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RESUMEN

El objetivo de esta investigación fue identificar el mejor modelo de series de tiempo para pro-

nosticar la producción mensual de cobre en Perú durante el periodo 1999-2024, utilizando da-

tos proporcionados por el Ministerio de Energía y Minas (MINEM). Se adoptó un enfoque tanto

teórico como aplicado, con un diseño no experimental, longitudinal y retrospectivo. Se empleó

la metodología de Box-Jenkins y se estableció un nivel de confianza del 95% en las pruebas de

hipótesis.

El análisis de la serie temporal mostró una tendencia creciente, estacionalidad anual (de orden

12) y heterocedasticidad en la variabilidad anual. De los doce modelos SARIMA evaluados, tres

superaron la prueba de Ljung-Box, lo que sugiere una adecuada independencia de los residuos. Sin

embargo, la prueba de Jarque-Bera indicó que los residuos no seguían una distribución normal, lo

que podría afectar la precisión de los pronósticos.

De los modelos evaluados, el SARIMA(2,1,0)(2,1,0)12 se destacó como el mejor, con un error

porcentual absoluto medio (MAPE) de 5.14%, lo que lo convierte en la mejor opción dentro del

enfoque Box-Jenkins. Este modelo proporciona una herramienta robusta y confiable para la pre-

dicción de la producción mensual de cobre en Perú, contribuyendo a la toma de decisiones en el

sector minero.

Palabras Claves: SARIMA, Box-Jenkins, Series de tiempo, Producción de cobre
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RESUMO

O objetivo desta pesquisa foi identificar o melhor modelo de séries temporais para prever a

produção mensal de cobre no Peru durante o período de 1999 a 2024, utilizando dados fornecidos

pelo Ministério de Energia e Minas (MINEM). Adotou-se uma abordagem tanto teórica quanto

aplicada, com um delineamento não experimental, longitudinal e retrospectivo. Empregou-se a

metodologia Box-Jenkins e estabeleceu-se um nível de confiança de 95% nas provas de hipóteses.

A análise da série temporal revelou uma tendência crescente, sazonalidade anual (de ordem 12) e

heterocedasticidade na variabilidade anual. Dos doze modelos SARIMA avaliados, três passaram

no teste de Ljung-Box, indicando independência adequada dos resíduos. No entanto, o teste de

Jarque-Bera mostrou que os resíduos não seguiam uma distribuição normal, o que pode afetar a

precisão das previsões.

Entre os modelos analisados, o SARIMA(2,1,0)(2,1,0)12 apresentou o melhor desempenho, com

um erro percentual absoluto médio (MAPE) de 5,14%, consolidando-se como a melhor opção

dentro da abordagem Box-Jenkins. Esse modelo oferece uma ferramenta robusta e confiável para

a previsão da produção mensal de cobre no Peru, contribuindo para a tomada de decisões no setor

minerador.

Palavras-chave: SARIMA, Box-Jenkins, Séries temporais, Produção de cobre



1

INTRODUCCIÓN

El sector minero juega un papel crucial como motor del crecimiento del Producto Bruto Interno

(PBI) del país (Instituto Peruano de Economia, 2024), entre el 2017 y 2021 el sector minero aporto

el 16 % del PBI nacional (Ministerio de energía y minas, 2024). En particular, el cobre se destaca

como el principal producto minero de exportación de Perú, y sus exportaciones han sido funda-

mentales para el crecimiento económico del país en los últimos años (Montalvan & Silva, 2020),

en Enero del 2024 las exportaciones peruanas crecieron 12.6 % y alcanzaron los US$ 5,263.4

millones, así lo reporto el Centro de investigación de economía y negocios globales (2024). Por

ejemplo: en 2023, Perú alcanzó un récord en la producción de cobre, con 2,755,066 toneladas

métricas finas (TMF), marcando un aumento del 12.7 % en comparación con el año anterior. Esto

consolidó al país como el segundo mayor productor y exportador de cobre en el mundo (Instituto

de Ingenieros de Minas del Perú, 2024).

Los pronósticos son herramientas valiosas que proporcionan estimaciones cuantitativas sobre la

probabilidad de eventos futuros, permitiendo una mejor planificación y toma de decisiones basada

en información predictiva (Contreras et al., 2016). Los modelos propuestos por Box y Jenkins

(1976) son ampliamente utilizados en el análisis de series temporales estacionarias, ya que permi-

ten identificar y capturar patrones como tendencias y estacionalidades. Estas metodologías propor-

cionan herramientas robustas para analizar patrones en los datos y realizar estimaciones confiables

en contextos diversos.

El objetivo principal de este estudio es determinar el modelo de serie temporal que mejor se

ajuste para el pronóstico de la producción mensual de cobre en Perú. Para ello, se empleará una

metodología que abarcará desde el análisis exploratorio de los datos hasta la aplicación de mode-

los estadísticos de series temporales, como la metodología de Box-Jenkins. Este análisis permitirá

identificar patrones y tendencias en la producción, mejorando la precisión de las estimaciones y

proporcionando herramientas útiles para la planificación estratégica en el sector minero.

El presente trabajo de investigación está estructurado de la siguiente manera:

CAPÍTULO I: Presenta la situación problemática, la justificación del estudio, así como los pro-
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blemas de investigación y los objetivos generales y específicos que guían este trabajo.

CAPÍTULO II: Exposición de los antecedentes relevantes para la investigación, bases teóricas

que sustentan el estudio y el marco conceptual necesario para comprender los términos y enfoques

empleados.

CAPÍTULO III: Descripción de la metodología empleada en el desarrollo de la investigación,

incluyendo el diseño del estudio, población de estudio, el tipo de investigación y la operacionali-

zación de las variables.

CAPÍTULO IV: Presentación de los resultados obtenidos a partir del análisis de los datos reco-

pilado en relación con los objetivos establecidos en el estudio.

Finalmente, se presentan la discusión de los hallazgos obtenidos, las conclusiones derivadas del

estudio y las recomendaciones orientadas a futuras investigaciones o aplicaciones prácticas.
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CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la situación problemática

El sector minero es un pilar fundamental de la economía peruana, a pesar que el cobre se des-

taca como uno de los principales minerales exportados en el país, no se han desarrollado estudios

específicos que aborden el pronóstico de la producción mensual de cobre en el país. Esta falta

de análisis limita la capacidad del sector minero y del gobierno para anticipar fluctuaciones en la

producción, dificultando la planificación efectiva y la respuesta estratégica frente a cambios en el

mercado global.

El Perú es reconocido mundialmente como uno de los principales productores de cobre, siendo

este mineral un pilar fundamental en su economía debido a su abundancia y demanda global (Mi-

nisterio de Energía y Minas del Perú, 2022; U.S. Geological Survey, 2023). Desde enero de 1999,

la producción de cobre ha experimentado un crecimiento sostenido impulsado por la expansión de

grandes minas como Cerro Verde, Antamina y Las Bambas, así como por la inversión en tecnolo-

gías y mejoras en la eficiencia productiva (Instituto Nacional de Estadística e Informática, 2021;

Suárez, 2020).

Durante las primeras dos décadas del siglo XXI, la producción mostró fluctuaciones relacionadas

con la volatilidad de los precios internacionales del cobre, el contexto político y social interno, y

eventos globales como la crisis financiera de 2008 (Banco Mundial, 2019). Sin embargo, en la

última década, el país ha consolidado su posición mediante la ampliación de proyectos mineros y

la mejora en la infraestructura, alcanzando niveles récords de extracción y exportación hacia 2023

(Banco Central de Reserva del Perú, 2023; Ministerio de Energía y Minas del Perú, 2023).

Este crecimiento ha sido clave para la economía peruana, representando una significativa fuente

de ingresos fiscales y divisas, además de influir en el desarrollo regional de las zonas mineras

(Organización para la Cooperación y el Desarrollo Económicos, 2018). No obstante, la producción

también enfrenta retos como la sostenibilidad ambiental y la gestión social en las comunidades

afectadas (Gonzales, 2019).
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Según la revisión literaria, se han llevado a cabo estudios relacionados con series temporales

en el sector minero, pero ninguna se enfoca directamente en la producción mensual de cobre en

Perú. Como el análisis del estudio realizado por Contreras Cerpa (2021) pronosticó la producción

de cobre en Chile mediante modelos de redes neuronales, el estudio realizado por Cotrina Tea-

tino et al. (2022) realizó pronósticos para el precio del cobre mediante pos promedio simples y

alisado exponencial, otro estudio realizado por Henríquez et al. (2022) aplicó la metodología de

Box-Jenkins para el pronóstico de la exportación minera de los principales metales en Perú. Estos

estudios no abordan la dinámica particular de la producción de cobre en Perú, lo que evidencia una

brecha de conocimiento en esta área.

El pronóstico preciso de las series de producción mensual no solo permitiría una mejor planifica-

ción operativa por parte de las empresas mineras, sino que también facilitaría la toma de decisiones

estratégicas a nivel gubernamental.

1.2. Formulación del problema

1.2.1. Problema general

¿Cuál es el modelo de series de tiempo que mejor se ajusta para pronosticar la producción

mensual de cobre en Perú con datos históricos (1999-2023) y validar con datos de Enero a

Agosto del 2024?

1.2.2. Problemas específicos

¿Cuáles son los características presentes en la serie de producción mensual de cobre en Perú

(1999-2023)?

¿Cuáles son los modelos de series temporales que tienen mejor ajuste para la serie de pro-

ducción mensual de cobre en Perú desde 1999 a Diciembre del 2023?

¿Cuál es el modelo que tiene mejor capacidad de validación de la producción mensual de

cobre para los meses del ultimo año (Enero - Agosto 2024)?
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1.3. Justificación de la investigación

Desde un punto de vista teórico, este estudio busca aportar al campo de la industria minera, me-

diante la aplicación de diferentes modelos de pronóstico y técnicas de suavizamiento para predecir

la producción mensual de cobre. Aunque existen investigaciones previas en este sector relacionadas

con la economía, los estudios específicos sobre la producción de cobre en Perú son escasos. Con

este estudio esperamos encontrar el modelo que pronostique mejor la producción mensual de cobre

y poder brindar un marco teórico que aborde aspectos que puedan ser replicados en otros contextos

dentro del sector minero.

Desde una perspectiva económica, este estudio es importante debido a que la minería representa

una de las principales fuentes de ingresos para el país. Pronosticar con precisión la producción

de cobre tiene un impacto directo en la economía nacional, ya que permite a las empresas mine-

ras, inversores y al gobierno tomar decisiones informadas basadas en pronósticos confiables. Al

determinar el modelo predictivo más adecuado, este estudio ofrecerá herramientas valiosas para

optimizar la gestión de recursos y mejorar la eficiencia en la toma de decisiones económicas. Esto

podría llevar a una mejor planificación de la producción y a un aumento en la competitividad del

país en el mercado global del cobre.

Desde el punto de vista social, este estudio tiene una relevancia significativa, dado que la minería

es uno de los pilares económicos de Perú, y el cobre es uno de los minerales mas relevantes en

términos de producción y exportación, donde las comunidades mineras dependen directamente de

esta actividad. Los resultados de este estudio podrían contribuir a una mejor planificación, gestión

de políticas públicas y estrategias empresariales en el sector, minimizando los impactos sociales

negativos asociados con la explotación minera, como los problemas de salud pública y los con-

flictos sociales. Pronosticar con precisión la producción de cobre, puede ayudar a contribuir a la

estabilidad social permitiendo a los actores económicos y gubernamentales anticipar y prepararse

mejor para los cambios en la producción minera.

En ese sentido, existe la necesidad de estudiar el pronóstico de las series de producción mensual del

cobre, con este trabajo pretendemos llenar este vació de conocimiento, donde pretendemos estudiar
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las series de producción mensual de cobre aplicando modelos de series temporales, mejorando así

la precisión en el pronóstico y poder facilitar una planificación más efectiva y una toma de decisión

estratégica en el sector minero nacional.

1.4. Objetivos de la investigación

1.4.1. Objetivo general

Determinar el modelo de series de tiempo que mejor se ajusta para pronosticar la producción

mensual de cobre en Perú con datos históricos (1999-2023) y validación con datos de Enero

y Agosto del 2024.

1.4.2. Objetivos específicos

Identificar los características presentes en la serie de producción mensual de cobre en Perú

(1999-2023).

Analizar los modelos de series temporales que ofrecen el mejor ajuste para la serie de pro-

ducción mensual de cobre en Perú desde 1999 a Diciembre del 2023.

Determinar el modelo con la mejor capacidad de validación de la producción mensual de

cobre para los meses del último año (Enero - Agosto 2024).
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CAPÍTULO II

MARCO TEÓRICO CONCEPTUAL

2.1. Antecedentes

2.1.1. Antecedentes internacionales

Un estudio reciente de Mutele y Carranza (2024) analizó las tendencias en la producción de oro

en Sudáfrica y a nivel mundial desde 1990 hasta 2022, utilizando modelos ARIMA, VAR y ARNN.

El modelo ARIMA (1,1,0) demostró ser el más eficaz según las métricas de precisión RME, MAE

y MAPE; sus proyecciones sugirieron un incremento anual del 0.6 % en Sudáfrica y del 2.2 % a

nivel mundial.

Por otro lado, Contreras Cerpa (2021) aplicó modelos de redes neuronales recurrentes (RNN),

GRU y LSTM para prever la producción de cobre, considerando el consumo de agua, energía y

las emisiones de gases de efecto invernadero. El modelo LSTM ofreció el mejor desempeño y un

ajuste más preciso, seguido por los modelos GRU y RNN.

Astudillo et al. (2020) exploraron la regresión del vector de soporte (SVR) para pronosticar

los precios en la Bolsa de Metales de Londres a plazos de 5, 10, 15, 20 y 30 días. Utilizando

validación cruzada y búsqueda de cuadrícula, el modelo SVR mostró ser robusto y preciso, con un

error cuadrático medio (RMSE) igual o inferior al 2.2 % para predicciones a 5 y 10 días.

El estudio realizado por Oktaviani et al. (2021) pronosticó las anomalías de las temperaturas

de la superficie del mar (SSTA) con patrones estacionales, donde emplearon el modelo SARIMA

combinado con GARCH, utilizando datos diarios de julio de 2010 a julio de 2018. El mejor modelo

identificado fue SARIMA (2,1,1)(0,1,1) - GARCH(1,1), con una precisión destacada (MAPE de

3.67 %), demostrando su efectividad para pronosticar SSTA y contribuir a mitigar los efectos del

cambio climático.
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2.1.2. Antecedentes nacionales

Aycaya-Paco et al. (2023) desarrollaron una herramienta en R-Studio para estudiar y predecir la

extracción de minerales en los distintos departamentos de Perú. Utilizaron el modelo ARIMA, pro-

yectaron la extracción de minerales hasta 2027, estimando cifras como 2,694,957 TMF de cobre,

etc.

Según la investigación de Cotrina Teatino et al. (2022), se realizó un estudio para predecir el pre-

cio del cobre en libras (lb). Donde aplicaron diversos modelos de predicción de series de tiempo,

para evaluar el ajuste de estos modelos, se empleó el coeficiente de determinación (R2) y el error

porcentual absoluto medio (MAPE) como medidas de precisión. Los resultados de este análisis

revelaron que el método de suavizado exponencial simple fue el más adecuado, prediciendo un

precio del cobre de 3.60 lb para septiembre de 2022, con un MAPE de 4,4 % y un (R2) de 0,86.

En el estudio realizado por Henríquez et al. (2022), estableció un modelo de pronóstico para la

exportación minera en Perú, analizando los cambios ocasionados por la pandemia de COVID-19.

Utilizaron la metodología de Box-Jenkins para construir un modelo autoregresivo integrado de

medias móviles (ARIMA). Se verificó la estacionariedad con la prueba de raíz unitaria de Dickey-

Fuller (p = 0.027), la normalidad de los residuos con la prueba de Jarque-Bera (p = 0.229), la no

autocorrelación con el test de Durbin-Watson (d = 2.01) y la homocedasticidad de los residuos con

Q-Stat de Ljung-Box. Finalmente, concluyeron que el modelo autoregresivo de primer orden (1,

0, 0) con la ecuación yt = 2270,176 + 0,749596yt−1 + t se ajusta adecuadamente a la exportación

minera en Perú durante el período estudiado.

De acuerdo con el estudio realizado por Chafloque Céspedes et al. (2018), se enfocaron en

modelar, estimar y analizar las exportaciones mineras en Perú desde 1985 hasta 2017. El principal

objetivo del estudio fue aplicar metodologías de predicción y suavizamiento para pronosticar las

exportaciones mineras a corto plazo. Compararon los métodos predictivos ARIMA y SARIMA.

Los resultados revelaron que el modelo SARIMA demostró ser el más adecuado para la predicción

de las exportaciones mineras, superando al modelo ARIMA en términos de precisión predictiva.

El objetivo del trabajo realizado por Orihuela et al. (2023) fue el de analizar la relación entre las
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exportaciones de materias primas de oro y cobre y la balanza de pagos en Perú (BP). Se estimó

un Modelo de Vectores Autorregresivos (VAR). Para este modelo, se aplicaron las pruebas de Raíz

Unitaria de Dickey Fuller Aumentada, Cointegración de Johansen y Causalidad de Granger. Los

resultados indicaron que: Las exportaciones de oro y cobre y la Balanza de Pagos mantienen una

relación de equilibrio a largo plazo, estando cointegradas.

2.1.3. Antecedentes locales

En la investigación llevada a cabo por Mamani Quispe (2019), se analizó el impacto de la expor-

tación de cobre en el crecimiento económico de Perú durante el período de 2010 a 2018. Los ha-

llazgos demostraron que las exportaciones de cobre tienen un efecto significativo en el crecimiento

del PBI del país: un incremento del 10 % en la producción de cobre resultaría en un aumento del

0.38 % en el PBI. Asimismo, se observó que un aumento del 10 % en el precio del cobre hace 12

meses llevaría a un incremento del 0.27 % en el PBI del mes actual.
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2.2. Bases teóricas

2.2.1. Experimento aleatorio

Un experimento que puede proporcionar diferentes resultados, aunque sea repetido todas las

veces de la misma manera, es llamado un experimento aleatorio (Montgomery & Runger, 2012).

2.2.2. Espacio muestral

El espacio muestral, denotado por Ω, es la colección o totalidad de todos los resultados posibles

de un experimento aleatorio (Mood et al., 1974).

2.2.3. Sigma - álgebra

Según Grimmett y Stirzaker (2001), F es una colección de subconjuntos de Ω, es decir

F ⊆ P(Ω), que es llamado sigma álgebra, denotado por σ-álgebra, si satisface las siguientes

propiedades:

1. ∅ ∈ F ,

2. Cerradura bajo complementación: Si A ∈ F entonces Ac ∈ F ,

3. Cerradura bajo uniones numerables: Si A1, A2, . . . ∈ F entonces
⋃∞

i=1 Ai ∈ F

2.2.4. Medida de probabilidad

Una medida de probabilidad P en (Ω,F ) es una función P : F → [0, 1] satisfaciendo (Grimmett

& Stirzaker, 2001):

1. P(∅) = 0, P(Ω) = 1 ;

2. Si A1, A2, . . . es una colección de conjuntos disjuntos de F en que Ai ∩ A j = ∅ para todos

los pares i, j satisfaciendo i , j, entonces:

P

 ∞⋃
i=1

Ai

 = ∞∑
i=1

P(Ai)
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2.2.5. Espacio de probabilidad

Según Grimmett y Stirzaker (2001), la terna (Ω,F ,P), de un conjunto Ω, un σ-álgebra F del

subconjunto de Ω, y una medida de probabilidad P en (Ω,F ), es llamada un espacio de probabili-

dad.

2.2.6. Variable aleatoria

Sea (Ω,F ,P) un espacio de probabilidad. Una variable aleatoria es una función

X : Ω −→ R

tal que, para todo número real x, el este conjunto es un evento medible.

[ω ∈ Ω : X(ω) = x] ∈ F para cada x ∈ R

(Billingsley, 1995).

La variable aleatoria se clasifica en:

Variable aleatoria discreta: Si el conjunto de resultados posibles, RX, es finito ó infinito

numerable, decimos que X es una variable aleatoria discreta.

Variable aleatoria continua: Una variable aleatoria es continua cuando el conjunto de sus

valores posibles son todos los valores de un intervalo o de una unión de intervalos de números

reales.

2.2.7. Proceso estocástico

Un proceso estocástico es una colección de variables aleatorias indexadas en el tiempo, donde

cada variable describe el estado de un sistema en un momento específico. Este proceso modela

la evolución de un fenómeno que cambia de manera aleatoria a lo largo del tiempo (Billingsley,



12

1995).

Según Morettin y Toloi (2006) sea T un conjunto arbitrario. Un proceso estocástico es una familia

{Xt, t ∈ T }, tal que, para cada t ∈ T , Xt es una variable aleatoria. Un proceso estocástico es una fa-

milia de variables aleatorias, que podemos definir en un mismo espacio de probabilidad (Ω,F ,P).

Sea t = 1, 2, . . . , n elementos de T se considera las distribuciones finito-dimensionales, para todo

n ≥ 1:

F(x1, . . . , xn, 1, . . . , n) = P{X1 ≤ x1, . . . , Xn ≤ xn} (1)

Si n = 1 se conoce las distribuciones unidimensionales de variables aleatorias X1, y para n = 2

distribuciones bidimensionales de variables aleatorias (X1, X2), la función de distribución (1) debe

satisfacer las condiciones:

1. Simetría para cualquier permutación j1, . . . , jn de los índices 1, 2, . . . , n tenemos:

F(x j1 , . . . , x jn , t j1 , . . . , t jn) = F(x1, . . . , xn, 1, . . . , n)

2. Condición de compatibilidad. para m < n

F(X1, . . . , xm,+∞, . . . ,+∞; 1, . . . ,m,m + 1, . . . , n) = F(x1, . . . , xm; 1, . . . ,m)

Un proceso estocástico {Xt, t ∈ T } se dice que es estrictamente estacionario si todas las dis-

tribuciones finito-dimensionales (1) permanecen en las mismas sub traslaciones del tiempo;

es decir que para el conjunto de t = 1, 2, . . . , n y cualquier desplazamiento k:

(X1, X2, . . . , Xn) d
= (X1+k, X2+k, . . . , Xn+k)

las distribuciones unidimensionales son invariantes en el tiempo, con media y varianza cons-

tante.

µt = 0 Var(Xt) = σ2
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Un proceso estocástico {Xt, t ∈ T } se dice que es débilmente estacionario o estacionario de

segundo orden si y solamente si cumple:

i) E[Xt] = µt = µ constante para todo t ∈ T.

ii) Var(Xt) < ∞ para todo t ∈ T.

iii) γ(t1, t2) = Cov(X(t1), X(t2)) , es una función de |t1 − t2|

El cual para este estudio será denominado procesos estacionarios

2.2.8. Serie de tiempo

De acuerdo con Brockwell y Davis (2016), una serie de tiempo es un conjunto de observaciones

Xt, donde cada una se registra en un momento específico t. Una serie de tiempo discreto es aquella

en la que el conjunto de tiempos T0 en los que se hacen observaciones es un conjunto discreto. Una

serie de tiempo continua es obtenida cuando las observaciones se registran continuamente durante

intervalo de tiempo.

Shumway y Stoffer (2016), define una serie de tiempo como una colección de variables aleatorias

según el orden que se encuentren en el tiempo t.

Una serie de tiempo es una secuencia de observaciones ordenadas cronológicamente lo largo del

tiempo. Desde un punto de vista probabilístico, cada observación puede considerarse como una

realización de un proceso estocástico (Box et al., 2016).

2.2.8.1. Características de la serie de tiempo. Ríos (2008) define las características como

componentes, donde indica que una serie de tiempo puede descomponerse en cuatro componentes

que no son directamente observables:

1. Tendencia(T): Representa el comportamiento predominante de la serie, es definida como el

cambio de la media a lo largo de un extenso periodo de tiempo.
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Figura 1

Característica de tendencia en la serie de tiempo

Nota: Elaboración propia con datos simulados en R-Studio.

2. Estacionalidad (E): Movimiento periódico que se producen dentro de un periodo corto y

conocido, son oscilaciones estrictamente periódicas, donde el período es igual o inferior al

año.

Figura 2

Característica estacional en la serie de tiempo

Nota: Elaboración propia con datos simulados en R-Studio.
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3. Aleatorio (A): Son movimientos erráticos que no siguen un patrón especifico, este compo-

nente es prácticamente impredecible.

Figura 3

Característica aleatoria en la serie de tiempo

Nota: Elaboración propia con datos simulados en R-Studio.

4. Ciclo (C): Fluctuaciones recurrentes de duración variable, asociadas a fenómenos económi-

cos, climáticos o sociales, que carecen de periodicidad fija y pueden variar en amplitud (Box

et al., 2016).

Figura 4

Característica cíclica en la serie de tiempo

Nota: Elaboración propia con datos simulados en R-Studio.
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Hamilton (1994) explica la heterocedasticidad en el contexto de series de tiempo sobre todo en

el área financiera.

5) Heterocedasticidad: Se refiere a la variación no constante de la varianza de los errores de

predicción a lo largo del tiempo.

Figura 5

Característica de heterocedasticidad en la serie de tiempo

Nota: Elaboración propia con datos simulados en R-Studio.

2.2.8.2. Transformaciones de Box Cox. Según Morettin y Toloi (2006) existen dos razones

por las cuales se debe transformar los datos originales: estabilizar la varianza y conseguir el efecto

estacional aditivo, en estos casos la transformación logarítmica puede ser la adecuada. En el caso

de series económicas y financieras indica que puede ser necesario aplicar alguna transformación

no lineal, como logarítmica o la transformación de la forma:

X(λ)
t =


Xλ

t −1
λ
, λ , 0

ln(Xt), λ = 0

llamada transformación de Box y Cox (1964), un método para estabilizar la varianza y aproximar

los datos a una distribución normal. Box y Cox (1964) propusieron determinar el valor óptimo de
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λ mediante un análisis basado en máxima verosimilitud, optimizando el ajuste de los datos a un

modelo estadístico con supuestos de homocedasticidad y normalidad.

2.2.8.3. Descomposición de una serie temporal. Según Montgomery et al. (2008) existe un

enfoque clásico para la descomposición de una serie temporal en componentes de tendencia y

estacionalidad.

El modelo matemático general para esta descomposición es:

Xt = f (Et,Tt, εt)

donde: Et es el componente estacional, Tt es el componente de tendencia y εt es el componente de

error aleatorio.

Generalmente existen dos formas para la función f , una es el modelo aditivo

Xt = Et + Tt + εt

Figura 6

Ejemplos de series temporales aditivas

(a) Serie temporal con componentes de tendencia y estacionalidad. (b) Serie temporal con una tendencia
creciente lineal, sin estacionalidad. (c) Serie temporal con estacionalidad y sin tendencia.
Nota: Elaboración propia con datos simulados en R-Studio.
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y la otra modelo multiplicativo

Figura 7

Ejemplos de series temporales multiplicativas

(a) Serie temporal con tendencia y estacionalidad. Las amplitudes de las fluctuaciones aumentan con el
tiempo, indicando la presencia de heterocedasticidad. (b) Serie temporal con una tendencia creciente expo-
nencial, sin estacionalidad.
Nota: Elaboración propia con datos simulados en R-Studio.

El modelo aditivo Figura (6) es apropiado si la magnitud (amplitud) de la variación estacional no

varía con el nivel de la serie, mientras que la versión multiplicativa es más apropiada si la amplitud

de las fluctuaciones estacionales aumenta o disminuye con el nivel promedio de la serie temporal.

2.2.8.4. Media y varianza. Según Cryer y Chan (2008) para un proceso estocástico

Xt : t = 0,±1,±2,±3, . . . la función media esta definida por:

µ = E(Xt) =
∫ ∞

−∞

x f (x) dx

para t = 0,±1,±2,±3, . . .

Es decir, µ es simplemente el valor esperado del proceso en el tiempo t. En general, µ puede ser

diferente en cada momento t.

La varianza esta dada por:
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Var(Xt) = γ0 = E(Xt − µ)2 =

∫ ∞

−∞

(X − µ)2 f (x) dx = σ2

2.2.8.5. Función de autocovarianza y autocorrelación. Montgomery et al. (2008) indica que

si una serie de tiempo es estacionaria, significa que la distribución de probabilidad conjunta de dos

observaciones cualesquiera, sea Xt y Xt+k es el mismo para dos periodos de tiempo t y t + k, que

son separados por el mismo intervalo k, llamado lag.

La covarianza entre Xt y su valor con otro periodo de tiempo Xt+k es llamado la autocovarianza de

lag k definido por:

γk = Cov(Xt, Xt+k) = E
[
(Xt − µ)(Xt+k − µ)

]
la colección de los valores de γk, k = 0, 1, 2, 3, . . . es llamado la función de autocovarianza, la

autocovarianza de lag k = 0, es justo la varianza de la serie, γ0 = σ
2

La función de autocorrelación (ACF) en lagk es la colección de los valores de ρk, k = 0, 1, 2, 3, . . . ;

para k = 0 entonces ρ0 = 1, lo cual indica que la variables esta correlacionada consigo misma.

ρk = Corr(Xt, Xt+k) =
Cov(Xt, Xt+k)

Var(Xt)
=
γk

γ0

La función de autocorrelación parcial (PACF) de un proceso estacionario Xt, denotado por αk, para

k = 0, 1, 2, 3, . . . , proporciona la relación directa que existe entre dos observaciones separadas por

k retardos, sin tomar en cuenta los retardos intermedios (Cotrina Araujo, 2020), es definida como:

αk = Corr(Xt, Xt−k/Xt−1, Xt−2, . . . , Xt−k+1)

αk =
Cov(Xt − X̂t, Xt−k − X̂t−k)√

Var(Xt − X̂t)Var(Xt−k − X̂t−k)
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2.2.8.6. Ruido blanco. Box et al. (2016) expresa que un proceso estacionario es una secuen-

cia de variables aleatorias independientes e idénticamente distribuidas (idd), denotadas como

a1, . . . , at, . . ., que también asumimos que tienen media cero y varianza σ2
a. Este proceso es estricta-

mente estacionario y se denomina proceso de ruido blanco. Debido a que la independencia implica

que los at no están correlacionados; es decir incorreladas, donde su función de autocovarianza es

simplemente:

γk = E[atat+k] =


σ2

a si k = 0

0 si k , 0

Figura 8

Ruido blanco

Nota: Elaboración propia con datos simulados en R-Studio.

2.2.8.7. Paseo aleatorio. Conforme a Brockwell y Davis (2016), el paseo aleatorio

S t, t = 0, 1, 2, . . ., que comienza en cero, se forma al sumar de manera acumulativa variables aleato-

rias independientes e idénticamente distribuidas (iid). De este modo, un paseo aleatorio con media

cero se define estableciendo S 0 = 0 y

S t = a1 + a2 + · · · + at,

para t = 1, 2, ..., donde at representa el ruido idénticamente independiente.
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Figura 9

Paseo aleatorio

Nota: Elaboración propia con datos simulados en R-Studio.

2.2.8.8. Pruebas de hipótesis para las características de una serie de tiempo. Según Mo-

rettin y Toloi (2006) existen algunas pruebas no paramétricas que son útiles para probar las ca-

racterísticas de una serie de tiempo: para la tendencia, tenemos la prueba de Mann-Kendall; para

la estacionalidad, Kruskal-Wallis; para la estacionariedad, la prueba de Dickey-Fuller; y para la

heterocedasticidad, la prueba de Levene. Estos en general se basan en hipótesis que pueden no

estar verificadas para el caso de una serie temporal.

1. Pruebas de hipótesis de tendencia

Prueba de Mann-Kendall

H0 : No existe tendencia

H1 : Existe tendencia

Según Teixeira-Gandra et al. (2014) utiliza toda la serie, donde compara todos los

pares posibles de observaciones a lo largo del tiempo.

Sea
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S =
n−1∑
i=1

n∑
j=i+1

sign(x j − xi)

Donde la función signo sign(x j − xi) se define como:

sign(x j − xi) =



1 si x j − xi > 0 , tendencia creciente

0 si x j − xi = 0 , sin tendencia

−1 si x j − xi < 0 , tendencia decreciente

2. Pruebas de Hipótesis de Estacionalidad

Prueba de Kruskal-Wallis

H0 : No existe estacionalidad

H1 : Existe estacionalidad

Esta prueba consiste en dividir la serie en grupos basados en estaciones del año (men-

suales, trimestrales, etc). Dichas observaciones Xt son sustituidas por sus puntos Ri,

obtenidas ordenándose todas las N observaciones.

Sea

H =
12

N(N + 1)

k∑
i=1

R2
i

ni
− 3(N + 1)

donde:

k: Número de grupos.

Ri: Suma de rangos en el grupo i.

ni: Número de observaciones en el grupo i.

3. Pruebas de hipótesis de estacionariedad

Prueba de hipótesis de Dickey Fuller (prueba de raíz unitaria)
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H0 : ρ = 1; (es no estacionaria)

H1 : ρ < 1; (es estacionaria)

La prueba de Dickey-Fuller es un procedimiento estadístico utilizado para verificar la

presencia de una raíz unitaria en una serie temporal, lo que indica no estacionariedad.

Parte del modelo autorregresivo de primer orden:

Yt = ρYt−1 + at,

donde at es un término de error con media cero y varianza constante. Para contrastar la

hipótesis de raíz unitaria, el modelo se reescribe como:

∆Yt = αYt−1 + ut,

donde: ∆Yt = Yt − Yt−1 representa la primera diferencia de la serie y α = ρ− 1. (Dickey

& Fuller, 1979)

Prueba de Hipótesis de Heterocedasticidad

• Prueba de Levene

H0 : Existe homocedasticidad

H1 : Existe heterocedasticidad

El estadístico de prueba de Levene se define como: (Correa et al., 2006)

W =
(N − k)

∑k
i=1 ni(X̄i − X̄)2

(k − 1)
∑k

i=1
∑ni

j=1(Xi j − X̄i)2
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donde:

k = número de grupo.

ni = número de observaciones en el grupo i.

N = número total de las observaciones,

X̄ = es la media general.

Xi j = es la j-ésima observación en el grupo i.

X̄i = es la media en el grupo i.

2.2.8.9. Procesos lineales estacionarios. Un proceso lineal general {Xt}, es aquel que puede

representarse como una combinación lineal ponderada de términos de ruido blanco presentes

y pasados, de la siguiente manera:

Xt = at + ψ1at−1 + ψ2at−2 + . . .

Shumway y Stoffer (2016), define al operador de rezago como:

BXt = Xt−1

que pueden ser extendidas a potencias B2Xt = B(BXt) = BXt−1 = Xt−2, por lo tanto de manera

general el operador de rezago esta dado por:

BkXt = Xt−k

Las diferencias de orden d, son definidas como:

∇d = (1 − B)d

a) Proceso autoregresivo AR(p)

Los procesos autoregresivo son, como su nombre indica, regresiones sobre sí mismos.
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Específicamente, un proceso autoregresivo de orden p, Xt satisface la ecuación: (Shum-

way & Stoffer, 2016)

Xt − µ = ϕ1(Xt−1 − µ) + ϕ2(Xt−2 − µ) + . . . + ϕt−p(Xt−p − µ) + at (2)

el valor actual de la serie Xt, es una combinación lineal de los p valores pasados mas

recientes de sí misma mas un termino at (error o ruido blanco), cuando µ , 0

Xt = δ + ϕ1Xt−1 + ϕ2Xt−2 + . . . + ϕpXt−p + at (3)

donde: δ = µ(1 − ϕ1 − ϕ2 − . . . − ϕp)

La ecuación (2) también puede ser definido en términos de su desviación de la siguiente

manera:

X̄t = ϕ1X̄t−1 + ϕ2X̄t−2 + . . . + ϕpX̄t−p + at

El modelo (3) puede ser representado utilizando un polinomio en el operador de rezago

B (también conocido como operador de retardo), de la siguiente manera:

ϕ(B)Xt = at + δ

donde:

ϕ(B) = 1 − ϕ1B − ϕ2B2 − · · · − ϕpBp

Media

E[Xt] = E
[
δ + ϕ1Xt−1 + ϕ2Xt−2 + . . . + Xt−p + at

]
E[Xt] = δ + µ(ϕ1 + ϕ2 + . . . + ϕp)

donde: µ =
δ

1 − (ϕ1 + ϕ2 . . . + ϕp)
, con ϕ1 + ϕ2 . . . + ϕp , 1
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Varianza

Var[Xt] = E
[
(X̄t)2

]
= E

[
(ϕ1X̄t−1 + ϕ2X̄t−2 + · · · + ϕpX̄t−p + at)X̄t

]
Var[Xt] = γ0 = ϕ1γ1 + ϕ2γ2 + · · · + ϕpγp + σ

2
a

Autocovarianzas

γ1 = E
[
X̄tX̄t−1

]
= ϕ1γ0 + ϕ2γ1 + · · · + ϕpγp−1,

γ2 = E
[
X̄tX̄t−2

]
= ϕ1γ1 + ϕ2γ0 + · · · + ϕpγp−2,

...

γp = E
[
X̄tX̄t−p

]
= ϕ1γp−1 + ϕ2γp−2 + · · · + ϕpγ0,

γk = ϕ1γk−1 + ϕ2γk−2 + · · · + ϕpγk−p. para todo k ≥ p + 1

Autocorrelaciones

ρ1 =
γ1

γ0
= ϕ1 + ϕ2ρ1 + · · · + ϕpρp−1,

ρ2 =
γ2

γ0
= ϕ1ρ1 + ϕ2 + · · · + ϕpρp−2,

...

ρp =
γp

γ0
= ϕ1ρp−1 + ϕ2ρp−2 + · · · + ϕp,

ρk = ϕ1ρk−1 + ϕ2ρk−2 + · · · + ϕpρk−p, para todo k ≥ p + 1.

1) Proceso autoregresivo de primer orden AR(1)

El proceso de primer orden es:

Xt = δ + ϕ1Xt−1 + at

en términos de su desviación se define de la siguiente manera:
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X̄t = ϕ1X̄t−1 + at

Media

E[Xt] = E
[
δ + ϕ1Xt−1 + at

]
= δ + ϕ1E[Xt−1] + E[at] = δ + ϕ1µ

donde: µ =
δ

1 − ϕ1
, con ϕ1 , 1

Varianza

Var[Xt] = E
[
(Xt − µ)2

]
= E

[
(X̄t)2

]
= E

[
(ϕ1X̄t−1 + at)2

]
= ϕ2

1γ0 + σ
2
a

Var[Xt] = γ0 =
σ2

a

1 − ϕ2
1

, con ϕ1 , ±1

Autocovarianzas

γ1 = E
[
X̄tX̄t−1

]
= E

[
(ϕ1X̄t−1 + at)X̄t−1

]
= ϕ1γ0,

γ2 = E
[
X̄tX̄t−2

]
= E

[
(ϕ1X̄t−1 + at)X̄t−2

]
= ϕ1γ1 = ϕ

2
1γ0,

...

γk = ϕ1γk−1 = ϕ
k
1γ0.

Autocorrelaciones

ρ1 =
γ1

γ0
= ϕ1,

ρ2 =
γ2

γ0
= ϕ2

1,

...

ρk =
γk

γ0
= ϕk

1.
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Figura 10

Simulación de series AR(1) y sus funciones ACF y PACF con ϕ = ±0,7

Nota: Elaboración propia con datos simulados en R-Studio.

2) Proceso autoregresivo de segundo orden AR(2)

El proceso de segundo orden esta definido como:

Xt = δ + ϕ1Xt−1 + ϕ2Xt−2 + at

en términos de su desviación se define:

X̄t = ϕ1X̄t−1 + ϕ2X̄t−2 + at

Media

E[Xt] = E
[
δ + ϕ1Xt−1 + ϕ2Xt−2 + at

]
= δ + µ(ϕ1 + ϕ2)
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donde: µ =
δ

1 − (ϕ1 + ϕ2)
, con ϕ1 + ϕ2 , 1

Varianza

Var[Xt] = E
[
(Xt − µ)2

]
= E

[
(X̄t)2

]
= E

[
(ϕ1X̄t−1 + ϕ2X̄t−2 + at)2

]
Var[Xt] = γ0 = ϕ

2
1γ0 + ϕ

2
2γ0 + σ

2
a + 2ϕ1ϕ2γ1

Autocovarianzas

γ1 = E
[
X̄tX̄t−1

]
= ϕ1γ0 + ϕ2γ1 =

ϕ1

1 − ϕ2
γ0,

γ2 = E
[
X̄tX̄t−2

]
= ϕ1γ1 + ϕ2γ0,

...

γk = ϕ1γk−1 + ϕ2γk−2. para todo k ≥ 2

Autocorrelaciones

ρ1 =
γ1

γ0
=

ϕ1

1 − ϕ2
,

ρ2 =
γ2

γ0
=
ϕ1γ1 + ϕ2γ0

γ0
= ϕ1ρ1 + ϕ2,

...

ρk =
γk

γ0
= ϕ1ρk−1 + ϕ2ρk−2, para todo k > 2.

b) Proceso de media móvil MA(q)

Los procesos de media móvil utiliza los valores pasados de los errores, llamados tam-

bién residuos. El proceso de media móvil de orden q, Xt estará definida como:

Xt = µ + θ1at−1 + θ2at−2 + . . . + θqat−q + at
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Figura 11

Simulación de series AR(2) y sus funciones ACF y PACF con ϕ1 = ±0,5 y ϕ2 = ±0,3

Nota: Elaboración propia con datos simulados en R-Studio.

Cuando µ , 0, su representación polinomial es:

Xt = θ(B)at + µ

donde:

θ(B) = 1 + θ1B + θ2B2 + · · · + θqBq

Media

E[Xt] = E
[
µ + θ1at−1 + θ2at−2 + . . . + θqat−q + at

]
= µ
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Varianza

Var[Xt] = E
[
(Xt − µ)2

]
,

Var[Xt] = E
[
(θ1at−1 + θ2at−2 + . . . + θqat−q + at)2

]
Var[Xt] = γ0 = (θ2

1 + θ
2
2 + · · · + θ

2
q + 1)σ2

a

Autocovarianzas

γ1 = E
[
X̄tX̄t−1

]
= (θ1 + θ1θ2 + · · · + θq−1θq)σ2

a,

γ2 = E
[
X̄tX̄t−2

]
= (θ2 + θ1θ3 + · · · + θq−2θq)σ2

a

...

γk = E
[
X̄tX̄t−k

]
= (θk + θ1θk+1 + · · · + θq−kθq)σ2

a, para todo k < q

γq = θqσ
2
a.

Autocorrelaciones

ρ1 =
γ1

γ0
=
θ1 + θ1θ2 + · · · + θq−1θq

θ2
1 + θ

2
2 + · · · + θ

2
q + 1

,

ρ2 =
γ2

γ0
=
θ2 + θ1θ3 + · · · + θq−2θq

θ2
1 + θ

2
2 + · · · + θ

2
q + 1

,

...

ρk =
γk

γ0
=
θk + θ1θk+1 + · · · + θq−kθq

θ2
1 + θ

2
2 + · · · + θ

2
q + 1

, para todo k < q,

ρq =
θq

θ2
1 + θ

2
2 + · · · + θ

2
q + 1

.
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1) Proceso de media móvil de primer orden MA(1)

El proceso de primer orden es:

Xt = µ + θ1at−1 + at

Media

E[Xt] = E[µ + θ1at−1 + at] = µ + θ1E[at−1] + E[at] = µ

Varianza

Var[Xt] = E
[
(Xt − µ)2

]
= E

[
(θ1at−1 + at)2

]
= θ2

1σ
2
a + σ

2
a

Var[Xt] = γ0 = σ
2
a(θ2

1 + 1)

Autocovarianzas

γ1 = E
[
(Xt − µ)(Xt−1 − µ)

]
= E [(θ1at−1 + at)(θ1at−2 + at−1)] = θ1σ

2
a,

γ2 = E
[
(Xt − µ)(Xt−2 − µ)

]
= E [(θ1at−1 + at)(θ1at−3 + at−2)] = 0,

...

γk = 0, para todo k ≥ 2.

Autocorrelaciones

ρ1 =
γ1

γ0
=

θ1

θ1 + 1
,

ρ2 =
γ2

γ0
= 0,

...

ρk =
γk

γ0
= 0, para todo k ≥ 2.
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Figura 12

Simulación de series MA(1) y sus funciones ACF y PACF con θ = ±0,8

Nota: Elaboración propia con datos simulados en R-Studio.

2) Proceso de media móvil de segundo orden MA(2)

El proceso de segundo orden esta definido como:

Xt = µ + θ1at−1 + θ2at−2 + at

Media

E[Xt] = E[µ + θ1at−1 + θ2at−2 + at] = µ
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Varianza

Var[Xt] = E
[
(Xt − µ)2

]
= E

[
(θ1at−1 + θ2at−2 + at)2

]
= θ2

1σ
2
a + θ

2
2σ

2
a + σ

2
a

Var[Xt] = γ0 = σ
2
a(θ2

1 + θ
2
2 + 1)

Autocovarianzas

γ1 = E
[
(Xt − µ)(Xt−1 − µ)

]
= E[(θ1at−1 + θ2at−2 + at)(θ1at−2 + θ2at−3 + at−1)],

γ1 = (θ1 + θ1θ2)σ2
a

γ2 = E
[
(Xt − µ)(Xt−2 − µ)

]
= E[(θ1at−1 + θ2at−2 + at)(θ1at−3 + θ2at−4 + at−2)],

γ2 = θ2σ
2
a

γ3 = E
[
(Xt − µ)(Xt−3 − µ)

]
= E[(θ1at−1 + θ2at−2 + at)(θ1at−4 + θ2at−5 + at−3)],

γ3 = 0,

...

γk = 0, para todo k ≥ 3.

Autocorrelaciones

ρ1 =
γ1

γ0
=

θ1 + θ1θ2

θ2
1 + θ

2
2 + 1

,

ρ2 =
γ1

γ0
=

θ2

θ2
1 + θ

2
2 + 1

,

ρ3 =
γ3

γ0
= 0

...

ρk =
γk

γ0
= 0, para todo k ≥ 3.
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Figura 13

Simulación de series MA(2) y sus funciones ACF y PACF con θ1 = ±0,3 y θ2 = ±0,6

Nota: Elaboración propia con datos simulados en R-Studio.

c) Proceso mixto autoregresivo de media móvil ARMA(p,q)

Si asumimos que la serie es en parte autoregresiva y en parte de media móvil, obtene-

mos un modelo de series temporales bastante general.

Xt = µ+ϕ1(Xt−1−µ)+ϕ2(Xt−2−µ)+. . .+ϕp(Xt−p−µ)+at+θ1at−1+θ2at−2+. . .+θqat−q (4)

decimos que Xt, es un proceso mixto autoregresivo de media móvil de ordenes p y q,

respectivamente, con µ , 0.
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Xt = δ + ϕ1Xt−1 + ϕ2Xt−2 + . . . + ϕpXt−p + at + θ1at−1 + θ2at−2 + . . . + θqat−q (5)

donde: δ = µ(1 − ϕ1 − ϕ2 − . . . − ϕq)

La ecuación (4), puede definirse en términos de sus desviaciones como:

X̄t = ϕ1X̄t−1 + ϕ2X̄t−2 + . . . + ϕpX̄t−p + at + θ1at−1 + θ2at−2 + . . . + θqat−q

La ecuación (5) también se puede escribir como:

ϕ(B)Xt = θ(B)at + δ

1) Proceso mixto autoregresivo de media móvil ARMA(1,1)

El proceso esta definido como:

Xt = δ + ϕ1Xt−1 + at + θ1at−1

Media

E[Xt] = E[δ + ϕ1Xt−1 + θ1at−1 + at] = δ + ϕ1E[Xt−1] + θ1E[at−1] + E[at]

E[Xt] = δ + ϕ1µ

Varianza

Var[Xt] = E
[
(Xt − µ)2

]
= E[(ϕ1Xt−1 + θ1at−1 + at)2],

Var[Xt] = ϕ2
1γ0 + θ

2
1σ

2
a + σ

2
a + 2ϕ1θ1σ

2
a

Var[Xt] = γ0 =
σ2

a(θ2
1 + 1 + 2ϕ1θ1)

1 − ϕ2
1
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Autocovarianzas

γ1 = E
[
X̄tX̄t−1

]
= E

[
(ϕ1X̄t−1 + θ1at−1 + at)X̄t−1

]
= ϕ1γ0 + θ1σ

2
a,

γ2 = E
[
X̄tX̄t−2

]
= E

[
(ϕ1X̄t−1 + θ1at−1 + at)X̄t−2

]
= ϕ2

1γ0 + ϕ1θ1σ
2
a,

...

γk = ϕ1γk−1 = ϕ
k
1γ0 + ϕ

k−1
1 θ1σ

2
a, para todo k ≥ 2.

Autocorrelaciones

ρ1 =
γ1

γ0
= ϕ1 +

θ1(1 − ϕ2
1)

1 + θ2
1 + 2ϕ1θ1

,

ρ2 =
γ2

γ0
= ϕ2

1 + ϕ1
θ1(1 − ϕ2

1)
1 + θ2

1 + 2ϕ1θ1
,

...

ρk =
γk

γ0
= ϕ1ρk−1, para todo k ≥ 2.

2.2.8.10. Proceso lineal no estacionario.

a) Proceso autoregresivo integrado de media móvil ARIMA(p,d,q)

Se dice que una serie temporal {Xt} sigue un proceso de media móvil autoregresivo inte-

grado si la d-ésima diferencia Wt = ∇
dXt = Xt−Xt−d es un proceso ARMA estacionario.

Si {Wt} sigue un proceso ARMA(p, q), decimos que {Xt} es un proceso ARIMA(p, d, q).

∇dXt = ϕ1∇
dXt−1 + ϕ2∇

dXt−2 + . . . + ϕp∇
dXt−p + at + θ1at−1 + . . . + θqat−q (6)

La ecuación (6), puede expresarse de la siguiente manera en términos de su rezago.

ϕ(B)(1 − B)dXt = θ(B)at
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Figura 14

Simulación de series ARMA(1,1) y sus funciones ACF y PACF con ϕ1 = ±0,1 y θ1 = ±0,4

Nota: Elaboración propia con datos simulados en R-Studio.

1) Proceso autoregresivo integrado de media móvil ARIMA(1,1,1)

Se define de la siguiente manera:

θ(B)at = ϕ(B)(1 − B)Xt

at + θ1at−1 = (1 − ϕ1B)(Xt − Xt−1)

at + θ1at−1 = Xt − Xt−1 − ϕ1(Xt−1 − Xt−2)

Xt = Xt−1 + ϕ1(Xt−1 − Xt−2) + at + θ1at−1

∇Xt = ϕ1∇Xt−1 + at + θ1at−1
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Figura 15

Simulación de series ARIMA(1,1,1) y sus funciones ACF y PACF con ϕ1 = 0,5 y θ1 = 0,3

Nota: Elaboración propia con datos simulados en R-Studio.

2.2.8.11. Procesos estacionales.

a) Proceso ARMA estacionales multiplicativos SARMA(p, q) × (P, Q)s

Shumway y Stoffer (2016), indica al modelo SARMA el cual incluye componentes

estacionales, denotado como:

Xt = µ +

P∑
i=1

ΦiXt−i.s +

Q∑
j=1

Θ jat− j.s +

p∑
m=1

ϕmXt−m +

q∑
n=1

θnat−n + at

y en términos de su rezago definido como:
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Φ(Bs) ϕ(B) Xt = Θ(Bs) θ(B) at (7)

Donde:

Φ(Bs) : Polinomio autoregresivo estacional de orden P.

ϕ(B) : Polinomio autoregresivo regular de orden p.

Θ(Bs) : Polinomio de media móvil estacional de orden Q.

θ(B) : Polinomio de media móvil regular de orden q.

at : Ruido blanco.

s : Periodo estacional.

Un modelo S ARMA(0, 1) × (1, 0)12, según la ecuación (7), está definido como:

Φ(B12)Xt = θ(B)at

(1 − ΦB12)Xt = (1 + θB)at

Xt − ΦB12Xt = at + θBat

Xt − ΦXt−12 = at + θat−1

Xt = ΦXt−12 + at + θat−1

b) Proceso ARIMA estacionales no estacionarios SARIMA(p,d,q) × (P,D,Q)s

Estos modelos son flexibles en el sentido de que especifican estacionalidades esto-

cásticas, tendencias estocásticas y además recogen la posible interacción entre ambos

componentes (González Casimiro, 2009).

Brockwell y Davis (2016) este modelo es una extensión del modelo ARIMA que in-

corpora componentes estacionales, esta definido como:

Φ(Bs) ϕ(B)(1 − B)d(1 − Bs)DXt = Θ(Bs) θ(B) at (8)
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Φ(Bs) : Polinomio autoregresivo estacional de orden P.

ϕ(B) : Polinomio autoregresivo regular de orden p.

Θ(Bs) : Polinomio de media móvil estacional de orden Q.

θ(B) : Polinomio de media móvil regular de orden q.

(1 − B)d : Operador de diferencias regular.

(1 − Bs)D : Operador de diferencias estacional.

at : Ruido blanco.

s : Es el periodo estacional.

Un modelo SARIMA(1,1,0) ×(0, 1, 1)12, según la ecuación (8) estaría definido como:

Θ(B12) at = ϕ(B)(1 − B12)(1 − B)Xt

(1 + Θ1B12) at = (1 − ϕ1B)(1 − B12)(Xt − Xt−1)

at + Θ1at−12 = (1 − ϕ1B)(Xt − Xt−1 − Xt−12 + Xt−13)

at + Θ1at−12 = Xt − Xt−1 − Xt−12 + Xt+13 + ϕ1(Xt−1 − Xt−2) + ϕ1(Xt−13 − Xt−14)

Xt = Xt−1 + Xt−12 − Xt+13 − ϕ1(Xt−1 − Xt−2) − ϕ1(Xt−13 − Xt−14) + at + Θ1at−12

o de la forma

∇Xt = ∇Xt−12 − ϕ1∇Xt−1 − ϕ1∇Xt−13 + at + Θ1at−1

2.2.9. Metodología de Box Jenkins

La metodología de Box Jenkins sigue las siguientes fases (Box et al., 2016):

a) Identificación del modelo: Este es el primer paso de la metodología de Box Jenkins,

donde se observa el comportamiento de la serie, este paso implica el uso de gráficas

como los correlogramas, la función de autocorrelacion (ACF), la función de autocorre-

lacion parcial (PACF) y poder identificar los procesos autoregresivo, media móvil y la

integración dentro de la serie.
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Figura 16

Etapas de la metodología de Box Jenkins

Nota: Adaptado de “Intermediate economics: Theory and applications”(pg.223) 1

b) Estimación de los parámetros del modelo: Una vez identificado el modelo y los pa-

rámetros de orden p y q, se procede a estimar los parámetros desconocidos:

θ = (δ, ϕ1, . . . , ϕp, θ1, . . . , θq)′

según Hamilton (1994) para poder estimar los parámetros de la serie, los residuos at
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deben ser independientes e idénticamente distribuidos (iid) y at ∼ N(0, σ2). Su proba-

bilidad de densidad esta dada por (Box & Jenkins, 1976).:

f (a1, a2, a3, . . . , at) ∝ (σ2)−
n
2 exp

− n∑
t=1

a2
t

2σ2


La función de verosimilitud se define como:

L(θ) =
n∏

t=1

1
√

2πσ2
exp

(
−

a2
t

2σ2

)
,

Tomando logaritmos, se obtiene la log-verosimilitud:

log L(θ) = −
n
2

log(2π) −
n
2

log(σ2) −
1

2σ2

n∑
t=1

a2
t ,

L(θ) = −
n
2

(log(2πσ2)) −
1

2σ2

n∑
t=1

a2
t

la cual se maximiza con respecto a θ.

A partir del cual se define la función condicional de suma de cuadrados S ∗ =
∑n

t=1 a2
t ,

con lo cual se estudia el comportamiento de la verosimilitud condicional de suma de

cuadrados bajo el cual esta basado la librería del software R para estimar los parámetros

del modelo.

Una vez estimado los parámetros, usamos los criterios de información para la elección

del mejor estimador esperándose sea el mínimo posible.

1) Criterio de información de AKAIKE (AIC): Este criterio permite seleccionar

modelos estimando la medida de la calidad relativa de un modelo estadístico para

un conjunto de datos, utiliza como bondad de ajuste al criterio de máxima verosi-

militud y viene dado por:

AIC = 2k − 2 ln(L)

donde L representa la función de verosimilitud del modelo y k es el número de



44

parámetros estimados. En este sentido, el AIC permite comparar varios modelos,

seleccionando el que tenga el valor más bajo como el mejor, ya que optimiza el

equilibrio entre ajuste y simplicidad (Cotrina Araujo, 2020).

2) Criterio de información de Bayes (BIC): Este criterio fue desarrollado por Sch-

warz (1978) es una medida que evalúa el ajuste de un modelo estadístico y, por lo

tanto, se utiliza como método de selección de modelos. Su fórmula es:

BIC = k ln(n) − 2 ln(L)

donde: k representa el número de parámetros del modelo, L es el valor de máxima

verosimilitud, y n es el número de observaciones en el conjunto de datos (Cotrina

Araujo, 2020).

c) Verificación del modelo: En este paso hacemos uso de los residuos de la serie para

comprobar que sean un proceso de ruido blanco y se distribuyan normalmente. Para

ello hacemos uso de las siguientes pruebas:

1) Prueba de Ljung-Box

H0 : ρ1 = ρ2 = . . . = ρh = 0 (es ruido blanco)

H1 : no es ruido blanco

Q = n(n + 2)
h∑

j=1

ρ̂2
j

n − j
∼ χ2

1−α,h

donde: n representa el tamaño de la muestra, h el numero de retardos y ρ̂ j es la

autocorrelacion en el retardo h.
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2) Jarque Bera:

H0 : Los datos de la serie de tiempo tienen una distribución normal

H1 : Los datos no siguen una distribución normal

JB =
(n
6

)
A2 +

( n
24

)
(K − 3)2 ∼ χ2

(2gl)

donde: n representa el tamaño de la muestra, A representa la asimetría y K la

curtosis.

Nota: La normalidad de los residuos no es un requisito estricto para el ajuste del

modelo ARIMA, pero sí es fundamental para la validez de las inferencias estadísticas

basadas en el modelo. Según Hyndman y Athanasopoulos (2018), si los residuos no

presentan distribución normal, el modelo puede mejorarse y los intervalos de predic-

ción podrían no ser confiables, ya que no se cumpliría con los supuestos necesarios

para su correcta construcción.

d) Pronóstico: Una vez validado el modelo puede entonces utilizarse para predecir o pro-

nosticar valores de la serie en períodos futuros. Esto se realiza aplicando el modelo en

los valores de tiempo t + 1, t + 2, . . .

X̂t+h = c + ϕ1X̂t+h−1 + ϕ2X̂t+h−2 + · · · + ϕpX̂t+h−p − θ1at+h−1 − θ2at+h−2 − · · · − θqat+h−q

Se hace uso de las métricas de validación para elegir el mejor valor de pronostico.

1) Raíz del error cuadrático medio (RMSE): Mide el promedio de las diferencias

al cuadrado entre los valores predichos y los valores observados, proporcionando

una idea de cuánto, en promedio, se desvía el modelo de los valores reales.

RMSE =

√√
1
n

n∑
t=1

(Xt − X̂t+h)2
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2) Error absoluto medio (MAE): Mide el promedio de los errores absolutos entre

los valores observados y los valores predichos por el modelo.

MAE =
1
n

n∑
t=1

|Xt − X̂t+h|

3) Error porcentual absoluto medio (MAPE): Es una medida útil para interpretar

el error en relación con el tamaño de los valores observados, permitiendo comparar

el rendimiento de un modelo en diferentes escalas.

MAPE =
1
n

n∑
t=1

∣∣∣∣∣∣Xt − X̂t+h

Xt

∣∣∣∣∣∣ × 100

4) Suma de errores cuadrados (SSE): Suma los errores al cuadrado entre las pre-

dicciones y los valores observados. Es útil para evaluar la calidad del modelo y es

particularmente sensible a los errores grandes debido al cuadrado de las diferen-

cias.

SSE =
n∑

t=1

(Xt − X̂t+h)2
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2.3. Marco conceptual

1. Cobre

El cobre es un metal noble conocido por su alta conductividad eléctrica y térmica, resisten-

cia a la corrosión, y capacidad de ser reciclado indefinidamente sin perder sus propiedades.

Además, es fácil de moldear y cortar, y posee propiedades bactericidas. Su característica

color rojo le ha valido el apodo de "metal rojo". Se usa tanto en su forma pura, como en ca-

bles y tuberías, como en aleaciones con otros metales, transmitiendo sus cualidades a estas

combinaciones (Donoso, 2013).

2. Producción

En el aspecto de minería, producción se refiere a minerales metálicos que son comerciali-

zados principalmente como materia prima, en forma de concentrados ó productos refinados,

y en contados casos con cierto valor agregado (Ministerio de Desarrollo Agrario y Riego,

2024).

3. Producción de cobre

Según International Copper Association (2024), la producción de cobre primario comienza

con la extracción de minerales portadores de cobre. Hay dos formas básicas de extracción

de cobre: la minería de superficie y la subterránea. Debido a que el cobre disminuye en con-

centraciones relativamente bajas en grandes áreas, la minería de superficie, o a cielo abierto,

es el método de extracción predominante para el cobre en el mundo.

El proceso productivo del cobre abarca una serie de procedimientos destinados a obtener

cobre de alta pureza, libre de impurezas. Comienza con la exploración de terrenos en busca

de yacimientos minerales y culmina con la producción de cátodos o planchas de cobre con

una pureza del 99,99 %, que se comercializan globalmente (CodelcoEduca, 2024).

4. Series estacionaria

Hanke y Reitsch (1996) define como aquella cuyas propiedades estadísticas básicas, como

la media y la varianza, permanecen constantes en el tiempo. Se dice que una serie que no
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presenta crecimiento o declinación es estacionaria.

5. Serie estacional

Son series que incorporan componentes que capturan y representan patrones recurrentes a

lo largo del tiempo, típicamente en intervalos regulares, como días, meses, o trimestres.

Estos patrones, conocidos como estacionalidad, reflejan variaciones que se repiten con una

periodicidad fija y predecible dentro de la serie temporal (Box et al., 2016).

6. Serie heterocedastica

Hamilton (1994), define a una serie heterocedastica cuando los varianzas a lo largo del tiem-

po no son constantes.

7. Pronóstico

En estadística inferencial, el pronóstico es un proceso matemático mediante el cual se hace

una estimación del valor futuro de una o más variables (Fierro Torres et al., 2022).

8. Tiempo

Magnitud física que permite ordenar la secuencia de los sucesos, estableciendo un pasado, un

presente y un futuro, y cuya unidad en el sistema internacional es el segundo (Real Academia

Española, 2024).

9. Correlograma

Es la representación gráfica de la ACF de una serie de tiempo, es un instrumento visual muy

útil para decidir sobre la estacionariedad de dicha serie (Mauricio, 2007).
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CAPÍTULO III

METODOLOGÍA

3.1. Tipo de investigación

El tipo de la investigación es aplicada ya que aprovecha los conocimientos logrados por la inves-

tigación básica o teórica para el conocimiento y solución de problemas inmediatos y cuantitativa

porque evalúa los datos de manera científica o numérica con ayuda de la estadística (Sánchez et al.,

2018).

3.2. Alcance de la investigación

Este estudio es descriptivo debido a que especifica propiedades y características de conceptos,

correlacional porque determina en qué medida dos o más variables están relacionadas entre sí y

predictivo porque permite cierto grado de predicción a pasado o futuro (Sánchez et al., 2018).

3.3. Diseño de investigación

El presente estudio es no experimental debido a que se observan fenómenos tal como se dan en

su contexto natural, sin manipular ni intervenir en la variable, longitudinal y retrospectivo porque

se recolectan datos en diferentes puntos del tiempo (pasado), para realizar el análisis respectivo

(Hernández et al., 2018). .

3.4. Población de estudio

La población está conformada por los datos mensuales de producción total de cobre en el Perú,

reportados por el MINEM, desde Enero de 1999 hasta Agosto de 2024, sumando 308 observacio-

nes. Este conjunto se utiliza en su totalidad en la investigación, dividiéndose metodológicamente

en dos partes: de 1999 a 2023 para el modelado y entrenamiento, y de Enero a Agosto de 2024

para la validación del pronóstico.
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3.5. Técnicas e instrumentos de recolección de datos

La técnica de recolección de datos para este estudio fue secundaria, debido a que se aprovecho

la base de datos mensual de producción de cobre proporcionada por el Ministerio de Energía y

Minas.

3.6. Procesamiento de datos

Con el propósito de cumplir los objetivos del estudio, se utilizó la base de datos del Ministerio

de Energía y Minas (MINEM), correspondiente al periodo de Enero de 1999 a Agosto de 2024. La

variable analizada fue la producción total mensual de cobre (TMF). Se aplicó la metodología Box-

Jenkins para el análisis y pronóstico, utilizando el software RStudio. A continuación, se describen

los pasos seguidos:

1. Limpieza y preparación de datos: Se verificó que los datos mensuales estuvieran com-

pletos y sin valores faltantes. Luego, se transformaron en una serie temporal con frecuencia

mensual. La base fue dividida en dos subconjuntos: datos de entrenamiento (enero 1999 -

diciembre 2023) y datos de prueba (enero - agosto 2024).

2. Análisis exploratorio: Se identificaron características como tendencia, estacionalidad, y po-

sibles cambios estructurales mediante gráficos de línea y diagramas de caja . También se apli-

caron pruebas estadísticas como Mann-Kendall, Dickey-Fuller, Levene y Kruskal-Wallis.

3. Identificación del modelo: Se evaluó la necesidad de estabilizar la varianza mediante la

transformación de Box-Cox. Luego, se aplico diferenciaciones regular y estacional (ambas

de orden 1). Con los gráficos ACF y PACF, se propusieron 12 modelos SARIMA candidatos.

4. Estimación y validación: Los modelos fueron estimados mediante máxima verosimilitud.

Se evaluó la significancia de los coeficientes y se validaron los residuos utilizando las pruebas

de Ljung-Box (independencia) y Jarque-Bera (normalidad), además de gráficos Q-Q.
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5. Pronóstico y evaluación: Se generaron pronósticos para el periodo Enero–Agosto 2024. Los

valores estimados se compararon con los datos reales utilizando métricas como el RMSE y

el MAPE para evaluar el desempeño de los modelos.

Y por ultimo se procedió a interpretar los resultados.

3.7. Operacionalización de variable

Tabla 1

Operacionalización de la variable

Variables Definición Con-
ceptual

Definición ope-
racional

Indicadores Escala

Producción men-
sual de cobre.

El proceso pro-
ductivo del cobre
es la serie de
procedimientos
que se realizan
para alcanzar
un cobre de alta
concentración,
es decir, libre
de la mayor
cantidad de
impurezas.
CodelcoEduca,
2024

Cantidad total de
cobre extraído
en Perú durante
un período
especifico (men-
sual), medidos
en toneladas
métricas.

Producción men-
sual de cobre.

Razón
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CAPÍTULO IV

RESULTADOS

4.1. Exploración de la Producción mensual del cobre en el Perú.

En concordancia con la metodología se divide la serie en dos partes: data de entrenamiento

(1999-2023) y la data de prueba (Enero-Agosto 2024), para evaluar la capacidad de pronóstico del

mejor modelo.

Podemos apreciar en la Figura 17 la serie original de la producción total mensual de cobre en Perú

(1999-2024), donde la linea vertical separa la serie en dos grupos: la data de entrenamiento y la

data de prueba. Podemos apreciar que la serie tiene tendencia creciente; se ve un incremento alto

de producción entre los meses del año 2015 debido a que este año iniciaron sus operaciones la

minera Constancia y el mega proyecto de Toromocho. Para inicios del año 2020, se observa una

disminución drástica de la producción, posiblemente por las medidas propuestas durante la pan-

demia del COVID-19. En este mismo año se observa que en los próximos meses va en aumento,

indicando una recuperación en la producción de cobre en Perú.

Figura 17

Serie Original de la producción total mensual del cobre en Perú 1999-2024



53

A continuación nos centraremos a analizar el análisis explicito con la data de entrenamiento.

En la Tabla 2 se muestran los estadísticos descriptivos de la producción total mensual del cobre

en Perú durante el periodo de 1999 − 2023, se obtiene una tasa de crecimiento mensual promedio

de 1, 3 % TMF de producción total mensual de cobre con un desvío típico de 58 309.85 TMF. La

producción total mensual mínima de cobre es de 34 553 TMF y la máxima alcanza 255 143 TMF.

Tabla 2

Estadísticos descriptivos de la producción total de cobre en Perú (1999-2023)
Estadístico Valor
Valor mínimo 34553 TMF
Primer cuartil (Q1) 83751 TMF
Mediana 108898 TMF
Tercer cuartil (Q3) 186436 TMF
Valor máximo 255143 TMF
Tasa mensual promedio 1,3 % TMF
Desviación estándar 58309,85 TMF

Figura 18

Diagrama de cajas de la Producción total mensual de cobre en Perú (1999-2023)

En la Figura 18, se visualiza el diagrama de cajas de la producción total mensual de cobre en

Perú entre 1999 y 2023 presenta una asimetría positiva (cola más larga hacia valores altos). La
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mediana se ubica cerca de los 110 000 TMF, mientras que el rango intercuartílico va de 83 751 a

186 436 TMF. No se observan valores atípicos extremos dentro del período analizado.

Figura 19

Diagrama de cajas de la producción total de cobre en Perú (1999-2023) mensual.

Por otro lado en la Figura 19 se visualiza las cajas con respecto a cada mes y se puede ver que

no existen datos atípicos, el mes de Febrero tiene una mediana de producción de cobre más baja

con respecto a los demás meses, las cajas tiene asimetría positiva, lo que significa que existe una

cola más larga en la parte superior de la caja (lado derecho), la mediana de los 12 meses oscilan

alrededor de 100 000 TMF. de producción de cobre. La producción de cobre en cada mes puede

variar debido a las condiciones climáticas,a mantenimientos programados, etc.

4.2. Identificación de las características de la producción total mensual de cobre Perú (1999-

2023).

Como se observa en la Tabla 3, los resultados indican que la serie presenta una tendencia signifi-

cativa, confirmada por la prueba de Mann-Kendall (p <0.05), lo que sugiere un cambio sistemático
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en la media a lo largo del tiempo. La prueba de Kruskal-Wallis muestra diferencias significativas

entre años (p <0.05), pero no entre meses (p = 0.3872), evidenciando que las variaciones rele-

vantes ocurren a nivel interanual y no responden a un patrón estacional dentro del año. Además,

la prueba Dickey-Fuller no rechaza la hipótesis de no estacionariedad (p = 0.1694), indicando la

necesidad de aplicar diferencias para estabilizar la media. En cuanto a la variabilidad, la prueba de

Levene detecta heterocedasticidad significativa entre años (p <0.05), mientras que a nivel mensual

la varianza se mantiene homogénea (p = 0.9796).

Tabla 3

Pruebas de características de la serie de producción de cobre en el Perú (1999-2023)
Característica Prueba Hipótesis Nula Estadístico P-valor Decisión
Tendencia Mann-Kendall No tiene tendencia 20,72 2,2×10−16 Rechazar H0

Estacionalidad Kruskal-Wallis No estacional
- Anual 277,65 2,2×10−16 Rechazar H0

- Mensual 11,693 0,3872 No Rechazar H0

Estacionariedad Dickey-Fuller No estacionario −2,9653 0,1694 No Rechazar H0

Heterocedastica Levene Homocedastica
- Anual 5,4682 3,2×10−13 Rechazar H0

- Mensual 0,3268 0.9796 No Rechazar H0

La Figura 20, nos muestra la descomposición de la serie de producción de cobre (1999-2023)

y sus componentes de tendencia, estacionalidad y aleatoriedad. Además, se puede observar que

presenta tendencia creciente, tiene comportamiento estacional cada 12 meses durante el periodo

de estudio.
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Figura 20

Descomposición de la serie de producción de cobre Perú (1999-2023).

Los correlogramas de la Figura 21, muestran que (b) tiene un decaimiento exponencial lento lo

que asume que existe componentes de media móvil en la serie, de igual forma (c) muestra lags

significativos lo que asume existencia de componentes autoregresivo en la serie, asimismo por las

gráficas de los correlogramas y la prueba de Dickey Fuller mostrada en la Tabla 3 concluimos que

la serie no es estacionario por lo cual debemos generar una transformación o una diferenciación

regular.
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Figura 21

Correlogramas de la producción total de cobre Perú (1999-2023)

(a) Serie de la producción total mensual de cobre (1999-2023). (b) Función de autocorrelacion simple de
la serie (a). (c) Función de autocorrelacion parcial de la serie(a).

Los resultados presentados en la Tabla 3, justifican la necesidad de aplicar transformaciones a la

serie para estabilizar la varianza y alcanzar la estacionariedad, condiciones previas para un análisis

adecuado de la estacionalidad y el modelado predictivo. En particular, se aplicó la transformación

logarítmica para controlar la heterocedasticidad detectada, seguida de la primera diferencia para

eliminar la tendencia y estabilizar la media. A continuación, se analiza la serie resultante.
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Figura 22

Serie logarítmica diferenciada (d=1) y correlogramas de la producción total mensual de cobre
Perú (1999-2023)

(a) Serie logarítmica diferenciada d=1.(b) Función de autocorrelacion simple.(c) Función de autocorrela-
cion parcial.

La Figura 22 muestra: (a) el comportamiento de la serie diferenciada, la cual ya no presenta una

tendencia visible y oscila alrededor de una media constante cercana a cero, lo que sugiere que la

serie podría ser estacionaria. En (b), el correlograma revela la presencia de rezagos significativos

en los lags 12, 24, 36, . . ., lo que indica un periodo estacional con frecuencia s = 12.

Tabla 4

Prueba estadística de tendencia y estacionariedad de la serie logarítmica diferenciada
Prueba estadística Hipótesis nula Estadístico P-valor Decisión
Mann Kendal No tiene tendencia 0,088 0,93 No Rechazar H0

Dickey-Fuller No estacionaria −8,5271 0,01 Rechazar H0

La Tabla 4 muestra los resultados de las pruebas de estacionariedad aplicadas a la serie logarít-
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mica diferenciada. La prueba de Mann-Kendall no detecta tendencia significativa (p-valor = 0.93),

mientras que la prueba de Dickey-Fuller rechaza la hipótesis de no estacionariedad (p-valor =

0.01), indicando que la serie es estacionaria tras la primera diferenciación (d = 1). Dado que se

observó un periodo estacional (s = 12) en la Figura 22, se procede a aplicar una diferenciación

estacional adicional (D = 1).

Figura 23

Serie logarítmica diferenciada (D=1) estacional de la producción de cobre Perú (1999-2023)

(a) Serie estacionaria y no estacional. (b) Función de autocorrelacion simple de la serie estacionaria no
estacional.(c) Función de autocorrelacion parcial de la serie serie estacionaria no estacional.

La Figura 23 muestra la serie transformada, la cual es estacionaria tras aplicar una diferencia-

ción regular (d = 1) y estacional (D = 1). El correlograma sugiere posibles órdenes p = 0, 1, 2;

q = 0, 1; P = 0, 1, 2; y Q = 1, 2. Por ello, se plantearán doce modelos SARIMA para evaluar sus

parámetros y seleccionar el más adecuado.
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4.3. Identificación de modelos de series temporales para la serie de producción mensual de

cobre en Perú (1999-2023).

Las estimaciones de los parámetros en la Tabla 5 corresponden al ajuste de modelos SARIMA

sobre la serie transformada mediante logaritmo natural y diferenciada para estabilizar la varianza y

eliminar la tendencia. Por tanto, el modelo fue ajustado sobre ln(Xt) diferenciado, no sobre la serie

original.

Tabla 5

Modelos propuestos para la serie logarítmica diferenciada (d=1, D=1, s=12)

Modelo Parámetros Estimación P-valor Métricas

SARIMA1 (0,1,0)(1,1,1)12

Φ1 −0,0394 0,5563 AIC = −529,63

BIC = −518,65Θ1 −0,9256 0

SARIMA2 (0,1,0)(2,1,0)12

Φ1 −0,6629 0 AIC = −467,32

BIC = −456,34Φ2 −0,3504 0

SARIMA3 (1,1,1)(0,1,2)12

ϕ1 0,0253 0,8691

θ1 −0,4416 0,0016 AIC = −570,69

BIC = −552,39Θ1 −0,9093 0

Θ2 −0,0178 0,7850

SARIMA4 (1,1,1)(1,1,1)12

ϕ1 0,0253 0,8691

θ1 −0,4417 0,0016 AIC = −570,69

BIC = −552,39Φ1 0,0191 0,7860

Θ1 −0,9286 0

SARIMA5 (1,1,2)(0,1,1)12

ϕ1 −0,9269 0

AIC = −572,81

BIC = −554,51

θ1 0,5298 0

θ2 −0,4196 0

Θ1 −0,9075 0
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Modelo Parámetros Estimación P-valor Métricas

SARIMA6 (1,1,2)(0,1,2)12

ϕ1 −0,9255 0

AIC = −570,93

BIC = −548,98

θ1 0,5272 0

θ2 −0,4212 0

Θ1 −0,8931 0

Θ2 −0,0224 0,7266

SARIMA7 (1,1,2)(1,1,1)12

ϕ1 −0,9258 0

AIC = −570,93

BIC = −548,98

θ1 0,5274 0

θ2 −0,4212 0

Φ1 0,0244 0,728

Θ1 −0,9177 0

SARIMA8 (2,1,0)(0,1,1)12

ϕ1 −0,4058 0
AIC = −571,94

BIC = −557,31
ϕ2 −0,1581 0,0071

Θ1 −0,9151 0

SARIMA9 (2,1,0)(1,1,1)12

ϕ1 −0,4083 0

AIC = −570,02

BIC = −551,73

ϕ2 −0,1578 0,0072

Φ1 0,0197 0,7795

Θ1 −0,9230 0

SARIMA10 (2,1,0)(2,1,0)12

ϕ1 −0,4523 0

AIC = −517,56

BIC = −499,27

ϕ2 −0,1505 0,0108

Φ1 −0,6344 0

Φ2 −0,3254 0

SARIMA11 (2,1,1)(0,1,1)12

ϕ1 0,1172 0,8094

AIC = −570,65

BIC = −552,35

ϕ2 0,0392 0,8579

θ1 −0,5311 0,2677

Θ1 −0,9209 0
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Modelo Parámetros Estimación P-valor Métricas

SARIMA12 (2,1,2)(0,1,1)12

ϕ1 −0,9722 0

AIC = −570,91

BIC = −548,95

ϕ2 −0,0469 0,7623

θ1 0,5689 0,0002

θ2 −0,3799 0,0090

Θ1 −0,9044 0

A continuación, se nombran los modelos que cumplieron con la significancia de los coeficientes

de estimación con sus respectivos parámetros:

SARIMA2 (0,1,0)(2,1,0)12

SARIMA5 (1,1,2)(0,1,1)12

SARIMA8 (2,1,0)(0,1,1)12

SARIMA10 (2,1,0)(2,1,0)12

Ahora verificaremos si los residuos de los modelos elegidos cumplen con la prueba de raíz unitaria

y si siguen una distribución normal.
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Verificación del modelo SARIMA2 (0,1,0)(2,1,0)12

En la Figura 24, podemos observar en el ACF y PACF que los residuos del modelo no son ruido

blanco tienen lags significativos lo que podría indicar que no es un buen modelo.

Figura 24

Correlogramas de los residuales del modelo SARIMA2 (0,1,0)(2,1,0)12

Tabla 6

Pruebas de validación para los residuos del modelo SARIMA2 (0,1,0)(2,1,0)12

Prueba estadística Hipótesis nula Estadístico P-valor Decisión
Ljung-Box Es ruido blanco 69,517 3,943 × 10−10 Rechazar H0

Jarque-Bera Normal 203,83 2,2 × 10−16 Rechazar H0

En la Tabla 6, se confirma que el modelo no es adecuado, ya que los p-valores de la prueba

de Ljung-Box para varios lags son menores a 0,05, indicando autocorrelación significativa en los

residuos. En la Figura 25, esto se observa claramente, ya que los p-valores se encuentran por debajo

de la banda de referencia, y los residuos no siguen una distribución normal al no alinearse con la

recta en el gráfico Q-Q.
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Figura 25

Ljung-Box y Gráfico Q-Q de los residuales del modelo SARIMA2 (0,1,0)(2,1,0)12

Verificación del modelo SARIMA5 (1,1,2)(0,1,1)12

En la Figura 26, podemos observar algunos lags ligeramente sobresalientes, la mayoría están

dentro de las bandas de confianza en el correlograma ACF, lo cual no indica claramente si el

modelo es bueno.
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Figura 26

Correlogramas de los residuales del modelo SARIMA5 (1,1,2)(0,1,1)12

Tabla 7

Pruebas de validación para los residuos del modelo SARIMA5(1,1,2)(0,1,1)12

Prueba estadística Hipótesis nula Estadístico P-valor Decisión
Ljung-Box Es ruido blanco 12,6 0,3987 No Rechazar H0

Jarque-Bera Normal 279,36 2,2 × 10−16 Rechazar H0

En la Tabla 7, se confirma que el modelo es adecuado, ya que los p-valores de la prueba de Ljung-

Box para varios lags son mayores a 0,05, indicando autocorrelación significativa en los residuos.

En la Figura 27, esto se observa claramente, ya que los p-valores se encuentran por encima de la

banda de referencia, y los residuos no siguen una distribución normal al no alinearse con la recta

en el gráfico Q-Q.
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Figura 27

Ljung-Box y Gráfico Q-Q de los residuales del modelo SARIMA5 (1,1,2)(0,1,1)12

Verificación del modelo SARIMA8 (2,1,0)(0,1,1)12

En la Figura 28, podemos observar que los ACF de los residuos del modelo tienen lags signifi-

cativos lo que podría indicar que no se comportan como ruido blanco.
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Figura 28

Correlogramas de los residuales del modelo SARIMA8 (2,1,0)(0,1,1)12

La Tabla 8, nos confirma que el modelo es adecuado, ya que los p-valores de la prueba de Ljung-

Box para varios lags es mayor a 0,05, indicando autocorrelación significativa en los residuos. En la

Figura 29, esto se observa claramente, ya que los p-valores se encuentran por encima de la banda

de referencia, y los residuos no siguen una distribución normal al no alinearse con la recta en el

gráfico Q-Q.

Tabla 8

Pruebas de validación para los residuos del modelo SARIMA8 (2,1,0)(0,1,1)12

Prueba estadística Hipótesis nula Estadístico P-valor Decisión
Ljung-Box Es ruido blanco 12,926 0,3744 No Rechazar H0

Jarque-Bera Normal 287,19 2,2 × 10−16 Rechazar H0
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Figura 29

Ljung-Box y Gráfico Q-Q de los residuales del modelo SARIMA8 (2,1,0)(0,1,1)12

Verificación del modelo SARIMA10 (2,1,0)(2,1,0)12

En la Figura 30, podemos observar que los ACF de los residuos del modelo tienen lags signifi-

cativos lo que podría indicar que no se comportan como ruido blanco.
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Figura 30

Correlogramas de los residuales del modelo SARIMA10 (2,1,0)(2,1,0)12

La Tabla 9, confirma que el modelo es adecuado, ya que los p-valores de la prueba de Ljung-

Box para varios lags es mayor a 0,05, indicando autocorrelación significativa en los residuos. En la

Figura 31, esto se observa claramente, ya que los p-valores se encuentran por encima de la banda

de referencia, y los residuos no siguen una distribución normal al no alinearse con la recta en el

gráfico Q-Q.

Tabla 9

Pruebas de validación para los residuos del modelo SARIMA10 (2,1,0)(2,1,0)12

Prueba estadística Hipótesis nula Estadístico P-valor Decisión
Ljung-Box Es ruido blanco 12,248 0,4259 No Rechazar H0

Jarque-Bera Normal 193,31 2,2 × 10−16 Rechazar H0
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Figura 31

Ljung-Box y Gráfico Q-Q de los residuales del modelo SARIMA10 (2,1,0)(2,1,0)12

4.4. Validación del modelo de la producción mensual de cobre para el año 2024

De los modelos SARIMA propuestos, se puede observar que el modelo 5,

SARIMA(1,1,2)(0,1,1)12, modelo 8, SARIMA(2,1,0)(0,1,1)12 y el modelo 10,

SARIMA(2,1,0)(2,1,0)12, cumplen con los criterios establecidos. En particular, sus parámetros

resultaron significativos y sus residuos se comportan como un proceso independiente, lo que

indica que estos modelos son adecuados para capturar la estructura temporal de la serie analizada.
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Tabla 10

Valores pronosticados para la producción total mensual de cobre para el año 2024.

Modelos Real SARIMA5 SARIMA8 SARIMA10

Enero 205377 222175 223486 221571

Febrero 216752 207831 208273 204424

Marzo 219011 228539 230049 221886

Abril 203905 216596 216837 214671

Mayo 231509 231736 233334 229865

Junio 213578 243450 243302 236289

Julio 222389 244678 245981 241088

Agosto 246568 252480 252810 243657

En la Tabla 10, se puede ver que el modelo SARIMA10 parece ser el modelo mas adecuado para

predecir la producción de cobre, ya que proporciona valores mas cercanos a los datos reales.

Figura 32

Valores pronosticados del modelo 5, 12 de la producción mensual de cobre en Perú, periodo Enero
2024 a Agosto 2024.
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Figura 33

Valores pronosticados del modelo 8, SARIMA(2,1,0)(0,1,1)12 de la producción mensual de cobre
en Perú, periodo Enero 2024 a Agosto 2024.

Figura 34

Valores pronosticados del modelo 10, SARIMA(2,1,0)(2,1,)12 de la producción mensual de cobre
en Perú, periodo Enero 2024 a Agosto 2024.
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Validación del Pronóstico

A continuación se evalúa el mejor modelo de pronostico con el menor error.

Tabla 11

Comparación de la evaluación de los errores de pronósticos de los modelos SARIMA propuestos.

Modelos RMSE MAE MAPE SSE

SARIMA5 15959.87 13279.75 6.17 % 203774

SARIMA8 16474.58 13992.62 6.49 % 217129

SARIMA10 13299.51 11016 5.14 % 141501

La Tabla 11, presenta las métricas de validación de los modelos SARIMA5, SARIMA8 y

SARIMA10 para el pronóstico de la producción de cobre en 2024. Se observa que SARIMA10

tiene los menores valores en RMSE, MAE, MAPE y SSE, lo que indica una mayor precisión en

sus estimaciones. A comparación, SARIMA5 y SARIMA8 muestran errores más altos, lo que

indica un menor desempeño en la predicción.

Desarrollo de modelo 10, SARIMA(2,1,0)(2,1,0)12

(1 − Φ1B12 − Φ2B24)(1 − ϕ1B − ϕ2B2)(1 − B)(1 − B12)Xt = at

(1 − Φ1B12 − Φ2B24)(1 − ϕ1B − ϕ2B2)(Xt − Xt−1 − Xt−12 + Xt−13) = at

Aplicando componente autoregresivo regular

Xt − (1 + ϕ1)Xt−1 + (ϕ1 − ϕ2)Xt−2 + ϕ2Xt−3 − (1 + ϕ1)Xt−12 + (1 + ϕ1)Xt−13 + (ϕ2 − ϕ1)Xt−14 − ϕ2Xt−15

Aplicando componente autoregresivo estacional
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Xt − (1 + ϕ1)Xt−1 + (ϕ1 − ϕ2)Xt−2 + ϕ2Xt−3 − (1 + Φ1)Xt−12 + (1 + ϕ1)(1 + Φ1)Xt−13

−(ϕ1 − ϕ2)(1 + Φ1)Xt−14 − ϕ2(1 + Φ1)Xt−15 + (Φ1 − Φ2)Xt−24 − (1 + ϕ1)(Φ1 − Φ2)Xt−25

+(ϕ1 − ϕ2)(Φ1 − Φ2)Xt−26 + ϕ2(Φ1 − Φ2)Xt−27 + Φ2Xt−36 − Φ2(1 + ϕ1)Xt−37

+Φ2(ϕ1 − ϕ2)Xt−38 + ϕ2Xt−39

Ecuación final.

Xt = (1 + ϕ1)Xt−1 − (ϕ1 − ϕ2)Xt−2 − ϕ2Xt−3 + (1 + Φ1)Xt−12 − (1 + ϕ1)(1 + Φ1)Xt−13

+ (ϕ1 − ϕ2)(1 + Φ1)Xt−14 + ϕ2(1 + Φ1)Xt−15 − (Φ1 − Φ2)Xt−24 + (1 + ϕ1)(Φ1 − Φ2)Xt−25

− (ϕ1 − ϕ2)(Φ1 − Φ2)Xt−26 − ϕ2(Φ1 − Φ2)Xt−27 − Φ2Xt−36 + Φ2(1 + ϕ1)Xt−37

− Φ2(ϕ1 − ϕ2)Xt−38 − ϕ2Xt−39 + at

Reemplazando los valores de: ϕ1 = −0,4523, ϕ2 = −0,1505,Φ1 = −0,6344,Φ2 = −0,3254

Xt = 0,5477Xt−1 + 0,3018Xt−2 + 0,1505Xt−3 + 0,3656Xt−12 − 0,2003Xt−13 + 0,1103Xt−14

+ 0,0550Xt−15 + 0,3090Xt−24 − 0,1691Xt−25 + 0,0933Xt−26 + 0,0465Xt−27 − 0,3254Xt−36

+ 0,1783Xt−37 − 0,0982Xt−38 + 0,1505Xt−39 + at

(9)

4.5. Pronóstico de la producción mensual de cobre en Perú (Septiembre 2024 - Agosto 2025)

Una vez validado nuestro modelo, siendo el SARIMA(2,1,0)(2,1,0)12 el que mejor capta el com-

portamiento de la serie de la producción mensual de cobre en Perú y haber sido el que mejor

validación muestra en función a la data de prueba. Procedemos a realizar el pronóstico para la

producción de cobre en Perú desde Septiembre 2024 a Agosto de 2025 (Tabla 12).
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Tabla 12

Pronóstico de la producción de cobre según el modelo SARIMA(2,1,0)(2,1,0)12

Año Meses Pronóstico
2024 SEPTIEMBRE 253076
2024 OCTUBRE 261967
2024 NOVIEMBRE 256625
2024 DICIEMBRE 271469
2025 ENERO 238838
2025 FEBRERO 215944
2025 MARZO 235927
2025 ABRIL 228864
2025 MAYO 240581
2025 JUNIO 255861
2025 JULIO 252336
2025 AGOSTO 255989
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DISCUSIÓN

De acuerdo a la investigación de Mutele y Carranza, titulada “Análisis estadístico de la produc-

ción de oro en Sudáfrica utilizando técnicas de modelado ARIMA, VAR y ARNN: extrapolación de

la producción futura de oro, agotamiento de recursos y reservas e implicancia en la exploración

de oro de Sudáfrica”, analizaron datos anuales y llegaron a la conclusión que el modelo ARIMA

(1,1,0) resulto ser el mas eficaz para la producción futura de oro, en el estudio no se menciona

explícitamente un análisis de la significancia de los valores estimados de los parámetros en los

modelos ARIMA utilizados, los cuales en comparación con el presente estudio donde si se realizo

este análisis para poder elegir el modelo adecuado.

La investigación realizada por Contreras Cerpa utilizó modelos de redes neuronales recurrentes

(RNN), GRU y LSTM para prever la producción de cobre, incorporando variables externas como

el consumo de agua y energía. En este estudio el modelo LSTM demostró ser el más preciso, lo

que sugiere que técnicas de aprendizaje profundo pueden ofrecer una mejor predicción de varia-

bles complejas en la minería. En el presente estudio se utilizaron modelos SARIMA, pero aplicar

modelos de redes neuronales podría ser una extensión valiosa para mejorar la precisión de las

proyecciones en el futuro.

En el trabajo realizado por Aycaya-Paco et al. desarrollaron una herramienta en R-studio hacien-

do uso de los modelos ARIMA y el modelo de espacios de estados para pronosticar la extracción

del cobre en el Perú, dicho estudio al igual que el nuestro validan el modelo usando el análisis

residual con la prueba de Ljung Box pero analizan la normalidad con la prueba de Shapiro Wilk

distinta a la que usamos en nuestro estudio que fue la de Jarque Bera, donde se pudo observar que

siguen una distribución distinta a la Normal.

El trabajo titulado “Pronóstico del precio mensual de Cobre con Modelos de Series de Tiempo”

realizado por Cotrina Teatino et al. pronostico el precio mensual del cobre mediante cinco modelos

de series temporales: promedio móvil, promedio móvil ponderado, suavizado exponencial simple,

suavizado exponencial de Holt y suavizado exponencial de Winters, resultando con menor error

porcentual absoluto medio (MAPE) el modelo de suavización exponencial simple. Dicho estudio
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empleó una metodología distinta a la utilizada en el presente trabajo, sin embargo ambos coinciden

en la importancia de seleccionar el modelo óptimo en función de métricas de precisión, como el

MAPE, lo cual minimiza el error del pronóstico, asegurando una mejor capacidad predictiva.

Por otro lado, en el trabajo realizado por Chafloque Céspedes et al., titulado “Modelación de

las dinámicas, estimación y análisis de las exportaciones mineras: caso peruano”, se compararon

los métodos predictivos de ARIMA y SARIMA para la estimación de las exportaciones mine-

ras, siendo entre ellas el modelo SARIMA el que ofrecía mejor desempeño en la predicción. En

nuestro estudio, dado que la serie de producción de cobre presentaba estacionalidad, se exploraron

exclusivamente diferentes modelos SARIMA, sin comparar con el modelo ARIMA, de manera

que capture de manera óptima la dinámica temporal de la serie. En ambos estudios resaltan la

importancia de los pronósticos en el sector minero.

Como se mencionó en el marco teórico, la no normalidad de los residuos puede afectar la preci-

sión de los intervalos de pronóstico. En este estudio, tanto la prueba de Jarque-Bera como los gráfi-

cos Q-Q mostraron que los residuos de los modelos ajustados no siguen una distribución normal. Si

bien esto no invalida por completo los resultados obtenidos, sí limita la capacidad del modelo para

generar predicciones con un grado de confianza adecuado. En ese sentido, los modelos utilizados

podrían mejorarse incorporando un análisis más detallado de la variabilidad en los errores, a través

de enfoques como los modelos ARCH o GARCH.
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CONCLUSIONES

1. Se identificaron las características de la serie original de la producción total de cobre en

Perú en el periodo de 1999-2023, la cual presento tendencia creciente, no fue estacionaria,

presento estacionalidad y heterocedasticidad cada 12 meses, por ello aplicamos transforma-

ciones logarítmicas a la serie original con una diferencia regular (d = 1) y una diferencia

estacional (D = 1) en un período de s = 12 meses, donde se logró alcanzar estacionariedad,

como confirmó la prueba de Dickey-Fuller.

2. Se analizaron doce modelos SARIMA distintos, de los cuales solo tres supera-

ron la prueba de Ljung-Box: SARIMA(0,1,0)(2,1,0)12 ,SARIMA(1,1,2)(0,1,1)12 y

SARIMA(2,1,0)(2,1,0)12.

3. Se evaluaron las métricas de pronóstico para estos modelos, determinándose que el modelo

SARIMA(2,1,0)(2,1,0)12 presentó el mejor desempeño, con un MAPE de 5,14 % consolidán-

dose como la mejor opción según la metodología de Box-Jenkins. La ecuación (9) describe

este modelo.
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RECOMENDACIONES

Se recomienda, para futuros estudios, explorar la combinación de modelos SARIMA con

componentes ARCH/GARCH, como lo propuesto en Oktaviani et al. (2021), con el objetivo

de mejorar la captura de la heterocedasticidad en la serie de producción de cobre. Este tipo

de modelos es especialmente útil cuando se detecta variabilidad condicional en los residuos,

situación común en series económicas

Además, se podría llevar un estudio a futuro sobre el seguimiento continuo de la producción

de cobre en el país. Haciendo uso de modelos de series temporales junto con técnicas de

estadística espacial que podrían ayudar a identificar patrones y cambios significativos a lo

largo del tiempo.

Por último, sería muy útil aplicar modelos de series temporales multivariadas, ya que per-

mitirían analizar la producción de cobre junto con otros factores clave, como los precios

internacionales, la demanda del mercado, el clima y las políticas económicas. Esto daría una

visión más completa de cómo interactúan estas variables y ayudaría a tomar decisiones más

informadas.
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Anexo A: Matriz de consistencia

Formulación del problema Objetivos Variables Metodología de investigación

1.- Problema General:
¿Cuál es el modelo de series de
tiempo que mejor se ajusta para
pronosticar la producción men-
sual de cobre en Perú con datos
históricos (1999-2023) y vali-
dar con datos de Enero a Agos-
to del 2024?
2.- Problemas Específicos:
2.1.- ¿Cuáles son los caracte-
rísticas presentes en la serie de
producción mensual de cobre
en Perú (1999-2023)?
2.2.- ¿Cuales son los modelos
de series temporales que tie-
nen mejor ajuste para la serie
de producción mensual de co-
bre en Perú desde 1999 a Di-
ciembre del 2023?
2.3.- ¿Cuál es el modelo que
tiene mejor capacidad de vali-
dación de la producción men-
sual de cobre para los meses
del ultimo año (Enero-Agosto
2024)?

1.- Objetivo General
Determinar el modelo de series
de tiempo que mejor se ajusta
para pronosticar la producción
mensual de cobre en Perú con
datos históricos (1999-2023) y
validación con datos de Enero
y Agosto de 2024.
2.- Objetivos Específicos:
2.1. Identificar los característi-
cas presentes en la serie de pro-
ducción mensual de cobre en
Perú (1999-2023).
2.2. Analizar los modelos de
series temporales que ofrecen
el mejor ajuste para la serie de
producción mensual de cobre
en Perú desde 1999 a Diciem-
bre del 2023.
2.3. Determinar el modelo con
la mejor capacidad de valida-
ción de la producción mensual
de cobre para los meses del úl-
timo año (Enero-Agosto 2024).

Producción mensual de cobre
(toneladas métricas finas).

Tipo de Investigación:
El tipo de investigación es apli-
cada y cuantitativa.
Alcance de la investigación:
El estudio tiene alcance des-
criptivo, correlacional y predic-
tivo.
Diseño de investigación:
El presente estudio es no ex-
perimental, longitudinal retros-
pectivo.
Población:
La producción total mensual de
cobre de las mineras del Perú
desde Enero de 1999 a Agos-
to de 2024, constituido por
308 observaviones según regis-
tro del MINEM, que contiene la
data completa con relación a la
serie de interés.
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Anexo B: Solicitud de la data solicitada al Ministerio de energía y minas
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Anexo C: Base de datos de la producción total mensual de cobre en Perú (1999-2024)

Para una visualización de la base de datos utilizada en el presente estudio y reco-

pilada del Ministerio de Energía y Minas (MINEN) puede dirigirse al siguiente enlace:

(https://github.com/alexacondori/PRODUCCIONCOBRE)

https://github.com/alexacondori/PRODUCCION_COBRE
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