sus

siglas en inglés). La incorporacién de variables meteoroldgicas al conjunto de predictores
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condujo a la seleccion de una arquitectura alternativa durante el proceso de optimizacion.
El modelo resultante emplea celdas LSTM (memoria a largo-corto plazo) con una
configuracién minimalista de 8 unidades en una Unica capa recurrente, manteniendo una
tasa de abandono del 50% y parametros de optimizacion idénticos al modelo base (tasa
de aprendizaje de 0.001, optimizador Adam, tamafio de lote de 128). Esta simplificacion
arquitectural contrasta notablemente con las 24 unidades GRU del modelo exclusivamente
futbolistico, sugiriendo que la informacién meteoroldgica permite alcanzar capacidad
representacional comparable con menor complejidad estructural.

Figura 13

Funcién de perdida experimento 'F - A1’

El analisis de las curvas de aprendizaje Figura 13 evidencia un comportamiento de
convergencia diferenciado respecto al modelo base. La pérdida de entrenamiento
desciende desde 1.119 hasta estabilizarse en 1.089 tras 18 épocas, exhibiendo
oscilaciones mas pronunciadas durante el proceso. La pérdida de validacion muestra un
patrén paralelo, disminuyendo desde 1.099 hasta 1.085, con fluctuaciones que sugieren

mayor sensibilidad a la composicion especifica de lotes durante el entrenamiento.
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Figura 14

Disminucién de la tasa de aprendizaje experimento 'F - A1’

El mecanismo de reduccion adaptativa de la tasa de aprendizaje, Figura 14 se
activé en dos momentos criticos: época 10 (reduccion a 5x107™) y época 15 (reduccion
adicional a 2.5x107*), estrategia que facilitd la exploracion refinada del espacio de
parametros sin comprometer la estabilidad del proceso

El modelo sugiere que el modelo captura adecuadamente sefiales asociadas con
superioridad deportiva, pero enfrenta limitaciones al discernir situaciones de paridad

competitiva.

5.4.1 Rendimiento Global

El sistema integrado alcanzé una exactitud promedio del 43.5% a través de los
cuatro contextos geograficos evaluados, representando una disminucién marginal de 0.2
puntos porcentuales respecto al modelo base (43.7%). Esta variacion, si bien
contraintuitiva considerando la informacién adicional incorporada, resulta estadisticamente

insignificante y se encuentra dentro del margen de variabilidad inherente a procesos
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estocasticos de entrenamiento. Las métricas F1 reflejan un patrén analogo: el F1-macro
promedio se mantuvo en valores comparables (diferencia inferior a 0.01 puntos), mientras
que el F1-ponderado exhibié fluctuaciones similares entre ambas configuraciones.
5.4.2 Analisis por Pais

La evaluacién desagregada por territorio revela patrones heterogéneos en la
respuesta a la incorporacién de variables meteorolégicas (Figura 15).

Figura 15

Evaluacién por pais experimento 'F - A1’

Peru experimentd la mejora mas sustancial, incrementando su exactitud de 45.2%
a 47.8% (+2.6 puntos porcentuales, +5.8% relativo). Este resultado adquiere particular
relevancia considerando que constituye el contexto focal de la investigacion, donde la
diversidad climatica inherente al territorio peruano podria proporcionar sefiales

discriminativas mas informativas. Ecuador y Chile manifestaron mejoras modestas de 1.9
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y 2.7 puntos porcentuales respectivamente (43.9% y 43.2%), mientras que Colombia
experimentd una reduccion de 4.4 puntos (39.0%), constituyendo el Unico caso de deterioro
notable en el desempefio predictivo.

El analisis de métricas F1 por pais (panel central, Figura 15) corrobora esta
heterogeneidad. Peru exhibe los indicadores mas robustos del conjunto evaluado (F1-
macro: 0.41, F1-ponderado: 0.46), representando incrementos del 11% y 10%
respectivamente frente al modelo base. Ecuador mantiene valores estables (F1-macro:
0.37), mientras que Chile muestra mejoras moderadas. Colombia, consistentemente con
su reduccion en exactitud, presenta los indicadores F1 mas deteriorados del conjunto (F1-
macro: 0.33, F1-ponderado: 0.41), con decrementos del 11% en F1-macro.

Las matrices de confusién normalizadas (panel inferior, Figura 15) revelan
transformaciones especificas en los patrones de clasificacion. En Perd, la sensibilidad para
victorias locales se incrementd marginalmente (0.57 a 0.58), mientras que la capacidad de
discriminacién de empates mejoré sustancialmente (0.58 a 0.60), reduciendo
simultdneamente confusiones con victorias locales (de 31 a 32 instancias, pero con mejor
distribucion proporcional). La clase de victoria visitante exhibi6é el cambio mas significativo,
incrementando su tasa de recuperacién de 0.32 a 0.61 (+90% relativo), aunque con mayor
confusion con empates (de 7 a 5 instancias correctamente clasificadas del total disponible).

Colombia presenta el patron mas preocupante: la sensibilidad para victorias locales
decrecio de 0.54 a 0.42 (-22% relativo), con incremento concomitante de confusiones hacia
empates (de 17 a 53 instancias). La categoria de empate mejoré marginalmente su
discriminacién (0.45 a 0.41, considerando normalizacion), pero a expensas de mayor
confusion con victorias visitantes. Ecuador y Chile muestran comportamientos intermedios,
con mejoras en ciertas clases compensadas por deterioros en otras, resultando en
incrementos netos modestos de exactitud global.

5.3. Importancia de Variables
Para abordar los objetivos especificos planteados de identificar variables

estadisticas deportivas con mayor relevancia predictiva y determinar el poder predictivo de
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variables meteoroldgicas se implementé un analisis de importancia de caracteristicas
mediante el modelo de Bosque Aleatorio. Esta técnica permite cuantificar la contribucion
de cada variable al proceso de clasificacion, proporcionando interpretabilidad al sistema
predictivo sin comprometer su capacidad de generalizacion.
5.3.1 Preparacion de datos para analisis de importancia

El conjunto de datos utilizado integra estadisticas deportivas histéricas y variables
ambientales correspondientes a multiples partidos de futbol. Dado que el problema se
enmarca en el contexto de series temporales, se aplicé una estrategia de ventana movil
para capturar patrones de rendimiento reciente: para cada partido, se calcul6 el promedio
de las estadisticas de los ultimos cuatro encuentros de cada equipo. Este enfoque permite
condensar informacién temporal en una representacion tabular sin pérdida significativa de
contexto, generando asi una matriz de caracteristicas adecuada para algoritmos que
operan sobre datos estructurados.
5.3.2 Configuracion del modelo

El modelo corresponde a un clasificador de bosque aleatorio entrenado sobre una
representacion bidimensional de las secuencias, lo cual elimina la dependencia temporal
y permite tratar cada muestra como un estado estético del partido. Bajo este enfoque, los
hiperparametros cumplen un rol central en controlar el equilibrio entre complejidad y
generalizacién: se emplea un numero elevado de arboles (n_estimators = 400) para
asegurar estabilidad estadistica; una profundidad maxima restringida (max_depth = 12) y
limites minimos para dividir y formar hojas (min_samples_split = 20, min_samples_leaf =
10) para evitar memorizar patrones espurios y reducir la varianza; una seleccién aleatoria
acotada de variables en cada divisibn (max_features = "sqrt") para promover
independencia entre arboles; y un ajuste automatico del peso de clases (class_weight =
"balanced") para mitigar el sesgo hacia resultados mayoritarios. En conjunto, esta

configuracién impone una estructura robusta que favorece la interpretabilidad y estabiliza
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la prediccion sin depender de la memoria secuencial, apoyandose en la riqueza informativa
ya contenida en los atributos preprocesados.
5.3.3 Resultados

El modelo Arbol Aleatorio empleando las 44 variables disponibles permitio
establecer una primera aproximacion al peso relativo que ejercen tanto los indicadores de
rendimiento deportivo como las variables ambientales en la prediccion del resultado de los
partidos logrando una precision de 47.8% con el conjunto de validacion.

En relacion con las variables de naturaleza deportiva respecto al primer objetivo
especifico, el modelo otorgd mayor relevancia a indicadores asociados con la creacion y
finalizacion de oportunidades ofensivas. Entre los predictores mas destacados como se
aprecia en la figura 16 se encuentran el porcentaje de balones largos ejecutados por el
equipo local, la proporcién de disparos realizados desde dentro del area y la frecuencia de
remates desviados. Estas meétricas, al reflejar tanto la orientacion tactica como la
capacidad de generar peligro de forma sostenida, aparecen consistentemente como
elementos con capacidad discriminativa dentro del arbol de decisién. Su posicion en el
ranking sugiere que las dinamicas ofensivas inmediatas del encuentro constituyen sefiales
particularmente informativas para anticipar el desenlace del partido.

Respecto al segundo objetivo especifico, vinculado al papel de las condiciones
meteoroldgicas, el modelo identificé ciertos factores ambientales con contribucién
apreciable, aunque en menor magnitud en comparacion con las variables estrictamente
deportivas. La temperatura asociada al equipo visitante aparece entre las variables con
mayor aporte dentro de esta categoria, lo que podria reflejar diferencias en la aclimatacién
o en la respuesta fisiolégica frente a determinados contextos térmicos. Otras variables
climaticas como aquellas relacionadas con humedad, viento o precipitacién muestran un
peso inferior y menos consistente, o que sugiere que su influencia sobre el resultado es
mas tenue o indirecta dentro del marco del modelo empleado.

En conjunto, estos resultados permiten concluir que, dentro de la aproximacion

basada en arboles de decision, las caracteristicas derivadas del rendimiento futbolistico
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inmediato concentran la mayor capacidad explicativa, mientras que las condiciones

ambientales aportan informacion adicional, pero de forma mas moderada.

Figura 16

Ranking de importa de variables de futbol y ambientales
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5.5. Comparacion Directa Entre Experimentos
5.5.1 Arquitectura y Complejidad del Modelo

Existe una diferencia sustancial en la topologia de red seleccionada por el proceso
de optimizacién para cada caso.

* Experimento F-1 (Solo Futbol): La busqueda de hiperparametros selecciond una
arquitectura basada en GRU (Gated Recurrent Units) con 24 unidades en una capa oculta.

* Experimento F-A1 (Con Variables Ambientales): La incorporacion de datos
meteoroldgicos derivo en una arquitectura mas minimalista basada en celdas LSTM (Long
Short-Term Memory) con solo 8 unidades.

La inclusién de variables climaticas permitié una reduccion de la complejidad
estructural del modelo (de 24 a 8 unidades), sugiriendo que la informacién meteoroldgica
aporta una riqueza representacional que permite al modelo aprender con menos neuronas,
manteniendo parametros de optimizacién idénticos (tasa de aprendizaje 0.001 y Dropout
50%).

5.5.2 Dinamica de Entrenamiento

El comportamiento durante el aprendizaje mostro divergencias en estabilidad.

» Convergencia: El modelo F-1 mostré una estabilizacién suave de la pérdida de
validacion alrededor de 1.08 tras 17 épocas. Por el contrario, el modelo F-A1, aunque
alcanzé niveles similares de pérdida (1.085), exhibié oscilaciones mas pronunciadas y una
mayor sensibilidad a la composicién de los lotes, requiriendo reducciones mas agresivas
en la tasa de aprendizaje (hasta 5x10~* ) para estabilizarse.

5.2.3. Desempeno Predictivo Global vs. Local (Peru)

A nivel global, la comparacion arroja resultados contraintuitivos, pero al desagregar
por el objetivo de la investigacion (Peru), la diferencia es marcada.

* Nivel Global: EI modelo F-1 alcanzdé una exactitud del 43.7%, superando
marginalmente al modelo F-A1 que obtuvo un 43.5%. Esta diferencia de 0.2% es
estadisticamente insignificante, indicando que, en promedio para toda Sudameérica, el

clima no garantiza una mejora universal.
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» Caso Peru (Objetivo central): Aqui radica la diferencia critica. Mientras que el
modelo F-1 logré una exactitud del 45.2% en Peru, el modelo F-A1 elevo esta métrica al
47.8%. Esto representa una mejora relativa del 5.8% en la capacidad predictiva especifica
para el contexto peruano al incluir datos meteoroldgicos.

5.2.4. Analisis de Clases (Matriz de Confusion) en Peru

La calidad de la prediccion cambid drasticamente en la identificacion de resultados
especificos en Peru:

* Victorias Visitantes: EI modelo F-1 tenia una sensibilidad baja de 0.32 para
detectar victorias visitantes. EI modelo F-A1 casi duplicé esta capacidad, subiendo a 0.61.

* Empates: Ambos modelos luchan con esta clase, pero el F-A1 mejord la
discriminacion de empates en Peru de 0.58 a 0.60.

5.2.5. Analisis de métricas

La comparacion entre ambos experimentos revela una mejora consistente en el
desempeno predictivo cuando se incorporan variables meteorolégicas al modelo. El
Experimento ’'F - 1°, basado exclusivamente en variables deportivas, alcanzé una exactitud
promedio de 0.427 con variabilidad notable entre paises: Peru (0.452), Ecuador (0.415),
Colombia (0.434) y Chile (0.405), este ultimo representando el desempefio mas bajo del
conjunto. En contraste, el Experimento ‘F — A1’, que integra informacion ambiental, elevo
la exactitud promedio a 0.435 vy, significativamente, invirtié el ordenamiento de desempefio
por pais, situando a Perd como lider con 0.478 y a Colombia como el caso mas desafiante

con 0.390.
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CAPITULO VI
Discusion de resultados

Esta investigacion tuvo como objetivo evaluar el impacto de variables
meteoroldgicas en la prediccion de resultados de futbol mediante redes neuronales
recurrentes (GRU y LSTM). A continuacion, se contrastan los hallazgos de los
experimentos "F-1" (solo futbol) y "F-A1" (fatbol + clima) con la evidencia cientifica reciente
en la region y el mundo.

4.1 Influencia de las Variables Meteorolégicas en el Peru (Objetivo 1)

Los resultados confirman que la influencia de las variables meteorologicas es
positiva y significativa especificamente para el caso peruano, a diferencia de otros
contextos geograficos evaluados.

La mejora de la exactitud en Peru (del 45.2% al 47.8%) y el incremento sustancial
en el puntaje F1-macro (de aprox. 0.37 a 0.41) sugieren que la diversidad climatica del
territorio peruano introduce "sefiales" discriminativas valiosas que no estan presentes en
las variables puramente deportivas. Es notable como la inclusiéon del clima permitié al
modelo predecir mejor las victorias visitantes (incremento de sensibilidad del 90% relativo).
Esto podria interpretarse como la capacidad de la red neuronal para identificar condiciones
climaticas adversas o especificas que rompen la tradicional "localia" o ventaja de casa,
permitiendo al visitante ganar.

En contraste, el deterioro del modelo en Colombia (caida del 39.0% en exactitud)
indica que la influencia meteoroldgica no es universalmente beneficiosa y puede introducir
ruido en contextos donde el clima es mas homogéneo o menos determinante para el juego.
4.3. Heterogeneidad Geografica: El Clima como Predictor Contextual

Uno de los hallazgos mas notables de esta investigacion es que la inclusién de
variables meteorologicas no genero una mejora universal, sino altamente dependiente del
contexto geografico. Mientras que a nivel global la exactitud se mantuvo estancada (43.7%
vs 43.5%), en el caso especifico de Peru se observd un incremento significativo del

desempeno (de 45.2% a 47.8%).
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Este comportamiento dual encuentra respaldo en la literatura contradictoria sobre
el tema. Por un lado, (Stevens, 2024), al analizar la Copa Mundial Femenina, concluyé que
agregar variables climaticas no mejoraba la precision del modelo (manteniéndose en 0.65),
sugiriendo que en torneos globales la sefal climatica se diluye. Sin embargo, (Ditsuhi
Iskandaryan , Francisco Ramos, 2020) demostraron que, en ligas nacionales especificas
como la espanola, la integracién de datos meteorolégicos si mejora significativamente la
prediccion.

Nuestros resultados sugieren que el Perd se comporta de manera similar al caso
espanol documentado por Iskandaryan, donde el clima es un factor determinante. Esto se
alinea con la revisién de (Sarah llimer; Frank Daumann, 2022), quienes indican que
factores ambientales extremos, especialmente la altitud y el calor, afectan la distancia total
recorrida y la intensidad de las carreras de los jugadores. Dado que el Peru posee una
geografia diversa con ciudades de altura, es coherente que el modelo F — A1 logre capturar
patrones latentes asociados a la fatiga fisica descrita en la literatura, mejorando la
prediccion de victorias visitantes en un 90% relativo.

4.4. Comparativa de Desempeio Predictivo en la Region (Colombia y Chile)

Al situar nuestros resultados en el contexto sudamericano, las métricas obtenidas
son competitivas y, en algunos casos, superiores a los benchmarks locales.

Caso Chile: Contrastamos nuestros hallazgos con el Experimento 2 de Ovando
Fuentealba (2025), el cual arrojé el mejor desempefio de su investigacion utilizando un
modelo Random Forest con caracteristicas seleccionadas por importancia y ventanas
moviles. Mientras que el mejor modelo de experimento de Ovando alcanzé una exactitud
del 41.5% en el conjunto de prueba, nuestro modelo base (F — 1) logré un 40.5%, y la
incorporaciéon de variables meteorolégicas (F — A1) elevo el rendimiento al 43.2% para
chile. Esto demuestra que la arquitectura recurrente (LSTM/GRU) alimentada con datos
climaticos supera a los métodos de ensamble (Random Forest/XGBoost) utilizados en
Chile, incluso cuando estos ultimos intentaron optimizaciones complejas de balanceo de

datos (Experimentos 3 y 4) que resultaron en una caida del rendimiento (hacia el 34-35%).
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Caso Colombia: ElI desempeio en Colombia fue el punto critico de nuestro
experimento, donde la inclusion del clima deterioré la exactitud del 43.4% al 39.0%. Esto
resuena con la investigacion de (Bustos, 2023) en la liga colombiana, quien reportd
dificultades para superar el 43% de exactitud incluso con modelos SVM y ELO, citando
limitaciones en la calidad de los datos. La caida en el rendimiento de nuestro modelo F —
A1l en Colombia podria explicarse por la homogeneidad climatica relativa de ciertas
regiones colombianas o la falta de precision en los datos meteoroldgicos locales, un
limitante también sefialado por Stevens (2024) como causa de la falta de mejora en sus
modelos.

4.5. Eficiencia Arquitectonica y Adaptacion Fisiologica

Desde una perspectiva técnica, el experimento F — A1 demostré que la inclusion
de datos ambientales permitié reducir la complejidad de la red de 24 unidades GRU a solo
8 unidades LSTM. Esto sugiere que las variables climaticas actian como "atajos”
informativos que reducen la carga computacional necesaria para encontrar patrones.

Esta simplificacion arquitecténica tiene un correlato biolégico. (Walker J. Ross;
Madeleine Orr, 2022) y (Bustos, 2023) establecen que existen condiciones limite (ej.
temperaturas sobre 28°C o alta humedad) que obligan a los jugadores a modular su
actividad fisica para preservar el rendimiento. Al alimentar al modelo con datos explicitos
de temperatura o precipitacién, la red neuronal no necesita "inferir" estas condiciones
adversas a partir de las estadisticas de juego, sino que puede asociar directamente
condiciones extremas (como las descritas por Ross y Orr para eventos futuros) con una
mayor probabilidad de errores defensivos o baja intensidad, facilitando la prediccion de

resultados sorpresivos (como victorias visitantes).
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4.6. Limitaciones y El Problema de la Universalidad

A pesar del éxito en Peru, la falta de mejora global concuerda con lo observado por
Stevens (2024). Esto indica que la influencia del clima no es una regla universal en el futbol,
sino una variable de interaccion local. Como sefialan (Sarah llimer; Frank Daumann, 2022),
aunque el clima afecta el rendimiento fisico, los equipos profesionales adoptan "estrategias
de ritmo" (pacing strategies) para mantener el rendimiento técnico (pases, posesion) a
pesar del estrés ambiental. Es posible que, en ligas donde los equipos estan mejor
adaptados o las condiciones son menos extremas (como podria ser el caso de los datos
de Colombia en nuestra muestra), esta adaptacion técnica anule la ventaja predictiva de
las variables meteoroldgicas.
4.7. Conclusion de la Discusion

La investigacion valida que, tal como sugieren Iskandaryan et al. (2020), el clima
contiene informacién valiosa para la prediccion deportiva, pero este valor esta
condicionado geograficamente. Nuestros modelos superan los umbrales de exactitud
reportados recientemente para Chile y Colombia, demostrando que una arquitectura LSTM
ligera alimentada con datos ambientales es una estrategia efectiva para contextos de alta
variabilidad climatica y geografica como el Peru, aunque su eficacia disminuye en entornos

donde las variables fisicas no son tan determinantes para el resultado final.
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Conclusiones

La incorporacién de variables meteorolégicas en modelos de redes neuronales
recurrentes no garantiza una mejora universal, sino que su eficacia es altamente
dependiente del contexto geografico. A nivel global, el desempefio predictivo se
mantuvo estable (variacion marginal de 43.7% a 43.5%). Sin embargo, en el caso
especifico del Peru (territorio caracterizado por su alta variabilidad altitudinal y
climatica) la inclusion de estos datos generd un incremento significativo en la
exactitud del 45.2% al 47.8% (una mejora relativa del 5.8%). Esto permite concluir
que la informacién ambiental actia como un discriminador eficaz Unicamente en
regiones donde las condiciones climaticas son lo suficientemente heterogéneas
como para influir en el desarrollo del juego

Sobre las variables estadisticas deportivas mas informativas, mediante técnicas de
aprendizaje supervisado basadas en Bosques Aleatorios (con una precision de
validacion del 47.8%), se determin6 que las dinamicas ofensivas inmediatas
poseen la mayor carga de informacién (ganancia). Las variables mas determinantes
en primer lugar fueron el porcentaje de balones largos del equipo local, segundo
lugar la proporcion de disparos dentro del area y como tercer lugar la frecuencia de
remates desviados. Esto indica que la capacidad del modelo para predecir el
resultado depende primariamente de métricas que reflejan la orientacion tactica y
la finalizacion de jugadas, superando en relevancia a las variables de posesion o
defensivas.

Sobre la influencia de elementos meteoroldgicos, el analisis de importancia de
caracteristicas reveld que la influencia de las variables meteoroldgicas es
moderada en comparacion con las deportivas, siendo la ventana de temperatura
asociada al equipo visitante el predictor ambiental mas relevante. Variables
ventanas como la humedad, el viento o la precipitacion mostraron un peso inferior.
Esto sugiere que el modelo captura patrones relacionados con la aclimatacion fisica

o el estrés térmico que sufren los equipos visitantes, mas que efectos directos sobre
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la fisica del balén (viento), lo cual es coherente con la mejora en la deteccién de
victorias visitantes observada en los experimentos.

Existe una heterogeneidad marcada en el desempefno del modelo segun el pais,
revelando sesgos geograficos operativos. Peri demostré ser el contexto mas
beneficiado, alcanzando los indicadores mas robustos (F1-macro: 0.41) y
mejorando sustancialmente la discriminacién de la clase "Victoria Visitante" (+90%
relativo). Por otra parte, Chile y Ecuador mostraron mejoras modestas en exactitud
(+2.7 y +1.9 puntos porcentuales respectivamente). Sin embargo, Colombia
presentd un deterioro notable (-4.4 puntos en exactitud), sugiriendo que en este
contexto las variables meteorolégicas introdujeron ruido en lugar de sefal. Esta
variabilidad confirma que los modelos de prediccion deportiva no son "talla tnica"
y requieren calibracion especifica segun la diversidad climatica del territorio
objetivo.

El anadlisis comparativo entre el Modelo A, basado exclusivamente en variables
deportivas y optimizado mediante 24 unidades GRU, y el Modelo B, que incorpora
variables meteorolégicas con arquitectura simplificada de 8 unidades LSTM, revela
que la inclusién de informacion ambiental permite alcanzar capacidad predictiva
comparable. Esta simplificacion arquitectural, manteniendo idénticos parametros
de regularizacion y optimizacion (dropout, Adam, lotes de 128 instancias), sugiere
que las variables meteoroldgicas aportan estructura informativa complementaria
que facilita la discriminacion de patrones de desempefio deportivo. La divergencia
en el tipo de celda recurrente (GRU versus LSTM) y la dramatica reduccién
dimensional constituyen evidencia empirica de que las condiciones ambientales
capturan variabilidad ortogonal respecto a las estadisticas futbolisticas, reduciendo

la complejidad necesaria mientras se mejora la generalizacion.
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Recomendaciones
Se recomienda establecer colaboraciones con federaciones deportivas nacionales
para instalar estaciones meteoroldgicas permanentes en estadios representativos
de diferentes zonas climaticas. Estas estaciones deben registrar temperatura
ambiente y del césped, humedad relativa, velocidad y direccién del viento a nivel
de superficie, radiacién solar y precipitacion con resoluciéon de un minuto. La
disponibilidad de datos in situ permitiria validar las estimaciones satelitales, calibrar
factores de correccion especificos por estadio y capturar fendbmenos micro
climaticos no detectables remotamente.
Se sugiere implementar procesos de cruce de estadisticas mediante comparacién
sistematica entre multiples proveedores de datos. Las discrepancias significativas
deberian activar procesos de revision manual por analistas deportivos. Para
variables subjetivas, se recomienda establecer protocolos estandarizados de
registro y programas de entrenamiento para operadores, siguiendo estandares
establecidos por ligas profesionales europeas.
Para el contexto peruano especifico, se recomienda priorizar la ingenieria de
caracteristicas sobre variables tacticas y fisicas observables (cambios estratégicos
durante el partido, patrones de presién defensiva, transiciones rapidas) sobre
refinamientos meteoroldgicos. La inversion en analisis de video asistido por vision
por computadora para extraer métricas avanzadas de posicionamiento y
movimiento colectivo probablemente genere mayor retorno predictivo que datos
climaticos adicionales.
Los sistemas predictivos destinados a uso profesional por casas de apuestas o
cuerpos técnicos deberian implementar légica condicional que active o desactive
modulos meteoroldgicos segun caracteristicas del contexto: activacion en ligas con
alta heterogeneidad climatica (Chile, Argentina, Colombia) y desactivacion en ligas
homogéneas (Perl, Uruguay). Esta estrategia optimiza el balance sesgo-varianza

del modelo segun las caracteristicas informativas del dominio.
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5. Otra direccion prometedora consiste en explorar arquitecturas de modelado
temporal mas complejas, como Transformers o modelos hibridos que integren
sefales meteoroldgicas, dinamicas tacticas y meétricas fisioldgicas. Estas
alternativas permitirian contrastar si el buen desempefio de las redes LSTM en
territorios de alta heterogeneidad climatica se debe a su capacidad para capturar
dependencias no lineales o si arquitecturas mas recientes pueden mejorar esa
eficiencia.

6. Asimismo, resultaria pertinente ampliar el estudio a ventanas temporales mas
extensas e incluir secuencias longitudinales de carga fisica, congestién de
calendario o viajes interregionales, con el fin de analizar si estos factores moderan
el impacto del clima en el rendimiento deportivo. La integracién de datos de tracking
0 métricas de esfuerzo podria permitir evaluar la relacion entre aclimatacién, fatiga
acumulada y probabilidad de resultados atipicos.

7. Lareplicacion del enfoque en otras ligas sudamericanas y europeas con diversidad
geografica contrastante permitiria delimitar con mayor precision los umbrales
ambientales necesarios para que las variables meteorologicas aporten valor
predictivo. Este analisis comparado ayudaria a establecer criterios reproducibles
para decidir cuando conviene incorporar informacion ambiental en modelos de
prediccion deportiva y cuando su efecto tiende a diluirse por adaptacién tactica o
homogeneidad climéatica.

8. Finalmente integrar sistémicamente variables cinematicas, como la velocidad de
explosion y la capacidad aerébica, orientadas a refinar la resolucion de las
predicciones de desempefio. Asimismo, la inclusion de indicadores biométricos de
composicidn corporal y respuesta fisioldgica a la altitud, junto con determinantes
psicométricos como el estado animico y los niveles de motivacién, permitiria una

caracterizacion integral y multidimensional del deportista.
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Anexos

e Obtener Ventana de Equipo

def get_racha equipo(historial: pd.DataFrame, equipo_id: int,
fecha_actual: datetime, ventana=5):

Extrae la racha (ultimos N partidos) de un equipo antes de una fecha
dada.

El DataFrame debe tener el indice como datetime.

# Filtrar partidos del equipo antes de la fecha actual
historial _equipo = historial[
(historial["id_team"] == equipo_id) &
(historial.index < fecha_actual)
]-sort_index(ascending=False)

it len(historial_equipo) < ventana:
return None

racha = historial_equipo.iloc]:ventana].copy(Q)

# Calcular diferencia en dias respecto al partido actual
#racha[ "delta_dias"] = (fecha_actual - racha.index).days

# Excluir columnas iInnecesarias
columnas_usar = FEATURES_RACHA_EQUIPO

# Retornar los valores en orden cronolégico (mas reciente primero)
return racha[columnas_usar].values

e Obtener Ventana de Arbitro
def get_ventana_arbitro(df_partidos, id_arbitro, fecha actual,
ventana=5):
df_enviroment = df_partidos[
(df_partidos["id_arbitro®] == id_arbitro) &
(df_partidos.index < fecha_ actual)
]-sort_index(ascending=False)

if len(df_enviroment) < ventana:

return None
enviroment = df_enviroment.iloc[:ventana].copy()
columnas_usar = FEATURES_ARBITRO

return enviroment[columnas usar].values

e Obtener Ventana de Ambiente

def get ventana ambiente(df_partidos, team, fecha actual, ventana=5):



def

df_enviroment = df _partidos[
((df_partidos["id_team_local"] == team) |
(df_partidos["id_team_visita®™] == team)) &
(df_partidos.index < fecha_actual)

]-sort_index(ascending=False)

if len(df _enviroment) < ventana:
return None

enviroment = df_enviroment.iloc[:ventana].copy()
columnas_usar = FEATURES AMBIENTE

# el mas reciente esta primero
return enviroment[columnas_usar].values

¢ Construye valores X como ventana y el target

construir_X y(df _partidos, historial, ventana):

Construye los arrays X (inputs) e y (targets) para entrenamiento o

evaluacion.

Parametros:

- df_partidos: DataFrame de partidos a usar (ej: df _train o df_test)
- historial: DataFrame con partidos histéricos de todos los equipos
- ventana: cuantos partidos anteriores usar por equipo

Retorna:
- X: array de shape (n_partidos, ventana, n_features_totales)
- y: array de shape (n_partidos,)

X=1
y = [
# Ordenar

df _partidos = df _partidos.sort_index()

# Extraer ventana de cada partido
for 1dx, row in df_partidos.iterrows():
# Enviroment
id_partido = row["id_partido™]
id _arbitro = row["id _arbitro"]
eq_local = row["id_team local"]
eqg_visita = row["id_team_visita"]
fecha_actual = idx
resultado = row["resultado™] #RESULTADO es respecto al

local

# Obtenemos las rachas (ultimos n partidos previos)
racha local = get_racha equipo(historial, eq _local, fecha actual,

ventana)



racha visita = get _racha equipo(historial, eq_visita,
fecha_actual, ventana)

enviroment_local = get_ventana_ambiente(df _partidos, eq_local,
fecha_actual, ventana) #Estamos extrando la ventana de ambiente en base
al equipo local

enviroment visita = get ventana ambiente(df_partidos, eq_visita,
fecha actual, ventana)

arbitro = get ventana arbitro(df_partidos, id_arbitro,
fecha_actual, ventana)

# Si alguno de los equipos no tiene suficientes partidos previos,
se omite
if racha_local is None or racha_visita is None or
enviroment_local is None or enviroment_visita is None or arbitro is None:
continue

#print(enviroment_local .shape, racha local .shape, arbitro.shape)

# Concatenamos la racha local y la visitante horizontalmente (por
timestep)

racha _completa = np.concatenate([racha_local, enviroment_local,
racha_visita, enviroment_visita, arbitro], axis=1) # shape: (ventana,
n_features_local + n_features visita)

X.append(racha_completa)
y.append(resultado)

X
y

np.array(X)
np.array(y)

#print(X.shape)

print(f"Construidos {X.shape[0]} muestras con shape {X.shape[l:]}
(ventana={ventana}, features={X.shape[2]})'")

return X, y



e Entrenamiento y resultados

class RNNGridSearchOptimizer:
Optimizador de Grid Search para modelos RNN con gestién eficiente de
GPU.

Caracteristicas:

- Limpieza automatica de sesion entre experimentos
Re-establecimiento de semilla para reproducibilidad
Soporte para LSTM, GRU, Bidirectional

- Class weights automaticos

- Mixed Precision Training

def __init_ (self, n_classes: int = 3, seed: int = SEED):

Inicializa el optimizador.

Args:
n_classes: Numero de clases de salida
seed: Semilla para reproducibilidad
self.n_classes = n_classes
self.seed = seed
self.param grid = {}
self.results = []
self._best_score = -np.inf
self._best_params = None
self.best_model = None
self.best _model _history = None # Nuevo: Para guardar historial
del mejor modelo
self.class_weights = None

print(f" RNNGridSearchOptimizer inicializado™)
print(f" Clases: {n_classes}")
print(f" Semilla: {seed}")

def set _param _grid(self, param_grid: Dict[str, List]) -> None:
"""Define el espacio de busqueda de hiperparametros."""
self_param_grid = param_grid
total_combinations = np.prod([len(v) for v in
param_grid.valuesQ])
print(f"v Grid de parametros configurado: {total combinations}
combinaciones')

def prepare_target_data(
self,
y_train: np.ndarray,
y_val: np.ndarray,
y_test: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:



Prepara datos de salida (one-hot encoding) y calcula class
weights.

Args:
y_train, y _val, y test: Arrays de etiquetas (enteros)

Returns:
Tupla de arrays one-hot encoded
# Calcular class weights solo una vez
if self.class_weights is None:
self.class_weights = calcular_class_weights(y_train)

# One-hot encoding

y_train_cat = to_categorical(y_train, num_classes=self.n_classes)
y _val _cat = to_categorical(y_val, num_classes=self._n_classes)
y_test_cat = to_categorical(y_test, num_classes=self.n_classes)

return y train_cat, y val cat, y test cat

def build model(self, params: Dict, input _shape: Tuple) ->
Sequential:

""""Construye modelo RNN segln parametros.

model = Sequential (name=f"{params[~cell_type"]} _model'")

# Seleccionar tipo de celda recurrente
RecurrentLayer = LSTM if params[“cell_type®"] == "LSTM" else GRU

# Primera capa recurrente

first_layer = RecurrentLayer(
units=params[-“units_layerli®],
return_sequences=params.get(“units_layer2®, 0) > O,
name=f"{params[“"cell_type"]} 1"

)

if params.get("bidirectional®, False):
first_layer = Bidirectional (first_layer,
name="bidirectional _1%)

model .add(First_layer)
model .add(Dropout(params[ “dropout_rate®], name="dropout_17"))

# Segunda capa recurrente (opcional)
if params.get(“units_layer2®, 0) > O:
second_layer = RecurrentLayer(
units=params[“units_layer2-],
return_sequences=False,
name=f"{params[“cell_type*]} 2"
)

if params.get("bidirectional®, False):
second_layer = Bidirectional (second_layer,
name="bidirectional_2%)

model .add(second_layer)
model .add(Dropout(params[“dropout_rate"], name="dropout 2%))



# Capa densa oculta (opcional)
if params.get("dense units®", 0) > O:
model .add(Dense(params[“dense_units"], activation="relu”,
name="dense_hidden*))
model .add(Dropout(params[“dropout_rate"],
name="dropout_dense"))

# Capa de salida
model .add(Dense(self.n_classes, activation="softmax"”,
name="output®, dtype="float32"))

# Optimizador
optimizer_name = params.get(“optimizer®, “adam®).lower()
if optimizer_name == "adam":

optimizer = Adam(learning_rate=params["learning_rate"])
elif optimizer_name == "rmsprop-:

optimizer = RMSprop(learning_rate=params|[~learning_rate"])
elif optimizer_name == “sgd":

optimizer = SGD(learning_rate=params|[*learning_rate"],

momentum=0.9)

else:

optimizer = Adam(learning_rate=params["learning_rate"])

# Compilar modelo

model .compile(
loss="categorical _crossentropy”,
optimizer=optimizer,
metrics=["accuracy"]

)

return model

def grid_search(
self,
X_train: np.ndarray,
y_train: np.ndarray,
X_val: np.ndarray,
y_val: np.ndarray,
X_test: np.ndarray,
y_test: np.ndarray,
metric: str = "fl _macro”,
verbose: int =1
) -> Dict:
Args:
X_train, y_train: Datos de entrenamiento
X val, y val: Datos de validacioén
X_test, y test: Datos de prueba
metric: Métrica para seleccionar mejor modelo
verbose: Nivel de verbosidad

Returns:
Diccionario con mejores parametros, modelo y resultados
if not self._param_grid:
raise ValueError("'Debe definir param_grid usando
set _param _grid()"™)



# Preparar datos
y_train_cat, y val cat, y test cat = self.prepare_target data(
y_train, y val, y_test

)

# Generar combinaciones de parametros
keys = list(self.param_grid.keys(Q))

values

= [self.param_grid[k] for k in keys]

param_combinations = [dict(zip(keys, v)) for v in
itertools.product(*values)]

total _combinations = len(param_combinations)

if verbose > O:
print(f"\n{"="*70}"")
print(f"Iniciando Grid Search con {total_combinations}

combinaciones'™)

print(f'Métrica de optimizacion: {metric}")
print(f'{"="*70}\n"")

# Archivo temporal para guardar el mejor modelo
temp_best _model _path = “temp_best model grid_search.h5"

for idx,

params in enumerate(param_combinations, 1):

if verbose > 0:

configuracioén:')

try:

print(f""\n[{idx}/{total_combinations}] Evaluando
print(f" {params}™)

limpiar_sesion()

set_global_seed(self.seed)

# Construir y entrenar modelo
model = self._build_model(params,

input_shape=X_train.shape[1l:])

history = entrenar_modelo(
mode l=model,
X_train=X_train,
y_train=y_ train_cat,
X_valid=X_val,
y _valid=y val_cat,
batch_size=params.get(“batch_size",

BATCH_SIZE_OPTIMO),

epochs=params.get(“epochs®, EPOCHS DEFAULT),
patience=params.get(“patience”, PATIENCE_DEFAULT),
class_weights=self.class_weights,

verbose=0 if verbose == 0 else 1

)

# Evaluar en validacion y prueba
val_metrics = evaluar_y reportar(
model, X val, y val _cat, plot_confusion_matrix=False

)

test_metrics = evaluar_y reportar(



model, X test, y test cat,
plot_confusion_matrix=False

)

# Guardar resultados
result = {
"params”: params.copy(),
"val_metrics": val_metrics,
"test _metrics": test_metrics,
"final_train_loss": float(history.history["loss"][-

1D,
1D,

"final_val loss": float(history.history["val _loss"][-

"epochs_trained®: len(history.history[“loss™]),
“timestamp®: datetime.now() .isoformat()

}
self.results.append(result)

# Actualizar mejor modelo

current_score = val_metrics[metric]

iT current_score > self.best_score:
self.best_score = current_score
self.best _params = params.copy()

# Guardar modelo en disco inmediatamente para
sobrevivir a clear_session()

model .save(temp_best_model path)

self.best_model _history = history.history

if verbose > O:
print(f" v Nuevo mejor modelo encontrado!')
print(f" {metric} validacion:
{current_score: .4f}")
print(f” {metric} prueba:
{test_metrics[metric]:.4f}")

elif verbose > 1:

print(f" {metric} validacion:
{current_score: .4f}")
print(f” {metric} prueba:

{test_metrics[metric]:.4f}")

except Exception as e:
if verbose > 0:
print(f" X Error durante entrenamiento: {str(e)}')
continue

# Cargar el mejor modelo desde el archivo temporal
if os.path_exists(temp_best model_path):
print(f'"\nCargando mejor modelo desde
{temp_best model path}...")
# Limpiar sesion una ultima vez antes de cargar el mejor
modelo
limpiar_sesion()



self._best_model =
keras.models.load_model (temp_best model path)

it verbose > O:
print(fF"\n{"="*70}"")
print(""Grid Search completado™)
print(f'{"="*70}"")
print(f"\nMejor configuracidn encontrada:')
if self._best params:
for key, value in self.best_params.items():
print(f" {key}: {value}™)
print(f"\nMejor {metric} en validacion:
{self.best_score:.4f}")

best_result = next(
r for r in self.results
if r["params®] == self.best_params
)
print(f""\nMétricas en prueba del mejor modelo:')
for key, value in best_result["test metrics"].items():
ifT key not in [“classification_report”,
"confusion_matrix"]:
print(f" {key}: {value:.4f}")

def plot_best model _history(self, figsize: Tuple[int, int] = (12, 5),
save_path: Optional[str] = None) -> None:

Grafica la evolucién de Loss y Learning Rate del mejor modelo.

Args:
figsize: Tamafio de la figura
save_path: Ruta donde guardar la imagen. Si es None, no
guarda.
if self.best model _history is None:
print("'"No hay historial disponible para graficar.™™)
return

history = self.best model history
epochs = range(1, lenChistory["loss"]) + 1)

plt.figure(figsize=figsize)

# Grafica 1: Loss vs Epochs

plt_subplot(1, 2, 1)

plt.plot(epochs, history["loss"], "b-", label="Training Loss")

plt_.plot(epochs, history[“"val _loss®"], "r-", label="Validation
Loss*®)

plt_title("Loss Evolution (Early Stopping)®, fontsize=12,
fontweight="bold")

plt_xlabel ("Epochs*®)

plt.ylabel("Loss")

plt.legend()

plt.grid(True, alpha=0.3)

# Grafica 2: Learning Rate vs Epochs
if "Ir" in history:



plt.subplot(l, 2, 2)

plt_plot(epochs, history["Ir"], "g-o
label="Learning Rate")

plt._title("Learning Rate Decay®, fontsize=12,
fontweight="bold")

plt.xlabel ("Epochs™)

plt.ylabel("Learning Rate®)

plt.yscale("log®) # Escala logaritmica para ver mejor los

, markersize=4,

cambios
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight layout()
# Guardar imagen si se proporciona ruta
if save path:
plt.savefig(save path, dpi=300, bbox_inches="tight")
print(f'Grafica guardada en: {save_path}')
plt_show()
plt.yscale("log®) # Escala logaritmica para ver mejor los
cambios

plt.legend()
plt.grid(True, alpha=0.3)

plt_tight layout()
plt_show()

def save results(self, filepath: str, save model: bool = True) ->
None:

"""'Guarda resultados en JSON y modelo en H5.""""

results_to _save = {
"best_params®": self.best params,
"best_score®: float(self.best score),
"all_results®: self.results,
"n_classes”: self.n_classes,
"param_grid®: self.param_grid

}

with open(filepath, "w") as f:
Json.dump(results_to_save, T, indent=2)

print(f"\nResultados guardados en: {filepath}"™)

ifT save_model and self._best _model is not None:
model_path = filepath.replace(".json®, "_.h5")
self._best_model.save(model_path)
print(f"Mejor modelo guardado en: {model_ path}')

def evaluate by country(self, df _test paises: pd.DataFrame,
df_historial: pd.DataFrame,
construir_X y func,
ventana: int = 4,
verbose: int 1) -> Dict:

Evalua el mejor modelo por pais.



Args:
df_test_paises: DataFrame normalizado de test que incluye
columna "pais”
df_historial: DataFrame de historial de partidos
construir_X y func: Funcidén para construir X e y
ventana: Tamafo de ventana temporal
verbose: Nivel de verbosidad

Returns:
Diccionario con métricas por pais
if self.best model is None:
raise ValueError("'Debe ejecutar grid_search() antes de
evaluar por pais')

if "pais” not in df_test paises.columns:
raise ValueError("El DataFrame debe contener la columna
IpaiSIll)

metricas_por_pais = {}

if verbose > 0O:
print(FF\n{"="*70}")
print(f"Evaluando modelo por pais'™)
print(F"{"="*70}\n"")

for pais in df_test paises["pais™"].unique():
df_test pais = df_test paises[df _test paises["pais"] == pais]

it verbose > O:
print(f"'Pais: {pais} - Shape: {df_test_pais.shape}'")

# Eliminar la columna "pais®" antes de construir X e y
X_test _pais, y_test pais = construir_X_y func(
df_test _pais.drop(“pais”, axis=l),
df_historial,
ventana=ventana

)

if len(X_test _pais) ==
if verbose > O:
print(f" A Sin datos suficientes para {pais}\n')
continue

# Predecir

y_test_pais_cat = to_categorical(y_test pais,
num_classes=self.n_classes)

y_pred_probs = self.best _model.predict(X_test pais,
verbose=0)

y_pred = np.argmax(y_pred_probs, axis=1)

# Calcular métricas

accuracy = accuracy_score(y_test pais, y_pred)

fl macro = 1l _score(y_test pais, y pred, average="macro”,
zero_division=0)

f1l_micro
zero_division=0)

fl score(y_test pais, y pred, average="micro",



fl weighted = f1_score(y_test pais, y pred,
average="weighted”, zero_division=0)

# Matriz de confusiodn
cm = confusion_matrix(y_test_pais, y _pred)

# Guardar en diccionario
metricas_por_pais[pais] = {
"n_samples®: len(X_test_pais),
"accuracy": accuracy,
"f1l macro": f1 _macro,
"fl micro": f1 _micro,
"fl weighted": 1 weighted,
"confusion_matrix": cm,
"y _true": y test pals,
"y _pred®: y pred
by

it verbose > O:
print(f" v Muestras: {len(X _test pais)}'")

print(f” Accuracy: {accuracy:.4f}™)
print(f” F1 Macro: {fl macro:.4f}")
print(f” F1 Weighted: {fl weighted:.4f}\n")

self._metricas_por_pais = metricas_por_pais

it verbose > O:
print(f'{"="*70}"")
print(""Evaluacién por pais completada™)
print(f'{"="*70}\n"")

return metricas_por_pais

def plot_metrics_by country(self, save path: str = None, figsize:
Tuple[int, int] = (18, 12)):

Genera visualizaciones de métricas por pais usando matplotlib.

Args:
save_path: Ruta para guardar la figura (opcional)
figsize: Tamafio de la figura
if not self._metricas_por_pais:
raise ValueError("'Debe ejecutar evaluate by country()
primero™)

paises = list(self._metricas_por_pais.keys())
n_paises = len(paises)

# Crear DataFrame para facilitar el graficado
df_metricas = pd.DataFrame([
{

"pais®: pais,
"n_samples”: self._metricas_por_pais[pais]["n_samples®],
"accuracy": self.metricas_por_pais[pais]["accuracy"],
"fl macro®: self.metricas_por_pais[pais]["fl _macro"],
"fl _micro®": self.metricas_por_pais[pais]["fl_micro"],



"fl weighted®:
self_metricas_por_pais[pais]["fl weighted™]
by
for pais in paises

D

# Crear fTigura con subplots
fig = plt.figure(figsize=figsize)
gs = fig.add_gridspec(3, n_paises, hspace=0.4, wspace=0.4)

# Fila 1: Grafico de barras - Accuracy por pais

axl = fig.add_subplot(gs[0, :1)

df _sorted = df _metricas.sort values("accuracy”, ascending=False)

colors = plt.cm.viridis(np.linspace(0.3, 0.9, len(df_sorted)))

bars = axl.bar(df_sorted["pais"], df _sorted["accuracy"],
color=colors, alpha=0.8)

axl.set_ylabel ("Accuracy”, fontsize=12, fontweight="bold")

axl.set xlabel("Pais®, fontsize=12, fontweight="bold")

axl.set_title("Accuracy por Pais", fontsize=14,
fontweight="bold", pad=15)

ax1l.axhline(df_metricas["accuracy"].mean(), color="red",
linestyle="--",

linewidth=2, label=f"Media:

{df_metricas["accuracy'].mean():.3f}")

axl.legend(loc="upper right®)

axl.grid(axis="y", alpha=0.3, linestyle="--")

axl.set_ylim([O0, 1.0D)

# Anadir valores sobre las barras
for bar in bars:
height = bar.get_height()
axl.text(bar.get x() + bar.get width()/2., height,
T {height: .3f}",
ha="center®, va="bottom®", fontsize=9,
fontweight="bold")

# Fila 2: Comparacidéon de métricas F1 por pais
ax2 = fig.add_subplot(gs[1l, :1)

x = np.arange(len(paises))

width = 0.25

barsl ax2.bar(x - width, df _metricas["fl_macro®], width,

label="F1 Macro®, alpha=0.8, color="#1f77b4")

bars2 = ax2.bar(x, df _metricas["fl micro"], width,
label="F1 Micro", alpha=0.8, color="#ff7f0e")
bars3 = ax2.bar(x + width, df metricas["fl weighted®], width,

label="F1 Weighted®, alpha=0.8, color="#2cal2c")

ax2.set_xlabel("Pais”, fontsize=12, fontweight="bold")

ax2.set_ylabel ("F1 Score®, fontsize=12, fontweight="bold")

ax2.set_title("Comparacién de Métricas F1 por Pais®, fontsize=14,
fontweight="bold", pad=15)

ax2.set_xticks(x)

ax2.set_xticklabels(df_metricas|["pais®], rotation=45, ha="right")

ax2.legend(loc="upper right*)

ax2.grid(axis="y", alpha=0.3, linestyle="--")

ax2.set_ylim([0, 1.0])



# Fila 3: Matrices de confusidon por pais
for idx, pais in enumerate(paises):
ax = fig.add_subplot(gs[2, idx])

cm = self.metricas_por_pais[pais]["“confusion _matrix"]
accuracy = self.metricas_por_pais[pais]["accuracy”]
n_samples = self._metricas_por_pais[pais]["n_samples™]

# Normalizar matriz de confusiodn
cm_normalized = cm.astype("float") / cm.sum(axis=1)[:,
np.newaxis]

# Crear heatmap
im = ax.imshow(cm_normalized, cmap="Blues®, aspect="auto”,
vmin=0, vmax=1)

# ARadir colorbar
cbar = plt.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
cbar.ax.tick_params(labelsize=8)

# ARadir anotaciones
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
text = ax.text(§, i, F*{cm_normalized[i,
J1:=-2f3\n({emli, j1P°,
ha="'center", va="'center",
color="white" if cm_normalized[i, j] >
0.5 else "black",
fontsize=9)

ax.set_xticks(np.arange(self.n_classes))
ax.set_yticks(np.arange(self.n_classes))
ax.set _xticklabels(["Local®, "Empate®, "Visita®"], fontsize=9)
ax.set_yticklabels(["Local®, "Empate”, "Visita"], fontsize=9)

ax.set_title(f"{pais}\nAcc: {accuracy:.3f} | N: {n_samples}~,
fontsize=11, fontweight="bold", pad=10)

ax.set_ylabel("Real ", fontsize=10, fontweight="bold")

ax.set_xlabel("Prediccion®, fontsize=10, fontweight="bold")

# Rotar labels
plt.setp(ax.get xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")

plt_suptitle("Evaluacién del Modelo por Pais®,
fontsize=16, fontweight="bold", y=0.995)

if save path:
plt.savefig(save path, dpi=300, bbox_ inches="tight")
print(f''v Grafico guardado en: {save path}')

plt_tight_layout()
plt_show()

def get _country metrics dataframe(self) -> pd.DataFrame:



Retorna un DataFrame con las métricas por pais.

Returns:
DataFrame con métricas por pais
if not self.metricas_por_pais:
raise ValueError("'Debe ejecutar evaluate by country()
primero™)

records = []
for pais, metricas in self.metricas_por_pais.items():
records.append({
"pais”: pais,
"n_samples®: metricas["n_samples®],
"accuracy”: metricas["accuracy"],
"fl macro®: metricas["fl _macro"],
*f1l _micro®: metricas["fl _micro™],
"fl _weighted®: metricas["fl weighted"]
P

return pd.DataFrame(records).sort_values("accuracy”,
ascending=False)

def save results_country(self, model _directory path: str) -> None:
Guarda los resultados de la busqueda en formato JSON y el modelo
de Keras/TF.

:param model directory path: La ruta donde se guardara el modelo
(SavedModel, es un directorio).

# 1. Definir la ruta del archivo JSON
json_filepath = f'{model _directory path} metrics.json"

results_to _save = {
"best_params®: self.best params,
"best_score®: float(self.best score),
"all_results®: self.results,
"n_classes”: self.n_classes,
"param_grid®: self.param_grid

}

ifT self.metricas_por_pais:

# Convertir métricas por pais (sin arrays numpy)

country _metrics = {}

for pais, metricas in self.metricas_por_pais.items():

country_metrics[pais] = {
"n_samples®: int(metricas["n_samples®]),
"accuracy": float(metricas["accuracy"]),
"f1l macro®: float(metricas["fl macro"]),
"f1l micro": float(metricas["fl micro"]),
"fl weighted®: float(metricas["fl _weighted"]),
"confusion_matrix”:
metricas[“confusion_matrix™].tolist()

}

results_to _save["country _metrics"] = country metrics



# 2. Guardar el archivo JSON usando su propia ruta
(Json_filepath)
with open(jJson_filepath, "w") as f:
Jjson.dump(results_to _save, f, indent=2)

print(f"\nResultados guardados en: {json_Tfilepath}'")

# 3. Guardar el modelo Keras usando su propia ruta
(model_directory_path)

self.best_model .save(model directory_ path)

print(f'Modelo exportado como SavedModel en:
{model_directory_ path}'™)

def get_results_dataframe(self) -> pd.DataFrame:
""""Convierte los resultados en un DataFrame de pandas para

analisis."""
if not self.results:
return pd.DataFrame()

records = []
for result in self.results:
record = {}
for key, value in result["params®].items():
record[f"param_{key}"] = value

for key, value in result["val_metrics"].items():
record[f"val {key}"] = value

for key, value in result["test metrics"].items():
record[f"test _{key}"] = value

record["final_train_loss"] = result["final_train_loss"]
record["final_val loss"] result["“final _val loss"]
record[ “epochs_trained™] result] “epochs_trained™]

records.append(record)

return pd.DataFrame(records)



