UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS

EVALUACIÓN DEL COMPORTAMIENTO MECÁNICO DE UNA ESTRUCTURA DE PAVIMENTO REFORZADO CON GEOMALLAS, CUSCO-2024

PRESENTADO POR:

Br. ROSMERY CONDORI MAMANI

Br. FABRICIO FRANCISCO MIRANO SUCÑIER

PARA OPTAR AL TÍTULO PROFESIONAL DE INGENIERO CIVIL

ASESOR:

Dr. Ing. ADAN WILBERT SOLORZANO MONTESINOS

CUSCO-PERÚ

2025

Universidad Nacional de San Antonio Abad del Cusco

(Aprobado por Resolución Nro.CU-321-2025-UNSAAC)

	, el Asesor <u>Dr. Ing. Adan Wilbert Solorzano L</u>	
trabajo de inves	tigación/tesistitulada:E. ນ. ລໄຊລ cion del comportamiento	ecánico de
una estruct	ura de pavimento reforzado con geomallas Cusco-	2024
5	Rosmery Condori Mamani DNIN°	
presentado por:	Fabricio Francisco Mirano Suchier DNINº:	724299 <i>75</i>
Para optar el títu	ılo Profesional/Grado Académico de المعصرون المرابية المرابية المرابية المرابية المرابية المرابية المرابية	
Informo que el t	trabajo de investigación ha sido sometido a revisión por2 v	veces, mediante el
Software de Sin	nilitud, conforme al Art. 6° del <i>Reglamento para Uso del Siste</i>	ema Detección de
Similitud en la U	INSAAC y de la evaluación de originalidad se tiene un porcentaje d	le <mark>4</mark> %.
Evaluación y ac	ciones del reporte de coincidencia para trabajos de investigación	n conducentes a
	grado académico o título profesional, tesis	
Porcentaje	Evaluación y Acciones	Marque con una (X)
		(//)
Del 1 al 10%	No sobrepasa el porcentaje aceptado de similitud.	×
Del 1 al 10% Del 11 al 30 %	No sobrepasa el porcentaje aceptado de similitud. Devolver al usuario para las subsanaciones.	
	Devolver al usuario para las subsanaciones. El responsable de la revisión del documento emite un informe al inmediato	
Del 11 al 30 %	Devolver al usuario para las subsanaciones.	
Del 11 al 30 %	Devolver al usuario para las subsanaciones. El responsable de la revisión del documento emite un informe al inmediato jerárquico, conforme al reglamento, quien a su vez eleva el informe al Vicerrectorado de Investigación para que tome las acciones correspondientes; Sin perjuicio de las sanciones administrativas que	
Del 11 al 30 %	Devolver al usuario para las subsanaciones. El responsable de la revisión del documento emite un informe al inmediato jerárquico, conforme al reglamento, quien a su vez eleva el informe al Vicerrectorado de Investigación para que tome las acciones	
Del 11 al 30 % Mayor a 31%	Devolver al usuario para las subsanaciones. El responsable de la revisión del documento emite un informe al inmediato jerárquico, conforme al reglamento, quien a su vez eleva el informe al Vicerrectorado de Investigación para que tome las acciones correspondientes; Sin perjuicio de las sanciones administrativas que correspondan de acuerdo a Ley.	X
Del 11 al 30 % Mayor a 31% Por tanto, en mi	Devolver al usuario para las subsanaciones. El responsable de la revisión del documento emite un informe al inmediato jerárquico, conforme al reglamento, quien a su vez eleva el informe al Vicerrectorado de Investigación para que tome las acciones correspondientes; Sin perjuicio de las sanciones administrativas que	X
Del 11 al 30 % Mayor a 31% Por tanto, en mi	Devolver al usuario para las subsanaciones. El responsable de la revisión del documento emite un informe al inmediato jerárquico, conforme al reglamento, quien a su vez eleva el informe al Vicerrectorado de Investigación para que tome las acciones correspondientes; Sin perjuicio de las sanciones administrativas que correspondan de acuerdo a Ley. condición de Asesor, firmo el presente informe en señal de conformas del reporte del Sistema de Detección de Similitud.	rmidad y adjunto
Del 11 al 30 % Mayor a 31% Por tanto, en mi	Devolver al usuario para las subsanaciones. El responsable de la revisión del documento emite un informe al inmediato jerárquico, conforme al reglamento, quien a su vez eleva el informe al Vicerrectorado de Investigación para que tome las acciones correspondientes; Sin perjuicio de las sanciones administrativas que correspondan de acuerdo a Ley. condición de Asesor, firmo el presente informe en señal de conformativa de confo	rmidad y adjunto
Del 11 al 30 % Mayor a 31% Por tanto, en mi	Devolver al usuario para las subsanaciones. El responsable de la revisión del documento emite un informe al inmediato jerárquico, conforme al reglamento, quien a su vez eleva el informe al Vicerrectorado de Investigación para que tome las acciones correspondientes; Sin perjuicio de las sanciones administrativas que correspondan de acuerdo a Ley. condición de Asesor, firmo el presente informe en señal de conformas del reporte del Sistema de Detección de Similitud. Cusco,	rmidad y adjunto
Del 11 al 30 % Mayor a 31% Por tanto, en mi	Devolver al usuario para las subsanaciones. El responsable de la revisión del documento emite un informe al inmediato jerárquico, conforme al reglamento, quien a su vez eleva el informe al Vicerrectorado de Investigación para que tome las acciones correspondientes; Sin perjuicio de las sanciones administrativas que correspondan de acuerdo a Ley. condición de Asesor, firmo el presente informe en señal de conformas del reporte del Sistema de Detección de Similitud. Cusco,	rmidad y adjunto
Del 11 al 30 % Mayor a 31% Por tanto, en mi	Devolver al usuario para las subsanaciones. El responsable de la revisión del documento emite un informe al inmediato jerárquico, conforme al reglamento, quien a su vez eleva el informe al Vicerrectorado de Investigación para que tome las acciones correspondientes; Sin perjuicio de las sanciones administrativas que correspondan de acuerdo a Ley. condición de Asesor, firmo el presente informe en señal de conformas del reporte del Sistema de Detección de Similitud. Cusco,	rmidad y adjunto

Se adjunta:

- 1. Reporte generado por el Sistema Antiplagio.
- 2. Enlace del Reporte Generado por el Sistema de Detección de Similitud: oid: ... 2325 9:500 25 8209

ORCID del Asesor. 0000 - 000 1- 707 2- 616 X

ROSMERY Y FABRICIO CONDORI Y MIRANO

EVALUACIÓN DEL COMPORTAMIENTO MECÁNICO DE UNA ESTRUCTURA DE PAVIMENTO REFORZADO CON GEOMALLA ...

Universidad Nacional San Antonio Abad del Cusco

Detalles del documento

Identificador de la entrega trn:oid:::27259:500258209

Fecha de entrega

17 sep 2025, 11:06 p.m. GMT-6

Fecha de descarga

17 sep 2025, 11:14 p.m. GMT-6

Nombre del archivo

EVALUACIÓN DEL COMPORTAMIENTO MECÁNICO DE UNA ESTRUCTURA DE PAVIMENTO REFORZA....pdf

Tamaño del archivo

12.8 MB

346 páginas

75.438 palabras

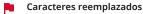
348.911 caracteres

4% Similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para ca...

Filtrado desde el informe

- Bibliografía
- Texto citado
- Coincidencias menores (menos de 20 palabras)


Fuentes principales

0% 📕 Publicaciones

2% 💄 Trabajos entregados (trabajos del estudiante)

Marcas de integridad

N.º de alertas de integridad para revisión

283 caracteres sospechosos en N.º de páginas

Las letras son intercambiadas por caracteres similares de otro alfabeto.

Texto oculto

15 caracteres sospechosos en N.º de página

El texto es alterado para mezclarse con el fondo blanco del documento.

Los algoritmos de nuestro sistema analizan un documento en profundidad para buscar inconsistencias que permitirían distinguirlo de una entrega normal. Si advertimos algo extraño, lo marcamos como una alerta para que pueda revisarlo.

Una marca de alerta no es necesariamente un indicador de problemas. Sin embargo, recomendamos que preste atención y la revise.

DEDICATORIA

A Dios, guía en cada paso de mi vida, por fortalecer mi espíritu y darme el coraje para no rendirme. Dedico este trabajo con profundo respeto y agradecimiento. A mi madre, Ángela Mamani Arque, y a mi padre, Romualdo Condori Tijera, por su amor incondicional, su ejemplo constante de esfuerzo, constancia y valentía para seguir adelante pese a los problemas . A mis hermanos, por su compañía sincera y alegría en los momentos más difíciles. A mi familia acropolitana por enseñarme con los sentidos del alma y que "Haciendo el bien a nuestros semejantes encontramos el nuestro". Este logro es también suyo, y lo comparto con ustedes con todo mi cariño y reconocimiento.

Rosmery Condori Mamani

A nuestro señor creador que me permite superar todos los momentos difíciles del camino, a mis padres Braulio y Virginia que con todo su amor y paciencia acompañaron mi camino. A mis amados hermanos Davis y Braulio que son mi ejemplo en la vida, su dedicación y tenacidad forjaron quien soy; a mis tan queridos sobrinos Joaquín, Yulia y Josue quienes con su alegría hacen que mi camino sea más llevadero; y todas mis amistades que estuvieron en cada momento en el que el sendero se puso oscuro y lograron encontrarme y llevarme de nuevo al camino correcto. Este logro es de todos ellos y todas las personas que tuvieron palabras de aliento y fortaleza. Gracias por ser parte de este recorrido.

Fabricio Francisco Mirano Sucñier

AGRADECIMIENTOS

Manifestamos nuestro más sincero reconocimiento al Dr. Ing. Adán Wilbert Solorzano Montesinos, por su orientación constante y compromiso profesional, pilares fundamentales que nos guiaron en la elaboración de esta tesis. Su experiencia, vocación y entrega fueron claves para enriquecer nuestro aprendizaje y consolidar nuestras habilidades investigativas.

Extendemos nuestro agradecimiento a los miembros de la comisión evaluadora, quienes con paciencia y criterio académico acompañaron cada etapa de este proceso, brindándonos sugerencias valiosas que permitieron fortalecer nuestro trabajo.

A la Universidad Nacional de San Antonio Abad del Cusco, institución que nos acogió y formó con excelencia, expresamos nuestra gratitud por ser el espacio que nos permitió crecer profesional y personalmente, impulsándonos a alcanzar nuestras metas.

Asimismo, reconocemos al personal administrativo y técnico por su disposición y colaboración, facilitando el desarrollo de esta investigación en un entorno propicio para el aprendizaje.

Finalmente, agradecemos a todos quienes, directa o indirectamente, hicieron posible este logro. Su respaldo y confianza han sido el motor que nos impulsó a seguir adelante. Este trabajo no solo representa un objetivo cumplido, sino también una oportunidad para seguir construyendo conocimiento.

RESUMEN

La presente investigación tuvo como objetivo evaluar el comportamiento mecánico de un pavimento flexible conformado por subrasante (10 cm) y subbase (H=25 cm) reforzada con geomallas biaxiales y triaxiales, mediante el ensayo de deformación por carga a escala media. Se empleó un molde metálico de 30 × 30 × 35 cm, con una subrasante blanda de CBR 5.25 % compactada al 95 % y una subbase procedente de dos canteras: Huillque (CBR 45.50 %) y Quillahuata (CBR 40.90 %), ambas en conformidad con la norma CE 0.10. Se consideraron cuatro configuraciones: sin refuerzo y tres estructuras con geomalla ubicada en profundidades H, H/2 y H/3.

Los ensayos se realizaron en la máquina universal del laboratorio de Mecánica de Suelos y Materiales de la UNSAAC, instalando sensores strain gauge para registrar los esfuerzos horizontales en el plano reforzado. En total se efectuaron 42 pruebas con una carga estática de 4.1 toneladas sobre un plato de radio 11.5 cm. Los resultados demostraron que el comportamiento más eficiente se alcanzó cuando la geomalla se ubicó en la interfaz subbase—subrasante, con reducciones superiores al 50 % en la deformación vertical y mayores al 30 % en deformaciones y esfuerzos horizontales respecto a la condición sin refuerzo. En suelos sin plasticidad (Huillque) el desempeño fue más uniforme, mientras que en suelos de plasticidad media (Quillahuata) se observaron mayores variaciones.

Finalmente, se concluye que las geomallas no cumplieron su resistencia declarada, requiriendo validación experimental previa.

Palabras clave: geomalla, pavimento flexible, comportamiento mecánico, refuerzo

ABSTRACT

This research aimed to evaluate the mechanical behavior of a flexible pavement composed of a 10 cm subgrade and a H=25 cm subbase reinforced with biaxial and triaxial geogrids, using the medium-scale load deformation test. A metallic mold of 30 × 30 × 35 cm was employed, with a soft subgrade of 5.25% CBR compacted at 95% and a subbase obtained from two quarries: Huillque (45.50% CBR) and Quillahuata (40.90% CBR), both in compliance with CE 0.10 Urban Pavements standards. Four configurations were considered: without reinforcement, and three reinforced structures with geogrid placed at depths of H, H/2, and H/3 within the subbase.

The tests were conducted in the universal testing machine of the UNSAAC Soil Mechanics Laboratory, installing strain gauge sensors to record horizontal stresses in the reinforced plane. A total of 42 tests were carried out, applying a static load of 4.1 tons on a plate with an 11.5 cm radius. The results showed that the most efficient performance was achieved when the geogrid was placed at the subbase–subgrade interface, with reductions exceeding 50% in vertical deformation and greater than 30% in deformations and horizontal stresses compared to the unreinforced condition. In non-plastic soils (Huillque), the performance was more uniform, while in medium plasticity soils (Quillahuata) greater variations were observed.

Finally, it is concluded that the geogrids did not reach the tensile strength declared by the manufacturers, highlighting the importance of experimentally validating their properties before implementation in the field.

Keywords: geogrid, flexible pavement, mechanical behavior, reinforcement, subgrade

ÍNDICE

DEDICATORIA	2
AGRADECIMIENTOS	3
RESUMEN	4
ABSTRACT	5
ÍNDICE	6
ÍNDICE DE IMÁGENES	12
ÍNDICE DE TABLAS	13
ÍNDICE DE GRÁFICOS	17
INTRODUCCIÓN	20
1. CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA	21
1.1. Descripción de la situación actual	21
1.2. Planteamiento del problema	21
1.2.1. Problema general	22
1.2.2. Problemas específicos	22
1.3. Justificación de la investigación	22
1.4. Objetivos de la investigación	23
1.4.1. Objetivo general	23
1.4.2. Objetivos específicos	24
1.5. Limitaciones y viabilidad de la investigación	24
1.5.1. Limitación Espacial	24
1.5.2. Limitación Normativa	24
1.5.3. Limitación de equipos	24
1.6. Antecedentes	25

1.6.1.	A nivel internacional	Zi
1.6.2.	A nivel local	29
2. CAPÍT	ULO II: MARCO TEÓRICO	30
2.1. Ge	eomalla	30
2.1.1.	Definición	30
2.1.2.	Tipos de geomalla	30
2.1.3.	Funciones y aplicaciones	33
2.1.4.	Mecanismo de refuerzo generado por las geomallas	34
2.1.5.	Ensayo de Resistencia a la Tracción	36
2.2. Pa	vimento	39
2.2.1.	Definición	39
2.2.2.	Clases de pavimento	40
2.3. Me	étodos de Diseño de Pavimento Flexible	4
2.3.1.	Metodología de diseño de pavimento flexible sin refuerzo	43
2.3.2.	Metodología de diseño de pavimento flexible reforzado	44
2.4. Pa	vimento reforzado con geomallas	40
2.4.1.	Geomalla como refuerzo de la subrasante	47
2.4.2.	Geomalla como refuerzo de la base o sub base	48
2.5. Es	fuerzos y Deformaciones en Pavimentos Flexibles	49
2.5.1.	Sistemas Estratificados	5 [^]
3. CAPÍT	ULO III: HIPÓTESIS Y VARIABLES	5
3.1. Fo	rmulación de la hipótesis	5
3.1.1.	Hipótesis general	5
3.1.2.	Hipótesis especificas	5
3.2. Va	riables e indicadores	5
3.2.1.	Variable independientes	5

	3.2	2.2.	Variable dependientes	55
	3.3.	Ор	eracionalización de variables	56
4.	CA	PÍTU	JLO IV: METODOLOGÍA DE LA INVESTIGACIÓN	57
	4.1.	Mé	todo de la investigación	57
	4.2.	Tip	o de investigación	57
	4.3.	Niv	rel de investigación	58
	4.4.	Dis	eño de la investigación	58
	4.5.	Na	turaleza de datos	58
	4.6.	Té	cnicas de recolección de datos	58
	4.7.	En	sayos de control	58
	4.7	7.1.	Ensayos para el material de subrasante y subbase	58
	4.7	7.2.	Ensayos para geomallas	60
	4.7	7.3.	Ensayos de la estructura de pavimento reforzado con geomalla	60
5.	CA	PÍTU	JLO V: DESARROLLO DE LA INVESTIGACIÓN	65
	5.1.	Ge	neralidades	65
		<i>Ge</i> 1.1.	neralidades Material de Subrasante	
	5.1			65
	5.1 5.1	1.1. 1.2.	Material de Subrasante	65 65
	5.1 5.1 5.1	1.1. 1.2.	Material de Subrasante	65 65
	5.1 5.1 5.1	1.1. 1.2. 1.2.1	Material de Subrasante Material de Subbase Cantera Huillque	65 65 65
	5.1 5.1 5.1	1.1. 1.2. 1.2.1 1.2.2 1.3.	Material de Subrasante Material de Subbase Cantera Huillque Cantera Quillahuata	65 65 65
	5.1 5.1 5.1 5.1 5.1 5.2	1.1. 1.2. 1.2.1 1.2.2 1.3.	Material de Subrasante Material de Subbase Cantera Huillque Cantera Quillahuata Geomallas	65 65 65 66
	5.1 5.1 5.1 5.1 5.2 5.2	1.1. 1.2. 1.2.1 1.2.2 1.3.	Material de Subrasante Material de Subbase Cantera Huillque Cantera Quillahuata Geomallas piedades Mecánicas del Material de Subrasante, Sub base y Geomallas	65 65 65 66
	5.1 5.1 5.1 5.1 5.2 5.2	1.1. 1.2. 1.2.1 1.2.2 1.3. <i>Pro</i> 2.1.	Material de Subrasante Material de Subbase Cantera Huillque Cantera Quillahuata Geomallas piedades Mecánicas del Material de Subrasante, Sub base y Geomallas Resumen de resultados materiales sub base y sub rasante	6565656666
	5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.3	1.1. 1.2. 1.2.1 1.2.2 1.3. <i>Pro</i> 2.1.	Material de Subbase Cantera Huillque Cantera Quillahuata Geomallas ppiedades Mecánicas del Material de Subrasante, Sub base y Geomallas Resumen de resultados materiales sub base y sub rasante Resumen de resultado de geomallas	6565656666

5.3.3.	Diseño de Pavimento Reforzado con Geomalla Triaxial	72
5.4. Pla	anteamiento del ensayo : Deformación por carga a escala media	73
5.4.1.	Generalidades	73
5.4.2.	Equipos y Materiales	73
5.4.3.	Muestra	75
5.4.4.	Procedimiento	75
5.4.5.	Cálculos	76
5.4.6.	Lectura de los esfuerzos y deformaciones	76
5.4.0	6.1. Maquina Universal de Ensayos INSTRON 600 DX	76
5.4.0	6.2. Dispositivo de Lectura de los Strain Gauge	77
5.5. Pr	ocesamiento de datos	78
5.5.1.	Caso I: Sin geomalla	78
5.5.	1.1. Cantera Huillque	78
5.5.	1.2. Cantera Quillahuata	82
5.5.2.	Caso II: Geomalla ubicada en la interfaz Subrasante - Subbase	86
5.5.2	2.1. Cantera Huillque	86
5.5.	2.1.1. Geomalla Biaxial	86
5.5.	2.1.2. Geomalla Triaxial	89
5.5.2	2.2. Cantera Quillahuata	92
5.5.	2.2.1. Geomalla Biaxial	92
5.5.	2.2.2. Geomalla Triaxial	95
5.5.3.	Caso III: Geomalla ubicada a una profundidad de H/2 de la Subbase	98
5.5.3	3.1. Cantera Huillque	98
5.5.	3.1.1. Geomalla Biaxial	98
5.5.	3.1.2. Geomalla Triaxial	101
5.5.3	3.2. Cantera Quillahuata	104

	5.5.	3.2.1. Geomalla Biaxial	104
	5.5.3	3.2.2. Geomalla Triaxial	107
	5.5.4.	Caso IV: Geomalla ubicada a una profundidad de H/3 de la Subbase	110
	5.5.4	.1. Cantera Huillque	110
	5.5.4	1.1.1. Geomalla Biaxial	110
	5.5.4	1.1.2. Geomalla Triaxial	113
	5.5.4	.2. Cantera Quillahuata	116
	5.5.4	1.2.1. Geomalla Biaxial	116
	5.5.4	1.2.2. Geomalla Triaxial	119
6.	CAPÍTI	JLO VI: RESULTADOS DE LA INVESTIGACIÓN	122
	6.1. De	formación vertical de la estructura de pavimento	122
	6.2. De	formación unitaria de los Strain gauges	124
	6.3. Es	fuerzos horizontales en el plano de colocación de la geomalla	128
7.	CAPÍTI	JLO VII: ANÁLISIS Y DISCUSIÓN DE RESULTADOS	132
7.		JLO VII: ANÁLISIS Y DISCUSIÓN DE RESULTADOSálisis de datos	
7.			132
7.	7.1. An	álisis de datos	132 132
7.	7.1. An 7.1.1. 7.1.2.	álisis de datos	132 132 133
7.	7.1. An 7.1.1. 7.1.2.	álisis de datos	132 132 133
7.	7.1. An 7.1.1. 7.1.2. 7.2. An	álisis de datos	132 133 135
7.	7.1. An 7.1.1. 7.1.2. 7.2. An 7.2.1.	álisis de datos	132 133 135 135
7.	7.1. An 7.1.1. 7.1.2. 7.2. An 7.2.1. 7.2.2.	Álisis de datos Material de Sub base Geomallas Álisis de resultados Comportamiento de la Estructura de Pavimento Deformación vertical de la Estructura de Pavimento	132 133 135 135 140
7.	7.1. An 7.1.1. 7.1.2. 7.2. An 7.2.1. 7.2.2. 7.2.3.	Álisis de datos Material de Sub base Geomallas Álisis de resultados. Comportamiento de la Estructura de Pavimento Deformación vertical de la Estructura de Pavimento Deformación unitaria radial.	132 133 135 140 142
7.	7.1. An 7.1.1. 7.1.2. 7.2. An 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5.	Material de Sub base Geomallas Álisis de resultados Comportamiento de la Estructura de Pavimento Deformación vertical de la Estructura de Pavimento Deformación unitaria radial Esfuerzos horizontales de la estructura de pavimento	132 133 135 135 140 142 145
7.	7.1. An 7.1.1. 7.1.2. 7.2. An 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5.	Material de Sub base Geomallas Comportamiento de la Estructura de Pavimento Deformación vertical de la Estructura de Pavimento Deformación unitaria radial Esfuerzos horizontales de la estructura de pavimento Discusión de resultados	132 133 135 140 142 145 149

7.3	3. Resumen de Análisis Estadístico	159
8. CAF	PÍTULO VIII: CONCLUSIONES Y RECOMENDACIONES	160
8.1.	Conclusiones	160
8.2.	Recomendaciones	163
9.REFE	RENCIAS BIBLIOGRÁFICAS	165
40 415	EXOS	
10. ANE	:XOS:	170
	Matriz de Consistencia	
10.1.		170
10.1. 10.2.	Matriz de Consistencia	170 . 171

ÍNDICE DE IMÁGENES

Figura 1 Disposición de prueba para dos capas de geomalla	26
Figura 2 Disposición de las pruebas	27
Figura 3 Geomalla uniaxial	30
Figura 4 Geomalla Biaxial Coextruida	31
Figura 5 Geomalla Triaxial	31
Figura 6 Los mecanismos de refuerzo inducidos por los geosintéticos	34
Figura 7 Mecanismo de refuerzo (geomalla) en la capa Base	36
Figura 8 Dimensión del espécimen según el método de falla	37
Figura 9 Longitud de calibre para el ensayo	38
Figura 10 LCR (Layer Coeficiente ratio) vs. CBR de la subrasante	46
Figura 11 Componentes de tensiones bajo carga axisimétrica	49
Figura 12 Sistema de n-capas sometido a una carga circular	51
Figura 13 Sistema de n-capas en coordenadas cilíndricas	52
Figura 14 Esquema de ensayo realizado del Caso I	61
Figura 15 Esquema de ensayo realizado del Caso II	61
Figura 16 Esquema de ensayo realizado del Caso III	62
Figura 17 Esquema de ensayo realizado del Caso IV	62
Figura 18 Estructura de pavimento flexible	71
Figura 19 Estructura de pavimento reforzado con geomalla biaxial	72
Figura 20 Estructura de pavimento reforzado con geomalla triaxial	73
Figura 21 Strain Gauge BF350	74
Figura 22 Dispositivo de Lectura de Strain Gauge	74

ÍNDICE DE TABLAS

Tabla 1 Rangos Granulométricos para Subbase Granular	41
Tabla 2 Limites de calidad para materiales de Subbase granular según alti	tud42
Tabla 3 Clasificacion de subrasantes según su capacidad de soporte (CBF	?)48
Tabla 4 Cuadro de Operacionalización de las Variables	56
Tabla 5 Cuadro de ensayos para el material de subrasante y subbase	59
Tabla 6 Casos de Estudio de la Investigación	63
Tabla 7 Especificaciones de Geomalla Biaxiales y Triaxial	66
Tabla 8 Resultados de las propiedades mecánicas de subbase y subrasar	nte67
Tabla 9 Resultados de resistencia a la tracción de las geomallas	68
Tabla 10 Periodo y tráfico de diseño	68
Tabla 11 Parámetros de diseño: R, Z _R , S _O , Pi, Pt, ΔPSI, MR	69
Tabla 12 Espesores mínimos, coeficiente estructural y coeficiente de dren	•
carpeta asfáltica y base granular	70
Tabla 13 Espesor de la subbase de las Canteras: Huillque y Quillahuata	70
Tabla 14 Espesor de la subbase reforzada con geomalla biaxial	71
Tabla 15 Espesor de la subbase reforzada con geomalla triaxial	72
Tabla 16 Deformación vertical – Caso I – C. Huillque	79
Tabla 17 Deformación Unitaria – Caso I – C. Huillque	81
Tabla 18 Esfuerzos horizontales – Caso I – C. Huillque	81
Tabla 19 Deformación vertical – Caso I – C. Quillahuata	83
Tabla 20 Deformación Unitaria – Caso I – C. Quillahuata	85
Tabla 21 Esfuerzos horizontales – Caso I – C. Quillahuata	85
Tabla 22 Deformación vertical - Caso II – C. Huillque – G. Biaxial	87
Tabla 23 Deformación Unitaria Caso II - C. Huillque - G. Biaxial	88

Tabla 24	Esfuerzo horizontal Caso II - C. Huillque - G. Biaxial
Tabla 25	Deformación vertical-Caso II - C. Huillque - G. Triaxial
Tabla 26	Deformación Unitaria Caso II - C. Huillque - G. Triaxial9
Tabla 27	Esfuerzo horizontal Caso II - C. Huillque - G. Triaxial9
Tabla 28	Deformación vertical – Caso II – C. Quillahuata – G. Biaxial
Tabla 29	Deformación Unitaria – Caso II – C. Quillahuata – G. Biaxial
Tabla 30	Esfuerzo horizontal Caso II - C. Quillahuata - G. Biaxial9
Tabla 31	Deformación vertical – Caso II – C. Quillahuata – G. Triaxial9
Tabla 32	Deformación Unitaria – Caso II – C. Quillahuata – G. TriaxiaI9
Tabla 33	Esfuerzo horizontal Caso II - C. Quillahuata - G. Triaxial9
Tabla 34	Deformación vertical – Caso III – C. Huillque – G. Biaxial9
Tabla 35	Deformación Unitaria – Caso III – C. Huillque – G. Biaxial10
Tabla 36	Esfuerzo horizontal Caso III - C. Huilque - G. Biaxial10
Tabla 37	Deformación vertical – Caso III – C. Huillque – G. Triaxial10
Tabla 38	Deformación Unitaria – Caso III – C. Huillque – G. Triaxial10
Tabla 39	Esfuerzo horizontal Caso III - C. Huilque - G. Triaxial10
Tabla 40	Deformación vertical – Caso III – C. Quillahuata – G. Biaxial10
Tabla 41	Deformación Unitaria – Caso III – C. Quillahuata – G. Biaxial10
Tabla 42	Esfuerzo horizontal Caso III - C. Quillahuata - G. Biaxial10
Tabla 43	Deformación vertical – Caso III – C. Quillahuata – G. Triaxial10
Tabla 44	Deformación Unitaria – Caso III – C. Quillahuata – G. Triaxial10
Tabla 45	Esfuerzo horizontal Caso III - C. Quillahuata - G. Triaxial10
Tabla 46	Deformación vertical – Caso IV – C. Huillque – G. Biaxial11
Tabla 47	Deformación Unitaria – Caso IV – C. Huillque – G. Biaxial11
Tabla 48	Esfuerzo horizontal Caso IV - C. Huillque - G. Biaxial11

Tabla 49	Deformación vertical – Caso IV – C. Huillque – G. Triaxial1	14
Tabla 50	Deformación Unitaria – Caso IV – C. Huillque – G. Triaxial1	15
Tabla 51	Esfuerzo horizontal Caso IV - C. Huillque - G. Triaxial1	15
Tabla 52	Deformación vertical – Caso IV – C. Quillahuata – G. Biaxial1	17
Tabla 53	Deformación Unitaria – Caso IV – C. Quillahuata – G. Biaxial1	18
Tabla 54	Esfuerzo horizontal Caso IV - C. Quillahuata - G. Biaxial1	18
Tabla 55	Deformación vertical – Caso IV – C. Quillahuata – G. Triaxial1	20
Tabla 56	Deformación Unitaria – Caso IV – C. Quillahuata – G. Triaxial1	21
Tabla 57	Esfuerzo horizontal Caso IV - C. Quillahuata - G. Triaxial1	21
Tabla 58	Deformación vertical – C. Huillque- G. Biaxial1	22
Tabla 59	Deformación vertical- C. Huillque- G. Triaxial1	23
Tabla 60	Deformación vertical – C. Quillahuata – G. Biaxial1	23
Tabla 61	Deformación vertical – C. Quillahuata – G. Triaxial1	24
Tabla 62	Deformación unitaria – C. Huillque -Caso II1	25
Tabla 63	Deformación unitaria – C. Huillque -Caso III1	25
Tabla 64	Deformación unitaria – C. Huillque – Caso IV1	26
Tabla 65	Deformación unitaria – C. Quillahuata -Caso II1	26
Tabla 66	Deformación unitaria – C. Quillahuata - Caso III1	27
Tabla 67	Deformación unitaria – C. Quillahuata - Caso IV1	27
Tabla 68	Esfuerzo Horizontales – C. Huillque -Caso II1	28
Tabla 69	Esfuerzo Horizontales – C. Huillque -Caso III1	29
Tabla 70	Esfuerzo Horizontales – C. Huillque -Caso IV1	29
Tabla 71	Esfuerzo Horizontales – C. Quillahuata - Caso II1	30
Tabla 72	Esfuerzo Horizontales – C. Quillahuata -Caso III1	30
Tabla 73	Esfuerzo Horizontales- C. Quillahuata -Caso IV1	31

Tabla 74	Requerimiento Granulométricos para Subbase Granular	.132
Tabla 75	Requerimientos de Calidad para Sub-Base Granular	.133
Tabla 76	Requerimientos de resistencia a la tracción de las geomallas	.134
Tabla 77	Análisis de la deformación vertical - C. Huillque – G. Biaxial	.151
Гabla 78	Análisis de la deformación vertical - C. Huillque – G. Triaxial	.152
Tabla 79	Análisis de la deformación horizontal - C. Huillque – G. Biaxial	.153
Tabla 80	Análisis de la deformación horizontal - C. Huillque – G. Triaxial	.154
Tabla 81	Análisis de la deformación vertical - C. Quillahuata – G. Biaxial	.155
Tabla 82	Análisis de la deformación vertical - C. Quillahuata - G. Triaxial	.156
Tabla 83	Análisis de la deformación horizontal - C. Quillahuata - G. Biaxial	.157
Γabla 84	Análisis de la deformación horizontal - C. Quillahuata - G. Triaxial	.158
Tabla 85	Cuadro resumen de aceptación de hipótesis- C. Huillque	.159
Tabla 86	Cuadro resumen de aceptación de hipótesis- C. Quillahuata	.159

ÍNDICE DE GRÁFICOS

Gráfico 1 Deformación vertical – Caso I – C. Huillque	.78
Gráfico 2 Esfuerzo vs Deformación Unitaria Radial – Caso I (en H)– C. Huillque	.79
Gráfico 3 Esfuerzo vs Deformación Unitaria Radial – Caso I (en H/2)– C. Huillque	.80
Gráfico 4 Esfuerzo vs Deformación Unitaria Radial – Caso I (en H/3)– C. Huillque	.80
Gráfico 5 Deformación vertical – Caso I – C. Quillahuata	.82
Gráfico 6 Esfuerzol vs Deformación Unitaria Radial – Caso I (en H)– C. Quillahuata	.83
Gráfico 7 Esfuerzo vs Deformación Unitaria Radial – Caso I (en H/2)– C. Quillahuata	.84
Gráfico 8 Esfuerzo vs Deformación Unitaria Radial – Caso I (en H/3)– C. Quillahuata	.84
Gráfico 9 Deformación vertical – Caso II – C. Huillque – G. Biaxial	.86
Gráfico 10 Esfuerzo vs Deformación Unitaria Radial – Caso II – C. Huillque – G. Biaxial	.87
Gráfico 11 Deformación vertical – Caso II – C. Huillque – G. Triaxial	.89
Gráfico 12 Esfuerzo vs Deformación Unitaria Radial – Caso II – C. Huillque – G. Triaxial	.90
Gráfico 13 Deformación vertical – Caso II – C. Quillahuata – G. Biaxial	.92
Gráfico 14 Esfuerzo vs Deformación Unitaria Radial – Caso II– C. Quillahuata – G. Biaxial .	.93
Gráfico 15 Deformación vertical – Caso II – C. Quillahuata – G. Triaxial	.95
Gráfico 16 Esfuerzo vs Deformación Unitaria Radial – Caso II– C. Quillahuata – G. Triaxial	96
Gráfico 17 Deformación vertical – Caso III – C. Huillque – G. Biaxial	.98
Gráfico 18 Esfuerzo vs Deformación Unitaria Radial – Caso III– C. Huillque – G. Biaxial	.99
Gráfico 19 Deformación vertical – Caso III – C. Huillque – G. Triaxial1	01
Gráfico 20 Esfuerzo vs Deformación Unitaria Radial – Caso III– C. Huillque – G. Triaxial .1	02
Gráfico 21 Deformación vertical – Caso III – C. Quillahuata – G. Biaxial1	04
Gráfico 22 Esfuerzo vs Deformación Unitaria Radial – Caso III– C. Quillahuata – G. Biax	
Gráfico 23 Deformación vertical – Caso III – C. Quillabuata – G. Triavial	I 0 7

Gráfico 24 Esfuerzo vs Deformación Unitaria Radial – Caso III– C. Quillahuata – G. Triaxi	
Gráfico 25 Deformación vertical – Caso IV – C. Huillque – G. Biaxial	0
Gráfico 26 Esfuerzo vs Deformación Unitaria Radial – Caso IV– C. Huillque – G. Biaxial 11	1
Gráfico 27 Deformación vertical – Caso IV – C. Huillque – G. Triaxial	3
Gráfico 28 Esfuerzo vs Deformación Unitaria Radial – Caso IV– C. Huillque – G. Triaxial .11	4
Gráfico 29 Deformación vertical – Caso IV – C. Quillahuata – G. Biaxial11	6
Gráfico 30 Esfuerzo vs Deformación Unitaria Radial – Caso IV– C. Quillahuata – G. Biaxi	
Gráfico 31 Deformación vertical – Caso IV – C. Quillahuata – G. Triaxial	9
Gráfico 32 Esfuerzo vs Deformación Unitaria Radial – Caso IV– C. Quillahuata – G. Triaxi	
Gráfico 33 Comportamiento de la estructura de pavimento- C. Huillque - G. Biaxial13	36
Gráfico 34 Comportamiento de la estructura de pavimento- C. Huillque - G. Triaxial13	37
Gráfico 35 Comportamiento de la estructura de pavimento- C. Quillahuata - G. Biaxial 13	38
Gráfico 36 Comportamiento de la estructura de pavimento- C. Quillahuata - G. Triaxial13	39
Gráfico 37 Deformación vertical – C. Huillque14	ļ 1
Gráfico 38 Deformación vertical – C. Quillahuata14	ļ 1
Gráfico 39 Deformación Unitaria Radial – C. Huillque – Caso II14	12
Gráfico 40 Deformación Unitaria Radial - C. Huillque - Caso III14	13
Gráfico 41 Deformación Unitaria Radial - C. Huillque - Caso IV14	13
Gráfico 42 Deformación Unitaria Radial – C. Quillahuata – Caso II14	14
Gráfico 43 Deformación Unitaria Radial - C. Quillahuata - Caso III14	14
Gráfico 44 Deformación Unitaria Radial – C. Quillahuata – Caso IV14	15
Gráfico 45 Esfuerzo horizontal - C. Huillque - Caso II	16
Gráfico 46 Esfuerzo horizontal - C. Huillque - Caso III	16
Gráfico 47 Esfuerzo horizontal - C. Huillque - Caso IV	ļ 7

Gráfico 48 Esfuerzo horizontal	– C. Quillahuata – Caso II	147
Gráfico 49 Deformación Unitar	ia Radial – C. Quillahuata – Caso III	148
Gráfico 50 Deformación Unitar	ia Radial – C. Quillahuata – Caso IV	148

INTRODUCCIÓN

Las geomallas tienen una amplia aplicación en la ingeniería civil, destacando principalmente por su capacidad para reforzar y estabilizar suelos. Estas funciones se evidencian especialmente en obras como carreteras, terraplenes y estructuras de contención. Sin embargo, los valores técnicos indicados en las fichas de estos materiales, como la resistencia a la tracción, no siempre representan su desempeño real en condiciones de campo, lo cual puede atribuirse a una ejecución deficiente o a la variabilidad en la calidad del producto.

En este contexto, se han desarrollado ensayos experimentales a escala media para evaluar parte de estructuras de pavimento conformada por subrasante y subbase, tanto sin refuerzo como reforzadas con geomallas de tipo biaxial y triaxial. Estas pruebas estáticas en la maquina universal permiten analizar el comportamiento mecánico de la estructura de pavimento y mediante la utilización de sensores capaces de registrar deformaciones en el plano horizontal. Esto proporciona una visión más precisa del comportamiento de la estructura del pavimento ante cargas aplicadas. Asimismo, al variar la profundidad de colocación del refuerzo dentro de la subbase (H, H/2 y H/3) se busca identificar la configuración óptima que ofrezca una mejor respuesta estructural.

1. CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la situación actual

En las últimas décadas, el empleo de geosintéticos ha crecido significativamente a nivel mundial, impulsado por la necesidad de lograr soluciones que equilibren la eficiencia económica con la reducción del impacto ambiental. Estos materiales se han integrado en diversas áreas de la ingeniería geotécnica, tales como la estabilización de taludes y el refuerzo de estructuras como los pavimentos.

En nuestro contexto, el uso de geomallas en el refuerzo de pavimentos se ha ido incorporando progresivamente. Su implementación permite disminuir el espesor requerido de las capas estructurales del pavimento y, a su vez, atenúa los esfuerzos que alcanzan la subrasante, lo que contribuye a mejorar su capacidad portante. Sin embargo, al tratarse de un sistema relativamente reciente, aún no se tiene claridad completa sobre la magnitud de sus beneficios, pues los mecanismos implicados en su comportamiento no han sido plenamente comprendidos.

Desde una perspectiva económica, esta tecnología representa una alternativa atractiva al reducir los espesores de las capas del pavimento y mejorar la eficiencia estructural de la subrasante. Su facilidad de instalación y bajo costo comparativo la posicionan como una solución viable frente a otros métodos de refuerzo convencionales. No obstante, en el ámbito local, el conocimiento sobre el comportamiento de estructuras reforzadas con geomallas aún es limitado, por lo que se requiere mayor investigación para determinar con precisión el efecto real de su incorporación en capas granulares..

1.2. Planteamiento del problema

Actualmente, las geomallas se vienen utilizando como reforzamiento de la estructura del pavimento debido a que reducen el espesor de las capas de dicha estructura y mejoran el comportamiento de la sub rasante reduciendo los esfuerzos que llegan a esta capa, los mecanismos que generan estos beneficios son 3: Confinamiento lateral, mejoramiento de la capacidad portante y membrana tensionada siendo el primero como el más importante debido a que con este mecanismo se logra convertir los esfuerzos generados por la carga cíclicas del tráfico en esfuerzos cortante en el plano donde esta

colocado la geomalla, debido a este mecanismo se considera como una propiedad importante la resistencia a la tracción.

Muchos de los métodos de diseño de pavimento consideran las propiedades de los materiales pero no consideran las propiedades de las geomallas ni su interacción con suelo, al realizar un ensayo a escala se obtendrá el comportamiento de dicha estructura: deformación vertical y al poder medir las deformaciones del material se conocerá cual es el comportamiento de dicha estructura reforzada con geomalla.

1.2.1. Problema general

¿Cómo es el comportamiento mecánico de una estructura de pavimento reforzado con geomalla biaxial y triaxial, Cusco 2024?

1.2.2. Problemas específicos

- ¿Cuáles son los esfuerzos y las deformaciones a diferentes profundidades de la subbase e interfaz subbase – subrasante de la estructura de pavimento flexible reforzado?
- ¿Cuál es la profundidad óptima de la geomalla dentro de la estructura de pavimento flexible reforzado?
- ¿Cuáles son las propiedades de resistencia a la tracción de la geomalla biaxial y triaxial?

1.3. Justificación de la investigación

La presente investigación se justifica por su relevancia técnica, económica y ambiental, así como por su originalidad y aporte al conocimiento en el campo de los geosintéticos aplicados en los pavimentos.

Desde el punto de vista técnico, el uso de geomallas como refuerzo en estructuras de pavimento es una técnica relativamente nueva que ha ganado popularidad debido a sus beneficios. Sin embargo, los mecanismos exactos por los cuales las geomallas mejoran el comportamiento del pavimento no son del todo claros. Realizar ensayos a escala de laboratorio permitirá obtener datos concretos sobre el comportamiento mecánico de la estructura conformada por subrasante y subbase reforzados con geomallas biaxiales y triaxiales, midiendo las deformaciones en la estructura reforzada

para entender cómo se distribuyen los esfuerzos en presencia de las geomallas tensionadas.

Económicamente, el refuerzo con geomallas permite reducir el espesor de las capas del pavimento, generando ahorros en materiales. Entender el comportamiento de las geomallas en parte de la estructura del pavimento, conformada por subbase y subrasante, permitirá optimizar su uso y maximizar los beneficios económicos. En San Jerónimo, en la zona de ladrilleras se encuentra los suelos de baja resistencia, esta zona económicamente es activa y en un futuro un impulso al desarrollo industrial por lo cual demandara mayor tráfico y vías pavimentadas actualmente esta zona tiene vías no pavimentadas, este estudio pude ser un antecedente para poder realizar la pavimentación de sus vías. Además, al mejorar la capacidad de soporte de la subrasante, se reduce la necesidad de remover y reemplazar suelos blandos, lo cual también representa un ahorro. Desde una perspectiva ambiental, el uso de geomallas reduce la explotación de canteras.

Al mejorar la capacidad de soporte de los suelos in-situ, se reduce la necesidad de extraer, transportar y colocar materiales de préstamo, lo cual tiene un impacto positivo en el medio ambiente.

Finalmente, esta investigación se justifica por su originalidad y aporte al conocimiento, si bien existe un estudio local desarrollado por (Cordoni V., 2018) que evaluó el efecto de geotextiles tejidos y no tejidos en el comportamiento de la estructura del pavimento flexible conformado por subbase y subrasante, la presente investigación se distingue por analizar el comportamiento de la configuración subbase—subrasante incorporando geomallas biaxiales y triaxiales, evaluadas a distintas profundidades, generando información inédita para optimizar el desempeño mecánico de pavimentos en contextos locales.

1.4. Objetivos de la investigación

1.4.1. Objetivo general

Evaluar el comportamiento mecánico de una estructura de pavimento reforzado con geomalla biaxial y triaxial en la interfaz subbase – subrasante y a diferentes profundidades de la subbase.

1.4.2. Objetivos específicos

- Determinar los esfuerzos y deformaciones a diferentes profundidades de la subbase e interfaz subbase – subrasante de la estructura de pavimento flexible reforzado
- Determinar la profundidad óptima de la geomalla dentro de la estructura de pavimento flexible reforzado.
- Determinar las propiedades de resistencia a la tracción de la geomalla: biaxial y triaxial

1.5. Limitaciones y viabilidad de la investigación

1.5.1. Limitación Espacial

Las conclusiones y resultados de la investigación son válidos únicamente para estructuras de pavimento flexible reforzado con geomallas, empleando como subbase los materiales provenientes de las canteras de Huillque y Quillahuata, específicamente con el uso de la Geomalla Biaxial MacGrid EGB30 y la Geomalla Triaxial Tensar TX160.

1.5.2. Limitación Normativa

El estudio se desarrolló siguiendo las normas técnicas de uso nacional e internacional aceptadas para este tipo de investigaciones, tales como:

- Normas ASTM
- Normas Técnicas Peruanas (NTP)
- CE 0.10 Norma Técnica para Pavimentos Urbanos

1.5.3. Limitación de equipos

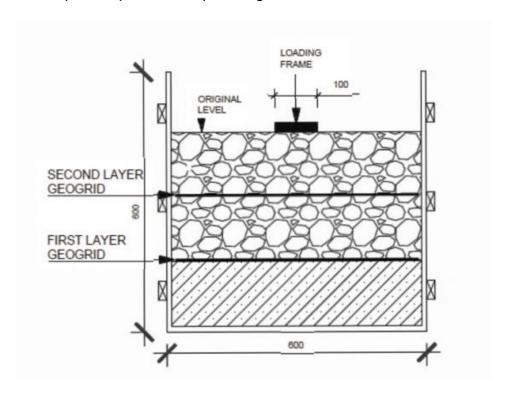
La realización de los ensayos estuvo condicionada por la disponibilidad de los laboratorios ubicados en la sede de Perayoc de la UNSAAC, cuyos horarios y tiempos de uso son restringidos. Esto limitó el acceso de los investigadores, quienes debieron adaptarse a dichas condiciones. Así mismo, se utilizando únicamente los equipos disponibles en el laboratorio de la UNSAAC (Perayoc). Esto implicó adecuar las dimensiones y características de los especímenes de prueba a las capacidades técnicas de dichos equipos.

La investigación se circunscribió al uso de materiales que los investigadores pudieron adquirir con facilidad en el mercado local.

- Para la subrasante y subbase, se emplearon suelos provenientes de canteras cercanas a la ciudad del Cusco
- Se utilizo straing gauges de modelos comerciales disponibles a nivel nacional .
- Las geomallas son: Geomalla Biaxial MacGrid EGB30 y Geomalla Triaxial TriAx
 TX160

1.6. Antecedentes

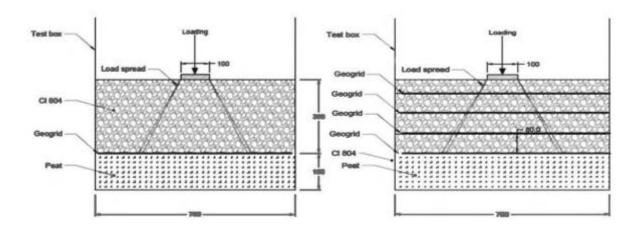
1.6.1. A nivel internacional


Antecedente internacional 1

Según (Reilly C. & Nell K., 2023), cuyo trabajo de investigación se denomina "Behaviour of biaxial geogrids in unpaved roads – research from Ireland" establecieron como objetivo evaluar el comportamiento mecánico de geomallas biaxiales en caminos no pavimentados, revisando 3 investigaciones:

• (Rutkauskas, 2018) evaluó el desempeño de geomallas instaladas sobre una subrasante de espuma, utilizando galgas extensométricas para registrar el comportamiento mecánico, la experimentación se llevó a cabo en una caja de ensayo de 0.6 m × 0.6 m × 0.6 m, y se establecieron tres configuraciones distintas: (a) sin geomalla, (b) geomalla colocada directamente sobre la subrasante y (c) geomalla posicionada tanto sobre la subrasante como en una capa intermedia de roca triturada, como se ilustra en la Figura 1. Los resultados indicaron que la incorporación del refuerzo permitió mejorar la capacidad de carga del sistema, disminuyendo la penetración de la placa sometida a una carga de 80 kN. En particular, se observó una reducción del 5 % cuando se utilizó una sola capa de geomalla, y del 13 % cuando se implementaron dos capas, en comparación con el sistema sin refuerzo.

Figura 1


Disposición de prueba para dos capas de geomalla

Nota. Para las pruebas con una capa, se omitió la segunda capa de geomalla mientras que los espesores del material permanecieron iguales. Fuente: Adaptado de Performance of Geogrids in Soft Soil (p. 1222), por Rutkauskas, (2018).

(Aladwani, 2019) llevó a cabo una investigación que analizó el comportamiento de geomallas instrumentadas con subrasante de suelo natural (turba). La metodología empleada consistió en la construcción de un cubo de prueba cuyas aristas miden 0.7 m, en la cual se colocó la geomalla directamente sobre la subrasante y luego se aplicaron sucesivas capas de grava triturada, siguiendo el procedimiento ilustrado en la Figura 2. Los resultados obtenidos mostraron que, ante una deflexión específica, la capacidad de carga del sistema mejoró de manera significativa con una deflexión de 60 mm se incrementó en un 245 % al aumentar las capas de geomalla de una a cuatro, y con una deflexión de 120 mm en un 516 % para cuatro capas; para la prueba con un desplazamiento de 120mm la placa de carga penetró en el relleno menos cuando se reforzó con cuatro capas que con una sola capa

Figura 2
Disposición de las pruebas

Nota: Adaptada de Aladwani (2019) en "Optimising the Performance of Geogridas in Unpaved Road"

A partir de los resultados obtenidos, se determinó que las geomallas biaxiales contribuyen significativamente a mejorar la estabilidad y vida útil de caminos sin pavimentar. En ese sentido, se recomienda su incorporación en proyectos de infraestructura vial como una estrategia para optimizar el desempeño estructural del pavimento.

Antecedente internacional 2

Según (Bastidas, Herrera, & Bautista, 2024) cuya investigación se titula "Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica" su objetivo fue evaluar el comportamiento mecánico de un modelo físico laboratorial de una vía no pavimentada reforzada con geomalla biaxial; para ello se realizaron ensayos en la maquina universal de un cubo (0.15m de material de mejoramiento y 0.20m de subrasante) con y sin refuerzo de geomalla, aplicando 10000 ciclos de cargas dinámicas con una presión de 560 kPa mediante una placa circular de 0.10m de diámetro simulando la circulación de una llanta de un eje rueda simple. A través de una simulación computacional basada en el Método de Elementos Finitos (MEF), se logró validar numéricamente el comportamiento del camino analizado. Los resultados del modelo evidenciaron que la incorporación de geomallas puede disminuir en aproximadamente un 45 % la deformación permanente

asociada al ahuellamiento, lo cual se atribuye a una menor concentración de esfuerzos en la estructura reforzada.

Antecedente internacional 3

(Poorahong, Jamsawang, Thanasisathit, Jongpradist, & Horpibulsuk, 2024) realizaron pruebas a escala de laboratorio para evaluar el comportamiento de caminos sin pavimentar reforzados con geomallas triaxiales TX150 sobre subrasantes de arcilla blanda. Utilizaron modelos con distintas capas de base de roca triturada (0.05 a 0.20 m) y colocaron la geomalla entre esta capa y la subrasante. Las pruebas de carga con placa permitieron determinar la capacidad portante última y los modos de falla. Se observó que el refuerzo con geomalla aumentó significativamente la capacidad portante y redujo los asentamientos, destacando un espesor óptimo de base de 0.20 m, el cual alcanzó una mejora del 44 % respecto a la sección no reforzada. Además, se evidenció que una base demasiado delgada no permite una interacción adecuada entre el suelo y la geomalla, limitando su efectividad. Se destacó la relevancia del espesor de la capa base en el desempeño de las geomallas triaxiales como elemento de refuerzo, ya que cumple un papel fundamental en asegurar una distribución equilibrada de las cargas aplicadas y en minimizar eficazmente los esfuerzos transmitidos hacia el suelo blando.

Antecedente internacional 4

(Yesnik, Soliman, Morozov, Fleming, & Landry, 2025) compararon comportamiento de capas de agregado triturado estabilizadas con dos tipos diferentes de geomallas (GGA y GGB) frente a una sección convencional sin estabilización. Se realizaron 4000 ciclos de cargas en un sistema de carga que aplico esfuerzos equivalentes a 40KN y se monitorearon parámetros como la rigidez del material (Gmax) mediante la técnica MASW, se observó que el tramo sin refuerzo alcanzó una deformación vertical de hasta 70 mm en menos de 1000 ciclos de carga, en contraste con los resultados obtenidos en las secciones que incorporaban geogrillas de mayor espesor (GGB) apenas registraron entre 13 y 14 mm después de los 4000 ciclos, lo que representa una disminución superior al 80% en el ahuellamiento. Estos hallazgos respaldan la eficacia del uso de geogrillas en la construcción de caminos sobre suelos blandos, destacando su capacidad para mantener la rigidez del agregado y reducir las deformaciones a largo plazo, lo que se traduce en vías más duraderas y de menor costo de mantenimiento.

1.6.2. A nivel local

Antecedente local 1

Según (Cordoni V., 2018) en su investigación "La Carga de Rotura y la Elongación por el Método Grab de Geotextiles Tejidos y No Tejidos y los Esfuerzos de Tensión en la estructura de Pavimentos Flexibles" se planteo como objetivo analizar la la influencia de la Carga de Rotura y la Elongación por el Método Grab de geotextiles tejidos y no tejidos en los esfuerzos de tensión en la estructura de pavimentos flexibles. La metodología empleada en este estudio fue de tipo aplicada, con un enfoque experimental y cuantitativo. Se llevaron a cabo ensayos de laboratorio simulando una estructura de pavimento mediante vigas de 25 × 20 × 80 cm, representando la interfaz entre la subbase y el terreno de fundación. Se evaluaron esfuerzos y deformaciones utilizando galgas extensométricas (strain gauges) tanto en presencia como en ausencia de geotextiles, diferenciando entre los tipos tejidos y no tejidos.

Los resultados evidenciaron que los esfuerzos de tracción varían en función del tipo de geotextil empleado y del origen del material de subbase, lo cual repercute directamente en el diseño estructural. En particular, al usar geotextil tejido sobre una subbase proveniente de la cantera Huillque, se observó una reducción de las deformaciones verticales del 4.45 % y 21.52 %. Las deformaciones horizontales también disminuyeron, con valores de 7.83 % y 24.53 %, respectivamente. En conclusión, se determinó que los geotextiles no tejidos tienden a absorber una mayor proporción de los esfuerzos de tracción en comparación con los tejidos.

2. CAPÍTULO II: MARCO TEÓRICO

2.1. Geomalia

2.1.1. Definición

Según (ASTM, 2015) la geomalla es un geosintéticos formado por una red regular de elementos integralmente conectados con aberturas mayores de 6.35 mm (1/4pul.) para permitir el entrelazado con el entorno suelo, roca, tierra y otros materiales circundantes para funcionar principalmente como refuerzo.

2.1.2. Tipos de geomalla

Existen diversas clasificaciones las cuales serán detalladas a continuación:

2.1.2.1. Por el sentido del desarrollo del esfuerzo.

De acuerdo a la orientación de las grillas, las geomallas pueden clasificarse de la siguiente forma:

 Geomallas uniaxiales: Según (Shukla, 2002) Están hechos por el estiramiento longitudinal de láminas de polímero perforadas regularmente y, por lo tanto, poseen mucha mayor resistencia a la tracción en la dirección longitudinal que en la dirección transversal.

Figura 3
Geomalla uniaxial

Nota: Adaptado de Manual de Diseño con Geosintéticos, Mexichem-Novena Edición, 2012

 Geomallas biaxiales: Conforme a (Shukla, 2002) están hechas tanto por el estiramiento y por el sentido longitudinal como en el transversal de laminas de polímero regularmente perforadas, por lo tanto, poseen igual resistencia a al tracción tanto en el sentido longitudinal y transversales.

Figura 4
Geomalla Biaxial Coextruida

Nota: Adaptado de Manual de Diseño con Geosintéticos, Mexichem-Novena Edición, 2012

• Geomallas triaxiales Este tipo de geomalla según (TENSAR, 2016) presenta una estructura triangular y tres direcciones principales de rigidez que a su vez proporcionan una rigidez radial. La carga aplicada se distribuye tridimensionalmente en dirección radial a través de los distintos niveles del agregado, lo que contribuye a un desempeño más eficiente del refuerzo con geomalla cuando se encuentra incorporada en una capa estabilizada mecánicamente.

Figura 5
Geomalla Triaxial

Nota: Adaptado de Tensar International Corporation

2.1.2.2. Por su fabricación

De acuerdo a el método de su fabricación se tienen los diferentes tipos:

- Geomallas extruidas: De acuerdo con (Koerner, 2005) Los polímeros comúnmente usados para la fabricación de este tipo de geomallas son el polietileno de alta densidad (HDPE) y el polipropileno. Para su fabricación, se utiliza una lámina del polímero seleccionado, la cual es perforada según un patrón previamente definido. Posteriormente, esta lámina se somete a un proceso de estiramiento en una o más direcciones, dependiendo del eje en el que se pretende que actúe la tracción. Dicha operación se realiza bajo condiciones térmicas específicas que favorecen la alineación de las moléculas del polímero, otorgándole las propiedades físicas deseadas. Este tipo de geomallas, debido a su estructura regular y comportamiento uniforme, son denominadas "homogéneas" y presentan un elevado módulo de rigidez.
- Geomallas tejidas: Conforme (Koerner, 2005) Son geomallas compuestas por hilos recubiertos, los haces de hilos se tejen o tejen en una maquinaria textil convencional con el patrón de rejilla deseado. La resistencia se puede variar fácilmente usando más o menos filamentos por hilo en ambas direcciones, dando lugar a productos unidireccionales y bidireccionales. las geomallas son recubiertas, generalmente Rociando y luego sumergiendo en betún, látex o cloruro de polivinilo. El propósito del recubrimiento es mantener la estabilidad geométrica del producto y proteger los filamentos contra daños durante la instalación y el servicio.
- Geomallas de fibras de vidrio: Siguiendo lo propuesto por (PAVCO, 2009), Las Geomallas de Fibra de Vidrio, son Geomallas flexibles que se utilizan entre capas de concreto asfáltico con el fin de controlar agrietamientos por reflexión, agrietamientos por fatiga y deformaciones plásticas, en los revestimientos de concreto asfáltico que se emplean en vías de alto y bajo tráfico, autopistas, aeropuertos, plataformas y parqueaderos entre otros. Su principal objetivo es incrementar la resistencia a la tracción de la capa asfáltica y asegurar que, bajo cargas verticales, los esfuerzos horizontales se distribuyan de manera uniforme sobre una mayor área. Esto contribuye a prolongar la vida útil del pavimento, reduciendo la aparición de grietas a lo largo del tiempo. En particular, las

geomallas fabricadas con fibra de vidrio poseen un módulo de elasticidad elevado, superior al del asfalto, lo cual las convierte en un material de refuerzo altamente eficiente, ya que los materiales con mayor rigidez son los que absorben la mayor parte de las cargas. Además, este tipo de fibra, compuesta por arenas de cuarzo, es reciclable y presenta un punto de fusión entre los 800 °C y 850 °C, lo que le permite ser compatible con distintos tipos de mezclas asfálticas.

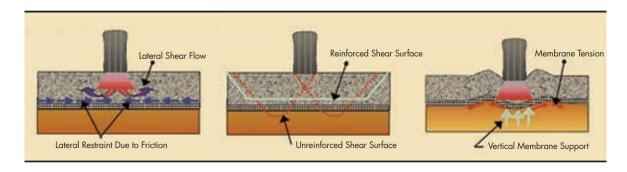
2.1.3. Funciones y aplicaciones

Las geomallas desempeñan un papel clave como elementos de refuerzo en múltiples áreas de la ingeniería geotécnica. Esta función se activa cuando la geomalla comienza a resistir esfuerzos de tracción, trabajando conjuntamente con el entrelazado de agregados de distintas características para formar una estructura estable.

Aplicaciones más comunes de las geomallas uniaxiales:

- Refuerzo estructural de muros y taludes.
- Estabilización de terraplenes con pendientes pronunciadas y diques.
- Mejora de la resistencia en suelos blandos.
- Control de deslizamientos.
- Extensión de la altura en crestas de taludes.
- Estabilización de cortes en taludes.
- Reforzamiento en estribos, muros y aletas de puentes.
- Construcción de muros vegetados o con recubrimiento de concreto.

Aplicaciones principales de las geomallas biaxiales y triaxiales:


- Refuerzo de terraplenes en infraestructuras viales y ferroviarias.
- Estabilización de la base en caminos pavimentados y sin pavimentar.
- Refuerzo en pavimentos de pistas aeroportuarias.
- Estabilización del balasto en sistemas ferroviarios.
- Contención sobre formaciones rocosas con fisuras.
- Reducción del espesor requerido en capas del pavimento.
- Prolongación de la vida útil del pavimento como resultado de un mejor desempeño estructural.

• Mejora de la capacidad portante de la subrasante formada por suelos blandos

2.1.4. Mecanismo de refuerzo generado por las geomallas

Las geomallas uniaxiales, biaxiales y triaxiales son aplicadas como refuerzo en pavimentos, esta inclusión mejora el comportamiento del pavimento ya que reduce los esfuerzos presentados en esta, esta mejora se atribuye a tres mecanismos como se ilustra en la Figura 6.

Figura 6
Los mecanismos de refuerzo inducidos por los geosintéticos

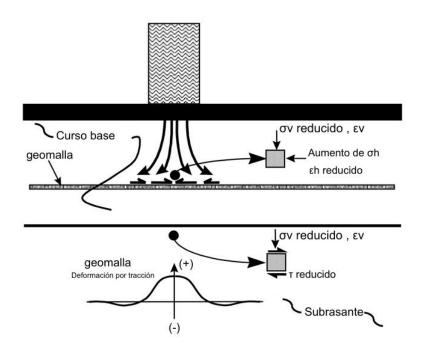
Nota: (A) Confinamiento lateral, (B) Aumento de la capacidad portante, y (C) Efecto membrana. Fuente: Adaptado de Holtz et al 1998

2.1.4.1. Confinamiento lateral.

Conforme a (Zornberg & Gupta, 2010) el confinamiento lateral se presenta cuando interactúan el agregado de la base o sub base con el geosintetico esto permite que la transferencia de esfuerzo corte de la capa a un esfuerzo de tracción en el geosintetico, por lo tanto la rigidez a la tracción del geomalla limita las deformaciones laterales en la capa, una capa de geomalla confina la capa de la capa base, lo que aumenta su tensión media y conduce a un aumento en la resistencia al corte.

2.1.4.2. Mejoramiento de la capacidad portante.

De acuerdo con (Zornberg & Gupta, 2010) el mejoramiento de la capacidad portante se deriva a que la geomalla facilita el desarrollo de una superficie alternativa de falla, al generarse este plano alternativo se proporciona una superior capacidad de soporte. El refuerzo de la geomalla logra disminuir los esfuerzos cortantes en la capa, se puede prever que el modo de falla podría evolucionar de un punzonamiento localizado hacia una falla generalizada.


2.1.4.3. Membrana tensionada.

Basado en (Zornberg & Gupta, 2010)El refuerzo proporciona una reacción de componente vertical a la carga de la rueda aplicada. Este fenómeno, conocido como efecto de membrana tensada, se produce cuando las deformaciones verticales provocan que la geomalla adopte una configuración cóncava. Las tensiones generadas en el material contribuyen a resistir la carga vertical impuesta por la rueda, al mismo tiempo que disminuyen la tensión transmitida directamente a la subrasante.

De acuerdo con (Berg, Barry R., & Perkins, 2000) la presencia de una capa de geosintético dentro o en el fondo de la base(Figura 7) también puede provocar un cambio en el estado de tensiones y deformaciones en la subrasante. Para sistemas en capas, cuando un material de menor rigidez se encuentra en la subrasante, justo debajo de la base o subbase, el incremento en el módulo de rigidez de esta última mejora la distribución de las tensiones verticales, haciéndolas más uniformes en toda la subrasante. En términos generales, la tensión vertical que se genera en la subbase o en la subrasante ubicada justo debajo del geosintetico y con la carga aplicada tiende a disminuir conforme se incrementa la rigidez de la capa de base o subbase. La tensión vertical sobre la subrasante se distribuirá más ampliamente, lo que significa que la deformación de la superficie será cada vez menos uniforme. Por lo tanto, la geomalla refuerza de una mejor distribución de tensiones verticales en la subrasante.

Figura 7

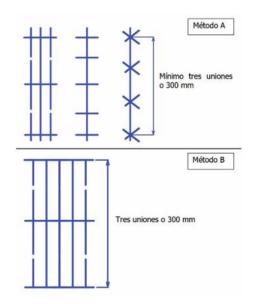
Mecanismo de refuerzo (geomalla) en la capa Base

Nota: Adaptado de Geosynthetic Reinforcement of the Aggregate Base/Subbasr Courses of Pavement Structures

2.1.5. Ensayo de Resistencia a la Tracción.

El procedimiento descrito en la norma ASTM D6637, conocido como "Standard Test Method for Determining the Shear Strength of Geosynthetics by Direct Shear", tiene como propósito principal evaluar la resistencia al corte de los geosintéticos. Estos materiales son ampliamente utilizados en el ámbito de la ingeniería geotécnica, ya que contribuyen al reforzamiento de suelos y a la mejora de la estabilidad de diversas estructuras.

Este método implica la aplicación de una carga de corte sobre una muestra de geomalla colocada

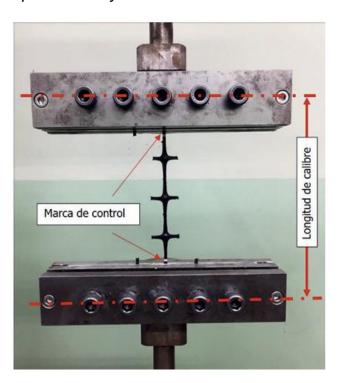

entre dos placas, y se registra la fuerza necesaria para provocar el deslizamiento de la muestra. Los resultados del ensayo proporcionan información clave sobre la capacidad de la geomalla para resistir fuerzas de corte en condiciones reales de carga, lo que es fundamental para su uso en aplicaciones de refuerzo de suelos y estabilización de estructuras. (ASTM International, 2023)

De acuerdo con (Campos Zeledón, 2019) para realizar el ensayo de tracción última se debe tener en cuenta:

- a. **Equipo:** Debe trabajar con una máquina de tasa constante de extensión
- b. **Tamaño del espécimen:** Existen diferentes métodos (A, B y C) del dimensionamiento del espécimen como se muestra en la Figura 8.

Figura 8

Dimensión del espécimen según el método de falla


Nota: Adaptada de (ASTM International, 2023)

- Método A: Este procedimiento, cada muestra debe tener un ancho suficiente para incluir al menos una costilla que se cruce (o conjunto de costillas) en el sentido de la prueba, además de una longitud que contenga un mínimo de tres uniones (dos aperturas) o 300 mm.
- Método B: En este caso, las muestras deben tener un ancho mínimo de 200 mm e incluir al menos cinco costillas en la dirección de la prueba. Asimismo, su longitud debe abarcar como mínimo tres uniones (dos aperturas) o 300 mm, según se observa en la Figura 9.
- c. Procedimiento: El procedimiento de prueba para los métodos A y B es idéntico, diferenciándose únicamente en la geometría del espécimen (tracción individual o multi-costillas). Primero, se colocan los sujetadores ubicados en el bastidor de

carga de la máquina universal de ensayos tal como se ilustra en la Figura 9. Luego, se centra el espécimen en una mordaza, introduciendo 5 cm del espécimen y ajustándolo, y se repite el proceso para el otro extremo. Se programa la velocidad del ensayo en el software de la máquina, una velocidad de deformación comprendida entre el 7 % y el 13 %.por minuto de la longitud calibrada, calculando la velocidad constante multiplicando la longitud calibrada por un valor entre 0,07 y 0,13. Se inicia la prueba hasta la rotura del espécimen, reportando la máxima fuerza y elongación alcanzadas. Finalmente, se extrae el archivo de historial de carga y deformación desde la computadora conectada a la máquina, el cual es crucial para el informe de resultados.

Figura 9

Longitud de calibre para el ensayo

Nota: Longitud de calibre para sistemas de fijación de agarre fijo y marca de control de desplazamiento de la geomalla dentro de las caras de la mordaza *Fuente:* Adaptado de (Campos Zeledón, 2019)

d. Cálculo de resultados:

 Método A: Partiendo de los datos registrados, se reporta la resistencia última promedio de la costilla promediando el conjunto de resistencias últimas a la tracción obtenidas en cada ensayo, en N. La elongación promedio a la falla se determina por separado para cada espécimen y es expresada como el incremento porcentual en la longitud inicial de calibre del espécimen, en %.

 Método B: Para calcular la fuerza equivalente por unidad de ancho (en N/m), se utiliza la siguiente ecuación (1)

$$\propto_f = \left[\frac{F_p - T_0}{N_r}\right] \times N_t \dots (1)$$

Donde:

 \propto_f es la fuerza equivalente por unidad de ancho, N/m

 F_p =Fuerza máxima registrada, N

 $T_0 = \text{Tensión de relajación, N}$

 N_r = Número de elementos siendo sometidos a tensión

 $N_t =$ Numero de elementos a tension por unidad de ancho, igual a N_c/b (ver Nota 1)

Nota 1: El valor de N_t se obtiene a partir del promedio de tres mediciones realizadas sobre muestras que representan aproximadamente el 95 % del ancho total del rollo del geosintetico. Para cada medición, se considera la distancia entre los ejes centrales de la primera y la última abertura en la muestra, lo que define el valor de b. Dentro de esa longitud, se cuenta el número de elementos sometidos a tracción, N_c , y a partir de ello se calcula N_t utilizando la relación N_c/b

2.2. Pavimento

2.2.1. Definición

De acuerdo con (VIVAR, 1995), el pavimento está constituido por una o varias capas que se apoyan sobre toda la superficie del terreno, cuya función es soportar tanto cargas fijas como en movimiento durante un periodo determinado. Para mantener su buen desempeño a lo largo del tiempo, requiere de tratamientos que prolonguen su vida útil. Dichas capas, con distintos espesores y calidades, se instalan sobre un suelo previamente preparado. La finalidad principal de esta estructura es ofrecer una

superficie uniforme, resistente al desgaste y al deslizamiento, además de proporcionar un soporte estructural estable frente a las cargas que reciba.

2.2.2. Clases de pavimento

Existen diversos criterios para clasificar los pavimentos, entre ellos se consideran la calidad de los materiales utilizados, el tipo de estructura, la finalidad del proyecto, su vida útil prevista y el modo en que se distribuyen las cargas sobre el terreno. Según estos factores, los pavimentos se agrupan en dos grandes categorías: rígidos y flexibles.

2.2.2.1. Payimento flexible.

Según (MONTEJO, 1997), este tipo de pavimento está compuesto por una capa bituminosa que se apoya sobre dos capas rígidas: la base y la subbase. Sin embargo, es posible omitir alguna de estas capas cuando las condiciones particulares del proyecto así lo requieren.

2.2.2.2. Pavimento rígido.

De acuerdo con (MONTEJO, 1997), este tipo de pavimento se caracteriza por estar compuesto principalmente por una losa de concreto hidráulico, que se apoya directamente sobre la subrasante o sobre una capa de material seleccionado, la cual recibe el nombre de subbase del pavimento rígido.

Gracias a la alta rigidez del concreto y a su elevado módulo de elasticidad, los esfuerzos se distribuyen en una zona extensa. Además, el concreto puede resistir en cierto grado los esfuerzos de tracción, lo que permite que el comportamiento estructural del pavimento sea adecuado incluso cuando se presentan irregularidades o debilidades en la subrasante. En consecuencia, la capacidad portante del pavimento rígido depende fundamentalmente de la resistencia de la losa, y el soporte de las capas inferiores tiene una influencia mínima en el diseño del espesor total.

2.2.2.3. Estructura de pavimento.

Un pavimento está compuesto por diferentes capas, cada una con una función específica dentro del sistema estructural. Estas capas son:

• **Subbase**, que tiene una función primaria de protección (drenante y anti contaminante) de la base en un pavimento flexible o de las losas en un pavimento

rígido; y una función secundaria resistente principalmente en el caso de los pavimentos flexibles, pudiendo ser granular o estabilizada (VIVAR, 1995).

De acuerdo a la norma técnica (CE.010 Pavimentos Urbanos, 2010) los requerimientos granulométricos y de ensayos especiales para material de subbase son los siguientes:

Tabla 1Rangos Granulométricos para Subbase Granular

Tamiz	Porcentaje que Pasa en Peso			
	Gradación A	Gradación B	Gradación C	Gradación D
50 mm (2")	100	100		
25 mm (1")		75-95	100	100
9,5 mm (3/8 ")	30-65	40-75	50-85	60-100
4,75mm (N°4)	25-55	30-60	35-65	50-85
2,0mm (Nº10)	15-40	20-45	25-50	40-70
425µm (Nº40)	8-20	15-30	15-30	25-45
75µm (Nº200)	2-8	5-15	5-15	8-15

Nota: La curva de gradación A deberá emplearse en zonas cuya altitud sea igual o superior a 3000msnmm. Fuente: Adaptado de EG-2013, Manual de Carreteras "Especificaciones Técnicas Generales para Construcción" (EG-2013)

En la Tabla 2 se presentan los valores de control establecidos por las Normas Técnicas Peruanas para la calidad de los materiales utilizados como subbase granular. Los parámetros se diferencian según si el proyecto se ubica por debajo o por encima de los 3000 msnm. Se incluyen requisitos de abrasión, CBR, plasticidad, contenido de sales solubles, entre otros.

 Tabla 2

 Limites de calidad para materiales de Subbase granular según altitud

Ensayo	Norma	Requerimiento	
		< 3000 msnm	≥ 3000 msnm
Abrasión Los Ángeles	NTP 400.019.2002	50% máximo	
CBR de laboratorio	NTP 339.145.1998	30-40% mínimo	
Limite Liquido	NTP 339.129.1998	25% máximo	
Indice de Plasticidad	NTP 339.146.1998	6% máximo	4% máximo
Equivalente de Arena	NTP 339.146.2000	25% mínimo	25% mínimo
Sales Solubles Totales	NTP 339.152.2002	1% m	áximo

Nota. Para el CBR, se considera un mínimo de 30% para pavimentos rígidos y adoquinados, y del 40% para pavimentos flexibles. Fuente: Adaptado de Ministerio de Vivienda, Construcción y Saneamiento (CE.010 Pavimentos Urbanos, 2010)

- Base, constituye el principal componente estructural en pavimentos flexibles y, en
 el caso de los pavimentos rígidos, puede asumir el rol de la subbase. Esta capa
 puede estar compuesta por materiales aglomerados con asfalto (como en las
 denominadas bases negras o estabilizadas), con cemento Portland (como en las
 bases estabilizadas con cemento o en las de concreto compactado con rodillo), o
 incluso por suelos no aglomerados, como sucede en las bases de grava. (VIVAR,
 1995).
- Capa de Desgaste o Superficie de Rodadura, se trata de la capa más externa
 del pavimento, en contacto directo con las cargas del tránsito. Su función principal
 es brindar una superficie que facilite el desplazamiento vehicular, ofreciendo
 resistencia al desgaste y reduciendo el deslizamiento. En los pavimentos rígidos,
 esta capa también cumple un rol estructural fundamental. (VIVAR, 1995).

Podemos considerar las capas que se encuentran que se encuentra por debajo de la estructura del pavimento, las cuales son:

- Terreno de fundación: corresponde al estrato que actúa como base del pavimento, una vez concluidos los trabajos de movimiento de tierras. Tras su compactación, debe presentar las secciones transversales y pendientes indicadas en los planos de diseño.
- Superficie sub rasante: es la parte superior del terreno de fundación (RODAS, 1980)

2.3. Métodos de Diseño de Pavimento Flexible

2.3.1. Metodología de diseño de pavimento flexible sin refuerzo

2.3.1.1. Método AASHTO 1993

Este procedimiento está basado en modelos que fueron desarrollados en función de la performance del pavimento, las cargas vehiculares y resistencia de la sub rasantes para el cálculo de espesores. (Manual de Carreteras, Suelos, Geotecnia y Pavimento, 2014)

Según el (Manual de Carreteras, Suelos, Geotecnia y Pavimento, 2014) este procedimiento tiene como objetivo calcular el Número Estructural (SN), el cual permite determinar los espesores apropiados de cada una de las capas que conforman el pavimento. Este cálculo es esencial para definir cómo se debe construir la estructura sobre la subrasante.

La metodología empleada incluye una ecuación general (ec. 2) que permite estimar el valor del SN a partir de diversos parámetros técnicos.

$$log_{10}(W_{18}) = Z_R S_O + 9.36 log_{10}(SN+1) - 0.2 + \left[\frac{log_{10} \left(\frac{\Delta PSI}{4.2 - 1.5} \right)}{0.4 + \frac{1094}{(SN+1)^{5.19}}} \right] + 2.32 log_{10}(M_R) - 8.07$$
... (2)

- W_{18} : Numero de ejes equivalentes acumulados durante el periodo de diseño
- R: El parámetro o nivel de confiabilidad del diseño
- Z_R: Valor estadístico de desviación estándar normal
- S₀: Desviación estándar combinada

- PSI: Índice de Serviciabilidad Presente
- M_R : Modulo de resiliencia del material de la subrasante

Para determinar el Número Estructural requerido (SN), que refleja el espesor estructural total del pavimento proyectado, es necesario convertir dicho valor en espesores efectivos para cada una de las capas del pavimento: superficie, base y subbase. Esta transformación se realiza aplicando la siguiente expresión matemática:

$$SN = a_1d_1 + a_2d_2m_2 + a_3d_3m_3...(3)$$

Donde:

- a_1, a_2, a_3 = Coeficientes estructurales correspondientes a las capas: superficial, base y subbase respectivamente
- d_1, d_2, d_3 = Espesores (en centímetros) de cada una de estas capas
- m_2 , m_3 = Coeficiente de drenaje aplicables a las capas de base y subbase

2.3.2. Metodología de diseño de pavimento flexible reforzado

2.3.2.1. Método AASHTO R-50.

El método AASHTO R 50, titulado "Design and Construction of Stabilized Full-Depth Reclamation (FDR) Pavement", es una norma desarrollada por la American Association of State Highway and Transportation Officials (AASHTO), esta guía está orientada al diseño y ejecución de pavimentos utilizando la técnica conocida como Reclamación de Profundidad Completa (FDR, por sus siglas en inglés). Este método juega un papel clave en la rehabilitación de pavimentos deteriorados, ya que permite mejorar las condiciones estructurales de las capas existentes mediante su estabilización con materiales apropiados. Además, es compatible con el enfoque tradicional establecido en AASHTO 1993, incorporando conceptos adicionales que permiten calcular espesores optimizados para la nueva estructura del pavimento, estos conceptos adicionales son:

 BCR (Reducción de la Capa Base): Es un factor que se define como el porcentaje de reducción en el espesor de la capa base debido a una adición de refuerzo geosintèntico. (CEDEX, 2013)

- TBR (Relación del Tráfico Beneficio): Se define como la relación entre el numero de ciclos de carga en una sección reforzada hasta alcanzar un determinado nivel de falla (una profundidad de ahuellamiento) y el numero de aplicaciones de carga en una sección sin reforzar con las misma geometría y materiales. (CEDEX, 2013)
- LCR (Relación del coeficiente de capa): Este factor se define como la relación de los coeficiente de capa de la capa granular reforzada y el coeficiente de la capa granular sin reforzar. (PAVCO, 2009)

2.3.2.1.1. Diseño con BCR.

Para (CEDEX, 2013) el factor BCR se ha aplicado un modificador a la ecuación (3), como se muestra a continuación:

$$SN = a_1d_1 + BCR a_2d_2m_2 + a_3d_3m_3 ... (4)$$

Cuando se dimensiona un pavimento utilizando el BCR, el espesor reducido de la capa de base se puede estimar de la siguiente manera: (CEDEX, 2013)

$$d_{2(Reforzado)} = \frac{SN_u - a_1d_1 - a_3d_3m_3}{BCR \ a_2m_2} \dots (5)$$

Donde $d_{2(Reforzado)}$ es el espesor de capa de base reducida debido a re fuerzo y SN_u es el número estructural correspondiente al número de ejes W_{18} para el pavimento no reforzado. El BCR ha sido determinado a partir de pruebas de laboratorio y de campo. (CEDEX, 2013)

Realizando una analogía la ecuación (5) para reducir la capa de subbase es:

$$d_{3(Reforzado)} = \frac{SN_u - a_1d_1 - a_2d_2m_2}{BCR \ a_3m_3} \dots (6)$$

2.3.2.1.2. Diseño con LCR.

La función estructural que cumple una geomalla en un pavimento flexible puede evaluarse a partir del aumento que genera en el coeficiente estructural de la capa base de la vía.. Por lo anterior, la ecuación (3) se convierte ahora en: (PAVCO, 2009)

$$SN = a_1d_1 + LCR a_2d_2m_2 + a_3d_3m_3 ... (7)$$

La reducción en espesor de la base puede ser evaluada con el uso de una geomalla mediante la ecuación (7), asumiendo que no existe una capa de subbase.

$$d_{2(Reforzado)} = \frac{SN_u - a_1d_1m_2}{LCR \ a_2m_2}...(8)$$

A partir del gráfico de diseño mostrado en la Figura 10, se puede determinar el espesor $d_{2(Reforzado)}$ del pavimento flexible reforzado con geomalla

Figura 10

LCR (Layer Coeficiente ratio) vs. CBR de la subrasante

Nota: Adaptada de Design of flexible road pavements with MacGrid geogrids

Llevando acabo una semejanza para la disminución del espesor correspondiente a la subbase de la Subbase, se aplica:

$$SN_{sb} = a_2 d_2 m_2 + a_3 (LCR * d_{3r}) m_3 \dots (9)$$

$$d_{3reforzado} = \frac{SN_{sb} - a_2 d_2 m_2}{a_2 * LCR * m_2} \dots (10)$$

2.4. Pavimento reforzado con geomallas

Es común que los pavimentos flexibles presenten fallas anticipadas debido a que el material de la capa base tiende a desplazarse lateralmente fuera de la zona de carga de las ruedas. Esta situación genera ahuellamiento y pérdida de soporte bajo las líneas de tránsito, lo que finalmente provoca la fisura o ruptura de la superficie del pavimento. (Calvanaro, Leonardi, & Palamar, 2017)

La geomalla debe tener la capacidad de distribuir cargas eficazmente sobre la sub rasante, de manera amplia y pareja, debe de existir una interacción compleja entre la geomalla y el material. Esto se logra mediante la distribución de cargas de manera más eficiente, reduciendo la presión sobre la subrasante, mejorando de este modo su desempeño, utilizando el mismo principio de las raquetas para nieve, que soportan el peso de un hombre sobre la nieve blanda, transformando la carga puntual en una carga distribuida. (Calvanaro, Leonardi, & Palamar, 2017)

2.4.1. Geomalia como refuerzo de la subrasante

Según (Caballero, 2006), en suelos blandos, las subrasantes débiles son un desafío común en la construcción de pavimentos, ya que su falla puede llevar al deterioro rápido del pavimento flexible. Tradicionalmente, se ha optado por reemplazar estas subrasantes con material importado o estabilizarlas químicamente, métodos que resultan costosos y lentos. El empleo de geomallas sobre la subrasante mejora significativamente su resistencia, lo que permite conformar estructuras de pavimento más sólidas. Este refuerzo favorece una mejor compactación, disminuye la deformación vertical (como el punzonamiento) y la oscilación, y además incrementa la capacidad portante de la subrasante. Como resultado, se logran reducir tanto los costos como el tiempo de construcción.

A medida que aumenta la resistencia de la subrasante, la geomalla puede emplearse tanto para estabilizarla como para reforzar la capa granular. Según (Caballero, 2006), el uso de geomallas en la subrasante se recomienda conforme a los siguientes intervalos del valor CBR:

- $0 \le CBR < 2$: Se requiere para habilitar una plataforma de trabajo sobre la subrasante y evitar fallas relacionadas con su baja capacidad portante.
- $2 \le CBR < 4$: Permite asegurar la estabilidad de las capas granulares superiores.
- CBR ≥ 4: Favorece la disminución del espesor de las capas granulares y prolonga la vida útil del pavimento flexible.

Asimismo, el Manual de Carreteras (MINISTERIO DE TRANSPORTE Y COMUNICACIONES, 2014) establece seis categorías de subrasante basadas en su capacidad de soporte CBR, como se presenta en la Tabla 3.

 Tabla 3

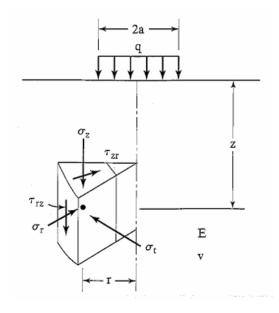
 Clasificación de subrasantes según su capacidad de soporte (CBR)

Categorías de Subrasante	CBR
S _o : Subrasante inadecuada	<i>CBR</i> < 3%
S ₁ : Subrasante insuficiente	$De\ CBR \ge 3\%\ a\ CBR\ < 6\%$
S ₂ : Subrasante regular	$De\ CBR \ge 6\%\ a\ CBR\ < 10\%$
S ₃ : Subrasante buena	$De\ CBR \ge 10\%\ a\ CBR\ < 20\%$
S ₄ : Subrasante muy buena	$De\ CBR \ge 20\%\ a\ CBR\ < 30\%$
S ₅ : Subrasante excelente	$CBR \ge 30\%$

Nota: Adaptada del Manual de carreteras, Suelos, geología, geotecnia y pavimentos del (MINISTERIO DE TRANSPORTE Y COMUNICACIONES, 2014)

2.4.2. Geomalia como refuerzo de la base o sub base

Para (Caballero, 2006) el refuerzo de la base o subbase con geomalla se basa en la restricción lateral o confinamiento del suelo granular, lo que mejora la resistencia del pavimento flexible. Sin geomalla, el agregado granular puede desplazarse lateralmente bajo cargas de tráfico, provocando ahuellamiento y fallos estructurales. La geomalla, al interactuar con el suelo granular, limita este desplazamiento lateral, mejorando el desempeño a largo plazo. Este confinamiento reduce las deformaciones al mantener el material granular en compresión, Incrementando la rigidez estructural de la capa base. Esto se traduce en una mayor capacidad de soporte y menor deformación en la subrasante. Basado en Caballeros (2006), el refuerzo proporcionado por la geomalla, que depende de su módulo de deformación elástico y de la restricción lateral, es más efectivo con suelos granulares que contienen partículas angulares. La alta rigidez de la geomalla también retrasa la deformación por tensión, resultando la disminución de la deformación vertical en la capa de rodadura.


2.5. Esfuerzos y Deformaciones en Pavimentos Flexibles

Conforme a (Huang, Pavement Analysis and Desing, 2006), una forma práctica de analizar el comportamiento estructural de un pavimento flexible frente a cargas vehiculares es modelarlo como un medio semiespacial con propiedades homogéneas.

La teoría de Boussinesq (1885) se basa en una carga concentrada aplicada sobre un semiespacio elástico. Las tensiones, deformaciones y deflexiones generadas por una carga concentrada pueden ser integradas para calcular su distribución sobre una superficie circular de contacto. Antes del desarrollo de la teoría en capas por Burmister (1943), se prestó mucha atención a las soluciones de Boussinesq porque eran las únicas disponibles.

La Figura 11 representa un medio semiespacial homogéneo sometido a una carga circular de radio "a" y presión uniforme "q". El semiespacio se caracterizas por un módulo elástico E y un coeficiente de Poisson "v". En el modelo se analiza un pequeño elemento cilíndrico con centro ubicado a una distancia "z" desde la superficie y a una distancia radial "r" respecto al eje de simetría. Debido a las condiciones de axisimetria, solo se considera tres tensiones normales σ_z , σ_r y σ_t ; y una tensión cortante, τ_{rz} , siendo esta última igual a τ_{zr} . Las tensiones resultantes dependen de las variables q, r/a y z/a.

Figura 11
Componentes de tensiones bajo carga axisimétrica

Nota: Adaptado de "Pavement Analysis and Desing" (p.46), por Y. H. Huang, 2004.

Foster y Ahlvin (1954) desarrollaron una serie de gráficos útiles para estimar parámetros como la tensión vertical, radial, tangencial, la tensión cortante y la deflexión vertical generadas por una carga "q" aplicada sobre una superficie circular de radio "a". Dado que la relación de Poisson influye mínimamente en estos parámetros, asumieron un medio incomprensible con con una relación de Poisson de 0.5, lo que permite usar un único conjunto de gráficos en lugar de múltiples series para cada valor de ν . Posteriormente, este enfoque fue perfeccionado mediante el software KENLAYER, facilitando el análisis de esfuerzos y deformaciones en estructuras de pavimentos flexibles.

Después de obtener las tensiones de los gráficos, las deformaciones se pueden obtener de :

$$\epsilon_z = \frac{1}{E} \left[\sigma_Z - \nu (\sigma_r + \sigma_t) \right] \dots (11)$$

$$\epsilon_r = \frac{1}{E} [\sigma_r - \nu(\sigma_t + \sigma_z)] \dots (12)$$

$$\epsilon_t = \frac{1}{E} \left[\sigma_t - \nu (\sigma_z + \sigma_r) \right] \dots (13)$$

Cuando la zona de contacto incluye dos áreas circulares, es posible estimar las tensiones y deformaciones resultantes aplicando el principio de superposición.

Con base en los estudios de Foster y Ahlvin (1954), se determinan los valores del esfuerzo vertical máximo σ_{zmax} y de la deformación vertical ε_z , en el centro de la zona circular cuando z=0.

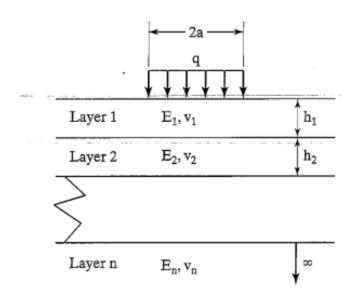
 Se considera el esfuerzo vertical máximo alineado con el eje z. La expresión correspondiente es:

$$\sigma_z = q * \left[1 - \frac{z^3}{(a^2 + z^2)^{1.5}} \right] \dots (14)$$

Note que el σ_z es independiente de E , ν

Deformación vertical máxima en el eje z

$$\varepsilon_z = \frac{1+\nu}{E} * q * \left[1 - 2\nu + \frac{2\nu z}{(a^2 + z^2)^{0.5}} - \frac{z^3}{(a^2 + z^2)^{1.5}} \right] \dots (15)$$


Deflexión vertical máxima en la superficie y en el centro de la carga circular. Para z=0 y r=0

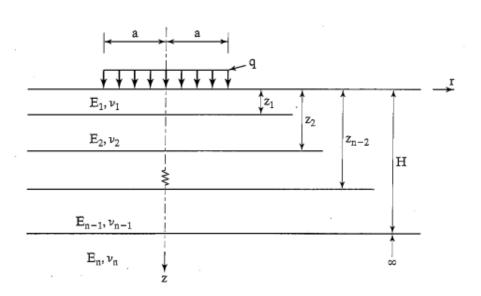
$$\omega_0 = \frac{1 + v^2}{E} * q \dots (16)$$

2.5.1. Sistemas Estratificados

Los pavimentos flexibles se componen de capas con materiales de mejor calidad en las zonas superiores, por lo que no pueden considerarse estructuras homogéneas. En este sentido, resulta más adecuado aplicar la teoría de capas propuesta Burmister. Fue Burmister (1943) quien formulo por primera vez soluciones para un sistema de dos capas y luego las extendió a un sistema de tres capas (Burmister, 1945). Con el avance de las computadoras, la teoría se puede aplicar a un sistema multicapa con cualquier número de capas (Huang, Pavement Analysis and Design)

Figura 12
Sistema de n-capas sometido a una carga circular

Nota: Adaptado de "Pavement Analysis and Desing" (p.57), por Y. H. Huang, 2004.


Para el análisis, se establecen ciertas condiciones fundamentales: cada una de las capas se considera homogénea, con propiedades elásticas isotrópicas y comportamiento lineal, caracterizadas por un módulo de elasticidad E y un coeficiente de Poisson v. Se asume que el material carece de peso propio y se extiende infinitamente en el plano superficial. Todas las capas presentan un espesor definido h, salvo la más profunda, que se considera de espesor infinito. Además, se aplica una presión uniforme q sobre una superficie circular de radio a.

Asimismo, se establece la continuidad en las interfaces de las capas, asegurando que se mantengan constantes la tensión vertical, el esfuerzo cortante y los desplazamientos en dirección vertical y radial. En los casos donde no exista fricción entre capas, la continuidad del esfuerzo cortante y del desplazamiento radial se sustituye por una condición de esfuerzo cortante igual a cero a ambos lados de la interfaz.

Sistema Elástico Multicapa

La Figura 13 representa una estructura compuesta por n capas descritas en coordenadas cilíndricas, en la cual la capa número n se considera de espesor ilimitado. Para cada capa i, se asignan propiedades elásticas específicas: el módulo de elasticidad Ei y el coeficiente de Poisson vi

Figura 13
Sistema de n-capas en coordenadas cilíndricas

Nota: Adaptado de "Pavement Analysis and Desing" (p.95), por Y. H. Huang, 2004.

Para problemas elásticos con simetría axial, un método conveniente es asumir una función de esfuerzo que satisfaga la ecuación diferencial gobernante y las condiciones de frontera y continuidad. Una vez que se encuentra la función de esfuerzo, se pueden determinar los esfuerzos y desplazamientos (Timoshenko & Goodier, 1951).

En el Apéndice B se detallan las ecuaciones que emplea el software KENLAYER para estimar los esfuerzos y desplazamientos en una estructura de múltiples capas sometida a una carga distribuida circular.

La ecuación diferencial que debe satisfacerse es una ecuación diferencial de cuarto orden, como se describe a continuación. La función de esfuerzo para cada capa tiene cuatro constantes.

Como en la teoría clásica de la elasticidad, se asume una función de esfuerzo Ø que satisface la ecuación diferencial gobernante:

$$\nabla^4 \emptyset = 0$$
 (Ecuación B.1a)

Se asume esta ecuación para cada una de las capas. Para sistemas con una distribución de esfuerzos simétrica axialmente, la ecuación diferencial toma la forma:

$$\nabla^4 = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2}\right) \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2}\right) \text{(Ecuación B.1b)}$$

Las variables r y z representan coordenadas cilíndricas que indican las direcciones radial y vertical, respectivamente.

Después de encontrar la función de esfuerzo, los esfuerzos y desplazamientos se determinan mediante las siguientes ecuaciones:

Esfuerzos:

Esfuerzo vertical
$$\sigma_z = \frac{\partial}{\partial z} \left[(2 - v) \nabla^2 \emptyset - \frac{\partial^2 \emptyset}{\partial z^2} \right] \dots$$
 (Ecuación B.2a)

Esfuerzo radial
$$\sigma_r = \frac{\partial}{\partial z} \left[v \nabla^2 \emptyset - \frac{\partial^2 \emptyset}{\partial r^2} \right]$$
 ...(Ecuación B.2b)

Esfuerzo tangencial
$$\sigma_t = \frac{\partial}{\partial z} \left[v \nabla^2 \emptyset - \frac{1}{r} \frac{\partial \emptyset}{\partial r} \right] \dots$$
 (Ecuación B.2c)

Esfuerzo cortante:
$$\tau_{rz} = \frac{\partial}{\partial z} \left[(1 - v) \nabla^2 \phi - \frac{\partial^2 \phi}{\partial z^2} \right]$$
 ...(Ecuación B.2d)

• Desplazamientos:

Desplazamiento vertical
$$w = \frac{1+v}{E} \left[(1-2v) \nabla^2 \phi + \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} \right] \dots$$
 (Ecuación B.2e)

Desplazamiento radial u
$$u=\frac{1+v}{E}\Big[\frac{\partial^2\emptyset}{\partial r\ \partial z}\Big]\ldots$$
 (Ecuación B.2f)

3. CAPÍTULO III: HIPÓTESIS Y VARIABLES

3.1. Formulación de la hipótesis

3.1.1. Hipótesis general

El mejor comportamiento mecánico de una estructura de pavimento reforzado con geomalla triaxial se presenta en la interfaz subbase - subrasante

3.1.2. Hipótesis especificas

- Los esfuerzos y las deformaciones son menores en la interfaz subbase subrasante de la estructura de pavimento flexible reforzado.
- La profundidad óptima de la geomalla dentro de la estructura de pavimento flexible reforzado se encuentra en la parte inferior de la subbase.
- Las propiedades de resistencia a tracción de las geomallas biaxial y triaxial cumplen con sus especificaciones técnicas

3.2. Variables e indicadores

3.2.1. Variable independientes

Geomalias

3.2.2. Variable dependientes

Comportamiento mecánico de la estructura de pavimento reforzado

3.3. Operacionalización de variables

Tabla 4Cuadro de Operacionalización de las Variables

Variable	Dimensiones	Indicadores	Método de Medición
	Tipos	Propiedades de la Geomalla Biaxial Extruida MacGrid EGB 30 Propiedades de la Geomalla Triaxial	Ensayo de Laboratorio: Resistencia a la Tracción
Geomallas	Ubicación	TriAx TX160 Profundidad H Profundidad H/2 Profundidad H/3	Medición con cinta métrica durante la colocación, desde la superficie hasta el plano reforzado
Comportamiento mecánico de la estructura de	Deformación Vertical	Compresión de la estructura de pavimento en la Maquina Universal	Medición de desplazamiento vertical en la Maquina Universal
pavimento reforzado	Esfuerzos y deformaciones unitarias radiales	lectura de los sensores de deformación ubicados en el plano reforzado	Sensores de deformación ubicados en el plano reforzado

Nota. H es el espesor de la subbase. Fuente: Elaboración Propia

4. CAPÍTULO IV: METODOLOGÍA DE LA INVESTIGACIÓN

4.1. Método de la investigación

El tipo de investigación empleado es de carácter *experimental*. Este enfoque implica que el investigador manipula intencionalmente ciertas variables con el fin de identificar las relaciones entre ellas, fundamentándose en principios científicos. El procedimiento consiste en recolectar información que permita contrastar los resultados obtenidos de un grupo experimental frente a los de un grupo control. En este contexto, se consideran variables dependientes aquellas que se desean observar o analizar, y variables independientes aquellas que son manipuladas para evaluar su efecto sobre las dependientes.

El proceso seguido en la presente investigación fue el siguiente:

- Revisión bibliográfica sobre uso de geomallas en pavimento.
- Definición de variables:
 - o Independiente: tipo y ubicación de geomalla.
 - Dependientes: esfuerzos y deformaciones.
- Preparación de materiales y equipos: geomallas (biaxial y triaxial), subrasante, subbase y sensores de deformación.
- Conformación de la estructura e instalación de sensores a diferentes profundidades.
- Ensayos de carga estática simulando tránsito vehicular en la máquina universal
- Registro y procesamiento sistemático de datos.
- Interpretación de resultados comparando configuraciones con y sin refuerzo.
- Formulación de conclusiones y recomendaciones para proyectos reales de pavimentación.

4.2. Tipo de investigación

En función de los objetivos planteados y de la naturaleza de los problemas abordados, la presente investigación se enmarca dentro del enfoque *aplicado*, ya que busca ofrecer una solución practica a la situación concreta y real mediante el análisis riguroso de casos específicos.

4.3. Nivel de investigación

El nivel de investigación corresponde a un enfoque descriptivo-correlacional, dado que se pretende caracterizar el comportamiento mecánico de una estructura de pavimento reforzado mediante el uso de geomallas. La parte correlacional se centrará en identificar la relación entre las diferentes configuraciones de geomalla y el desempeño estructural del pavimento, considerando su ubicación e interfaz.

4.4. Diseño de la investigación

El diseño adoptado es de tipo *transversal*, ya que la recolección de datos se llevará a cabo en un único momento temporal, permitiendo obtener una visión puntual de las variables involucradas en el estudio.

4.5. Naturaleza de datos

La investigación se enmarca dentro del enfoque *cuantitativo*, sustentado en la obtención de datos medibles relacionados con las propiedades físicas y mecánicas del suelo (con y sin geomalla), así como en los resultados de los ensayos de tracción aplicados a las geomallas.

4.6. Técnicas de recolección de datos

- Bibliográficas: Revisión y análisis de fuentes técnicas y científicas relevantes al estudio.
- Metodológicas: Evaluación de procedimientos y normas aplicables a pavimentos y ensayos geotécnicos.
- Empírica: Ejecución de pruebas experimentales para validar la hipótesis y obtener evidencias.

4.7. Ensayos de control

4.7.1. Ensayos para el material de subrasante y subbase

Con el propósito de caracterizar adecuadamente los materiales empleados en la subrasante y subbase, se realizaron diversos ensayos de laboratorio conforme a las normas del Manual de Ensayos del MTC. Estos ensayos permiten determinar propiedades físicas fundamentales que influyen directamente en el comportamiento mecánico de dichos materiales.

A continuación, se presenta el resumen de los ensayos realizados, junto con la norma correspondiente y la aplicación específica según el tipo de material:

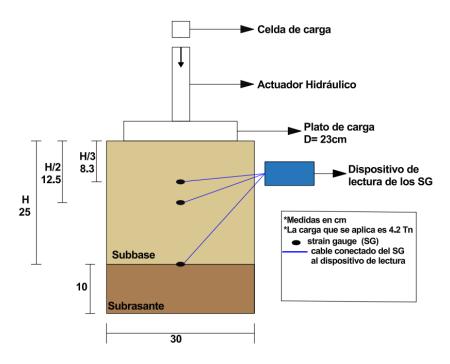
Tabla 5Cuadro de ensayos para el material de subrasante y subbase

	Europeo	Norma	Mater	ial
	Ensayos		Subrasante	Cantera
1	Análisis Granulométrico de suelos por tamizado	E 107	-	Х
2	Análisis Granulométrico por Medio del Hidrómetro	E 109	X	-
3	Limite Liquido de los Suelos	E 110	X	Χ
4 Limite Plástico (L.P.) de los Suelos e Índice de Plasticidad (I.P.)			X	Χ
5 Ensayo Estándar de Gravedad Especifica de Solidos de Suelo mediante Picnómetro de Agua		E 113	X	Х
6	6 Ensayo Equivalente de Arena de Suelos y Agregado Fino		-	Χ
7 Compactación de (Proctor Modificado)		E 115	X	Χ
8	8 CBR de Suelos (Laboratorio)		X	Χ
9	9 Material mas Fino que el Tamiz 75μm (Nº200)		X	Χ
10	10 Abrasión de los Ángeles (L.A.) de Agregados de 37,5mm (1½")		-	Х

Nota. Fuente: Elaboración Propia

4.7.2. Ensayos para geomallas

Para las geomallas Biaxial MacGrid EGB30 y triaxial TriAx TX160, se aplicará el ensayo de resistencia a la tracción conforme a la norma ASTM D6637 - Método Estándar para Determinar las Propiedades de Tracción de Geomallas mediante el Método de Tracción de Costilla Única o Múltiple.


Este procedimiento técnico permite determinar las características de tracción de las geomallas a través de ensayos sobre una o más costillas, proporcionando directrices precisas sobre la preparación de muestras, condiciones de prueba y técnicas de análisis.

4.7.3. Ensayos de la estructura de pavimento reforzado con geomalla

En la presente investigación bautizaremos al ensayo como "Deformación por carga a escala media", para la realización del ensayo, se considera que la estructura del pavimento está compuesta por las capas de subrasante y subbase. El procedimiento tiene como finalidad calcular los esfuerzos y las deformaciones en una estructura de pavimento sin refuerzo (Caso I), comparándolos con aquellos obtenidos en estructuras que incorporan geomallas (biaxial y triaxial) instaladas a distintas profundidades: en la interfaz subrasante-subbase (Caso II), a la mitad del espesor de la subbase (Caso III) y a un tercio del espesor de la subbase (Caso IV).

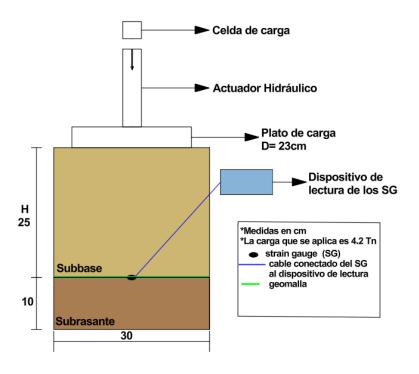

Se aplicará una carga estática distribuida radial al centro del espécimen. Como se observa en la Figura 14 para el Caso I los sensores (strain gauges) se colocarán a diferentes profundidades (H, H/2 y H/3) de la estructura de pavimento sin reforzamiento donde se obtendrán datos de deformaciones unitarias, para la comparación como se muestra en la Figura 15 al 17 se colocarán los strain gauges en los nodos de la geomalla para el caso I (H), caso II (H/2) y caso (H/3) de la estructura de pavimento reforzada, de esta manera poder obtener correctas correlaciones.

Figura 14
Esquema de ensayo realizado del Caso I

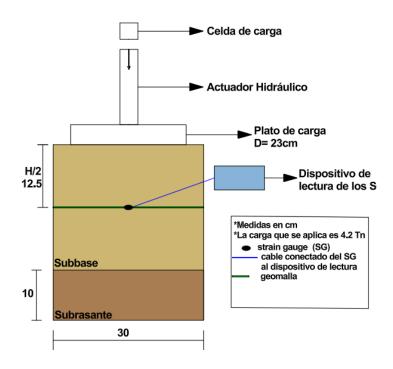

Fuente: Elaboración Propia

Figura 15
Esquema de ensayo realizado del Caso II

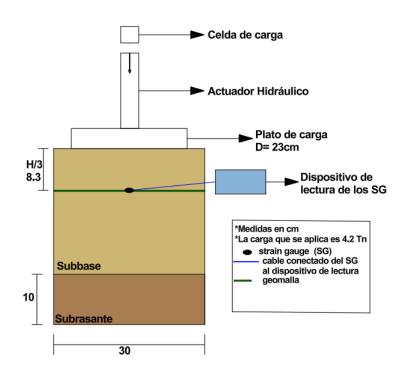

Fuente: Elaboración Propia

Figura 16
Esquema de ensayo realizado del Caso III

Fuente: Elaboración Propia

Figura 17
Esquema de ensayo realizado del Caso IV

Fuente: Elaboración Propia

En la siguiente se visualiza los ensayos que se realizará, se aclara que por cada caso se tendrá que realizar 3 ensayos para poder tener datos comparativos y así poder tener una mejor precisión. En total se realizarán 42 ensayos.

Tabla 6Casos de Estudio de la Investigación

CASOCANTEDA	Sin Geomalla Geomalla Biaxial		Geomalla Triaxial			
CASO/CANTERA	C.H.	C.Q	C.H.	C.Q	C.H.	C.Q
Caso I: Sin geomallas	Х	Х	-	-	-	-
Caso II: Geomalla ubicada a una profundidad H	-	-	Х	Х	Х	Χ
Caso III: Geomalla ubicada a una profundidad de H/2	-	-	X	X	Х	Х
Caso IV: Geomalla ubicada a una profundidad de H/3	-	-	X	X	Х	Х

Nota. Cantera Huillque (C.H.) y Cantera Quillahuata (C.Q.). Fuente: Elaboración Propia

Para el cálculo de del radio de contacto, de acuerdo con (MINISTERIO DE TRANSPORTE Y COMUNICACIONES, 2014) el desgaste generado en el pavimento por un eje simple equipado con dos ruedas convencionales y una carga de 8.2 toneladas métricas, influyendo con neumáticos inflados a una presión de 80 psi, será replicado en las condiciones de este ensayo. Para calcular el radio de contacto, se aplicará la fórmula propuesta por (Yoder, Witczak, 1975):

$$a = \sqrt{\frac{P}{p\pi}} \dots (17)$$

Donde:

P = Carga transmitida por la rueda(lb)

p = Presión de contacto (lbs/pulg2)

a = Radio de contacto(pulg)

Considerando los valores establecidos por la norma en los cuales la carga transmitida por la rueda sera de 4.1 ton (9000lb) y una presión de contacto de 140 PSI obteniendo un radio de contacto de 4.52pulg(11.50 cm) y la fuerza a aplicarse será de 9000lb (4.1 ton)

5. CAPÍTULO V: DESARROLLO DE LA INVESTIGACIÓN

5.1. Generalidades

5.1.1. Material de Subrasante

Para el terreno de fundación se empleó un suelo clasificado como de capacidad insuficiente según la categorización del MTC, con un índice CBR comprendido entre 3 % y 6 %. Esta selección respondió a la necesidad de evaluar el comportamiento de materiales con baja capacidad portante, con el fin de justificar el uso de refuerzos como las geomallas. Según el MTC (2014), cuando se trata de suelos con CBR menor al 6 % en vías urbanas, se recomienda su estabilización, siendo una alternativa viable el uso de geosintéticos.

5.1.2. Material de Subbase

Los materiales de subbase corresponden a las canteras de Huillque y Quillahuata.

5.1.2.1. Cantera Huillque

Se encuentra ubicada en el departamento de Cusco, provincia de Anta, distrito de Limatambo. Sus coordenadas geográficas corresponden a una latitud de -13.4472 y una longitud de -72.3872.

El ingreso a la cantera se realiza mediante una vía no asfaltada en condiciones regulares de mantenimiento, ubicada a aproximadamente 50 metros de la carretera principal Cusco-Abancay. El trayecto desde la ciudad de Cusco hasta el sitio toma en promedio 1 hora con 5 minutos, recorriendo la siguiente ruta:

Cusco (Arco de Tikatika) → Izcuchaca → Ancahuasi → Peaje → Cantera Huillque.

5.1.2.2. Cantera Quillahuata

Está situada en la región Cusco, dentro de la provincia y distrito de Cusco, específicamente en el distrito de San Sebastián. Su ubicación geográfica se precisa con las coordenadas: latitud -13.5066 y longitud -71.9367.

Para acceder a la cantera de Quillahuata es por una carretera en proceso de pavimentación, se encuentra aproximadamente a 3.6 km desde el tercer paradero de San Sebastian en la Av. La Cultura. El tiempo de viaje es aproximadamente de 15 min.

5.1.3. Geomallas

Tabla 7Especificaciones de Geomalla Biaxiales y Triaxial

Identificación del Producto	Geomalla Biaxial	Geomalla Triaxial
Nombre del Fabricante	Maccaferri	Tensar
Nombre del Producto	Geomalla Biaxial Extruida MacGrid EGB 30	Geomalla TriAx TX160
Resistencia a la Tracción	30 KN/m	21.57 KN/m*
Material	Polipropileno	Polipropileno
Cantidad para los ensayos de Resistencia a la Tracción	0.18r	m2
Cantidad para el ensayo de la estructura de pavimento	0.81	m2

Nota: (*) Valor adaptado de (Zhang, y otros, 2021). Fuente: Elaboración Propia

5.2. Propiedades Mecánicas del Material de Subrasante, Sub base y Geomallas

5.2.1. Resumen de resultados materiales sub base y sub rasante

En la Tabla 10 resume las principales propiedades mecánicas de los materiales empleados tanto para la subbase como para la subrasante, obtenidos de las canteras Huillque y Quillahuata, respectivamente. Se evaluaron parámetros granulométricos, límites de consistencia, clasificaciones geotécnicas y características de resistencia.

Tabla 8Resultados de las propiedades mecánicas de subbase y subrasante

Descripción	Cantera Huillque	Cantera Quillahuata	Material de Subrasante
Tamaño Máximo Nominal	1"	1 1/2	-
% Gravas	50.06	43.87	-
% Arenas	31.89	27.85	0.13
% Finos	18.05	28.28	99.87
Limite Liquido (%)	19	21	24
Limite Plástico (%)	21	15	17
Índice de Plasticidad	NP	6	7
Clasificación SUCS	GM	GC	CL
Clasificación AASHTO	A-1-b (0)	A-2-4 (0)	A-4(8)
Índice de Grupo	0	0	8
Densidad Seca Máxima	2.02 gr/cm3	2.19 gr/cm3	1.98 gr/cm3
Contenido de Humedad Óptimo (%)	8.20	7.40	11.00
% de Abrasión	36.80	41.33	-
CBR 100%	56.07	57.01	9.67
CBR 95%	45.50	40.90	5.25
Equivalente de Arena (%)	32.14	39.68	-

Nota: El procesamiento de los ensayos de laboratorio se detalla en el anexo N° 5.

Fuente: Elaboración Propia

5.2.2. Resumen de resultado de geomallas

Tabla 9Resultados de resistencia a la tracción de las geomallas

Descripción	Geomalla Biaxial	Geomalla Triaxial
Descripcion	MacGrid 30	TriAx TX 160
Resistencia a la tracción	21.53 KN/m	14.51 KN/m

Nota: El procesamiento de la data de los ensayos de tracción ultima en geomallas esta detallado en el anexo N° 5. Fuente: Elaboración Propia

5.3. Diseño de la Estructura del Pavimento

La estructuración del pavimento se realizó siguiendo la Metodología AASHTO-93:

A. Parámetros de diseño

Tabla 10Periodo y tráfico de diseño

Parámetro	Valor
Periodo de diseño	20 años
Tráfico de diseño -W ₁₈	1500000

Nota. Fuente: Elaboración Propia

B. Diseño inicial del pavimento de acuerdo al (CE.010 Pavimentos Urbanos, 2010) se obtiene:

Tabla 11
Parámetros de diseño: R, Z_R, S_O, Pi, Pt, ΔPSI, MR

Parámetro	Valor
Parámetro de Confiabilidad (R)	95%
Coeficiente estadístico de desviación estandar normal (Z _R)	-1.645
Desviación Estándar Combinada (So)	0.45
Serviciabilidad Inicial (Pi)	4.2
Serviciabilidad Final (Pt)	2.5
Indice de Serviciabilidad Presente (ΔPSI)	1.7
Módulo Resiliente de la Subrasante(MR)	2555*CBR ^{0.64} =7384 PSI

Nota. Fuente: Elaboración Propia

C. Sustituyendo los valores en la ecuación general (2) determinamos el número estructural requerido:

$$SN_{req} = 3.97/pulg$$

D. Conforme con el (MINISTERIO DE TRANSPORTE Y COMUNICACIONES, 2014) se considerara para la carpeta asfáltica y la base granular los siguientes coeficientes:

Tabla 12Espesores mínimos, coeficiente estructural y coeficiente de drenaje de la carpeta asfáltica y base granular

Componente del Pavimento	Espesores Mínimos (D _i)	Valor Coeficiente Estructural (a _i)	Coeficiente de Drenaje (m _i)
Carpeta Asfáltica en Caliente Módulo 2965 MPa (430000 PSI) a 20°C (68°F)	D _{1min} = 3 pulg	a ₁ =0.170/cm	m ₁ = 0.9
Base Granular CBR 80%, compactada al 100% de la MDS	D _{2min} = 6 pulg	a ₂ =0.052/cm	m ₂ = 0.9

5.3.1. Diseño Inicial de la Estructura del Pavimento

Los espesores del pavimento se calcularon con la metodología AASHTO 93 obteniendo el grosor de la Subbase de cada cantera como se muestra a continuación:

Tabla 13Espesor de la subbase de las Canteras: Huillque y Quillahuata

	Cantera Huillque	Cantera Quillahuata
CBR	56.07%	57.01%
a3 ¹	0.051/cm = 0.13/pul	0.051/cm = 0.13/pul
SNu	4.15/pulg	4.15/pulg
D3	40cm	40cm

Nota:¹Según la Guía AASHTO 1993 se usó el ábaco para determinar el coeficiente estructural (a3) de la Subbase granular en función del CBR. Fuente: Elaboración Propia Por consiguiente la estructura de pavimento sera la siguiente:

Figura 18
Estructura de pavimento flexible

Nota: Adaptado de Tensar Plus

5.3.2. Diseño del Pavimento Reforzado con Geomalla Biaxial

El rediseño del espesor de la subbase reforzada con geomalla Biaxial MacGrid 30, usando la Figura 22 y un CBR de subrasante 5.25% resulta el valor de LCR= 1.45. Aplicando la fórmula 10 (pag.49) obtenemos los valores del grosor de la subbase reforzada:


Tabla 14Espesor de la subbase reforzada con geomalla biaxial

	Cantera Huillque	Cantera Quillahuata
$d_{3(Reforzado)}$	$20.91cm \cong 25cm$	$20.91cm\cong25cm$

Nota: Se considera un valor superior y/o múltiplo de 5 por cuestiones de trabajabilidad y seguridad. Fuente: Elaboración Propia

Entonces la estructura del pavimento reforzado con geomalla biaxial será:

Figura 19
Estructura de pavimento reforzado con geomalla biaxial

Nota: Adaptado de Tensar Plus

5.3.3. Diseño de Pavimento Reforzado con Geomalla Triaxial

Según (Sicha Flores, 2018) BCR=2, aplicando la metodología de AASHTO R-50 diseño con BCR, sustituyendo en la ecuación 6 (pag. 48) se obtiene el valor de la subbase reforzada con geomalla triaxial:

Tabla 15Espesor de la subbase reforzada con geomalla triaxial

	Cantera Huillque	Cantera Quillahuata
$d_{3(Reforzado)}$	$20.32 \cong 25cm$	$20.32 \cong 25cm$

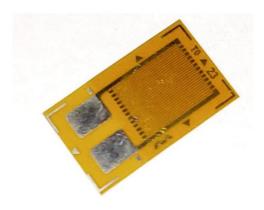
Nota: Se considera un valor superior y/o múltiplo de 5 por cuestiones de trabajabilidad y seguridad. Fuente: Elaboración Propia

Entonces la estructura del pavimento reforzado con geomalla biaxial será:

Figura 20
Estructura de pavimento reforzado con geomalla triaxial

Nota: Adaptado de Tensar Plus

5.4. Planteamiento del ensayo : Deformación por carga a escala media


5.4.1. Generalidades

Para realizar el ensayo del modelo se simuló la estructura de pavimento (subrasante/subbase) en un prisma cuadrangular de base 30cm x 30cm y altura de 35cm. Para hallar los esfuerzos y deformaciones en la estructura de pavimento reforzado se usarán los strain gauges ubicados en diferentes posiciones (Caso I, II, III, IV). El prisma se ensayará en la maquina universal aplicando la carga de una rueda convencional de 4.1 ton y un radio de contacto de 11.50cm.

5.4.2. Equipos y Materiales

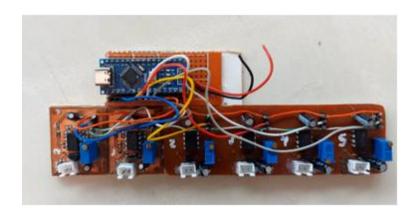

- Equipos:
 - Maquina Universal de Ensayos INSTRON 600DX
 - Strain Gauges (galgas extensiométricas BF350-3AA 7.3X4.1mm 350Ω)

Figura 21 Strain Gauge BF350

 Dispositivo de Lectura de Strain Gauge (equipo Arduino que procesa la data de los strain gauges con un controlador atmega328p - Lectura de datos resistivos a Voltaje)

Figura 22Dispositivo de Lectura de Strain Gauge

Nota. Fuente: Elaboración Propia

- Materiales:
 - Material de subrasante
 - Material de Subbase
 - Geomalla: Biaxial y Triaxial

- Encofrado metálico (prisma de 30x30x35cm)
- Pisón
- Placa de compactación

5.4.3. Muestra

El material de subrasante y subbase serán preparadas con la humedad óptima de agua.

5.4.4. Procedimiento

- De acuerdo al contenido de humedad óptimo y densidad máxima seca de cada material de subrasante y subbase, calculamos el peso necesario para la compactación en el encofrado metálico.
- II. Compactar 10 cm del material de subrasante en el encofrado metálico y completar con el material de subbase según el caso de estudio, incluyendo la colocación de strain gauges en la geomalla de acuerdo a cada caso:
 - Caso I: Sin geomalla en diferentes profundidades
 - Caso II: En los nodos de la geomalla ubicada en la interfaz subrasante y subbase
 - Caso III: En los nodos de la geomalla ubicada a una profundidad de h/2 de la subbase
 - Caso IV: En los nodos de la geomalla ubicada a una profundidad de 2h/3 de la subbase

Además, se tensa ligeramente la geomalla en ambos sentidos del plano .

- III. Se completa la capa de la subbase en cada caso
- IV. Finalmente, la estructura de pavimento se somete a compresión de una carga de 4100 kg en la Maquina Universal.

5.4.5. Cálculos

Para la compactación el peso necesario se calculó mediante la siguiente formula:

$$W_m = \gamma_d \times (1+w) \times V_m \dots (15)$$

Donde:

- W_m : Peso del material
- γ_d ; Densidad máxima seca al 95% de compactación
- w:Contenido óptimo de agua
- V_m : Volumen del encofrado

5.4.6. Lectura de los esfuerzos y deformaciones

Se realizarán mediante la maquina universal y el dispositivo de lectura de los strain gauges.

5.4.6.1. Maquina Universal de Ensayos INSTRON 600 DX

Los datos de entrada para emplear la maquinan universal fueron los siguientes:

- Velocidad de Ensayo: Se controlo la carga en función del tiempo. El ensayo se realizó con una velocidad de 400 kg/min.
- Esfuerzo: Es la presión de contacto "p" que tiene un valor de 140 PSI (9.84 kg/cm2) además que aplicando la presión se originan los esfuerzos y deformaciones en los distintos casos.

Los datos que se obtuvieron al ensayar en la maquina universal son:

- Carga en el Punto de Máximo: Es la carga de 4.1 Tn al que debe llegar la maquina universal, este valor es representativo a una rueda del eje simple.
- Esfuerzo en el Punto Máximo: Se refiere al esfuerzo vertical (σ_v) y se calcula mediante la división de la Carga en el punto máximo entre el área aplicada de 415.47 cm2 (plancha metálica de 11.5 cm de radio)
- Posición: Es el valor que desciende la cruceta de compactación de la maquina universal al momento del ensayo. Su unidad esta en mm

5.4.6.2. Dispositivo de Lectura de los Strain Gauge

A partir de los datos registrados por los Strain Gauges (esfuerzo radial, σ_r) y los esfuerzos verticales obtenidos mediante el software KENLAYER (σ_z), se calcula la deformación unitaria radial (ε_r) despejando la siguiente fórmula:

$$\varepsilon_r = \frac{1}{E} [\sigma_r - v(\sigma_t - \sigma_z)]$$

Donde:

 ε_r : Deformación unitaria radial

 σ_r : Esfuerzo radial (kg/cm2)

 σ_t : Esfuerzo tangencial (kg/cm2); σ_t = $\sigma_r^{(1)}$

 σ_z : Esfuerzo vertical (kg/cm2) (2)

v: Coeficiente de Poisson de la subbase

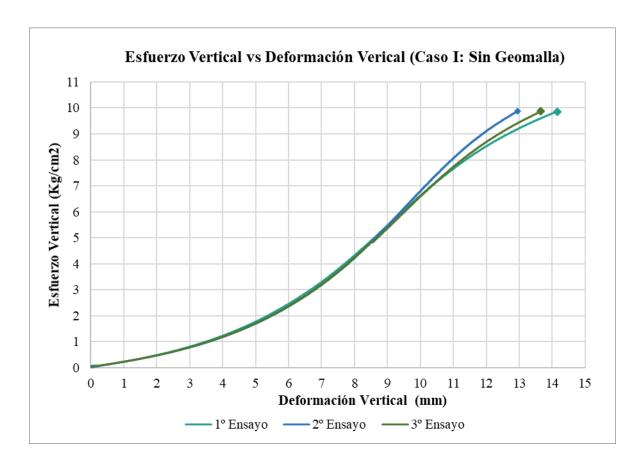
E: Módulo de elasticidad de la subbase (kg/cm2) (3)

(1) La carga es aplicada sobre un área especificada, entonces los esfuerzos y deformaciones más críticas se producen debajo del centro en el eje de simetría (Huang, Pavement Analysis and Design)

(2) Los datos se consideraron del software KENLAYER

 $^{(3)}$ El módulo de elasticidad se calculó mediante las correlaciones dada por el AASHTO donde $E_{subbase}(MPa)=36*CBR^{0.30}$

Partiendo de los datos de esfuerzo vertical (σ_v) y esfuerzo radial (σ_r) obtenemos los valores de deformación radial (ε_r)


5.5. Procesamiento de datos

5.5.1. Caso I: Sin geomalla

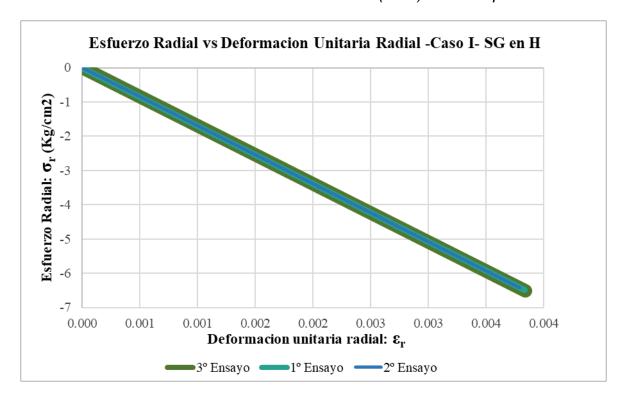
5.5.1.1. Cantera Huillque.

De la máquina universal se obtuvo el siguiente gráfico:

Gráfico 1Deformación vertical – Caso I – C. Huillque

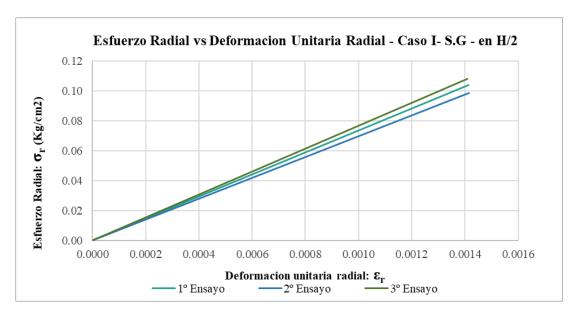
Nota: Comportamiento de la estructura de pavimento sin reforzamiento, utilizando como Subbase la cantera de Huillque. Fuente: Elaboración Propia

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo ,y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento.


Tabla 16Deformación vertical – Caso I – C. Huillque

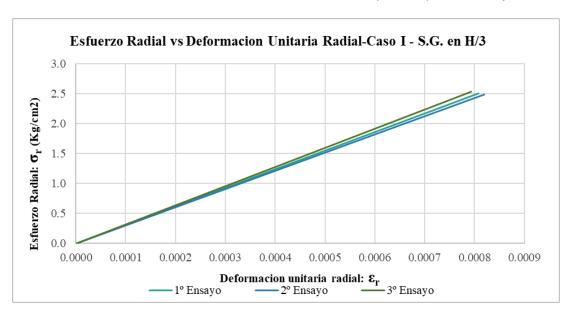
Deformación vertical de la Estructura de Pavimento (mm)		
1° Ensayo	14.159	
2° Ensayo	12.946	
3° Ensayo	13.661	
Promedio	13.589	

Los gráficos 2,3 y 4 se obtuvieron a partir de las lecturas registradas por los strain gauges, los cuales se colocaron a profundidades de H, H/2 y H/3 en la estructura evaluada


Gráfico 2

Esfuerzo vs Deformación Unitaria Radial – Caso I (en H)– C. Huillque

Nota: Las deformaciones se registraron a una profundidad H, utilizando como Subbase la cantera de Huillque, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia


Gráfico 3Esfuerzo vs Deformación Unitaria Radial – Caso I (en H/2)– C. Huillque

Nota: Las deformaciones se registraron a una profundidad H/2, utilizando como Subbase la cantera de Huillque, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

Gráfico 4

Esfuerzo vs Deformación Unitaria Radial – Caso I (en H/3)– C. Huillque

Nota: Las deformaciones se registraron a una profundidad H/3, utilizando como Subbase la cantera de Huillque, se usa los valores absolutos para la deformación unitaria en dirección radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura fue calculada como el promedio obtenido a partir de los tres ensayos realizados.

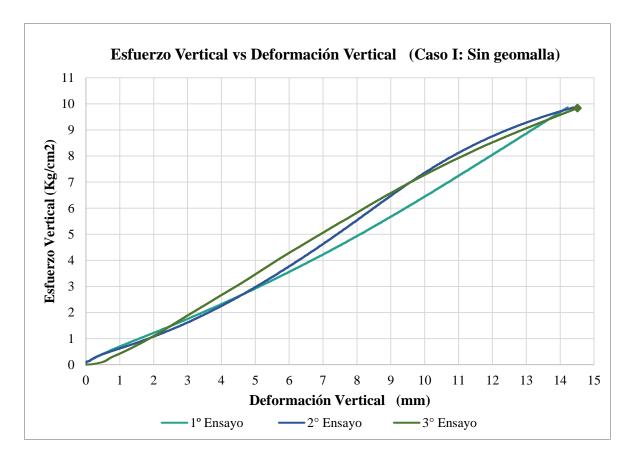
Tabla 17Deformación Unitaria – Caso I – C. Huillque

Deformación Unitaria (Strain Gauges)			es)
	н	H/2	H/3
1° Ensayo	0.0038290	0.0014120	0.0008078
2° Ensayo	0.0037900	0.0014150	0.0008195
3° Ensayo	0.0038410	0.0014096	0.0007933
Promedio	0.0038200	0.0014122	0.0008069

Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 18Esfuerzos horizontales – Caso I – C. Huillque


Esfuerzo Horizontales(Kg/cm2)			
	Н	H/2	H/3
1° Ensayo	-6.8431	0.0992	2.5061
2° Ensayo	-4.4138	0.0939	2.4853
3° Ensayo	-6.5044	0.1035	2.5319
Promedio	-6.4671	0.0989	2.5078

Nota. Fuente: Elaboración Propia – Anexos 5.5.2

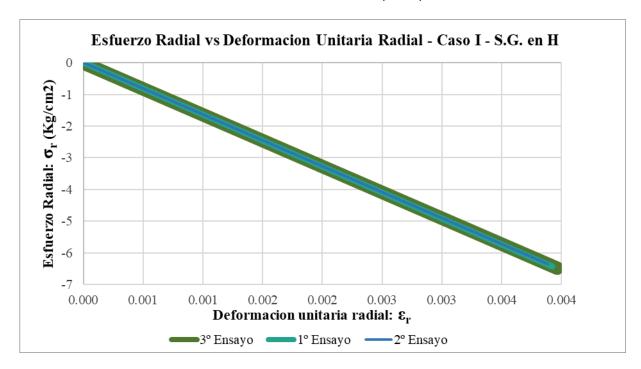
5.5.1.2. Cantera Quillahuata.

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 5Deformación vertical – Caso I – C. Quillahuata

Nota: Comportamiento de la estructura de pavimento sin reforzamiento, utilizando como Subbase la cantera de Quillahuata. Fuente: Elaboración Propia

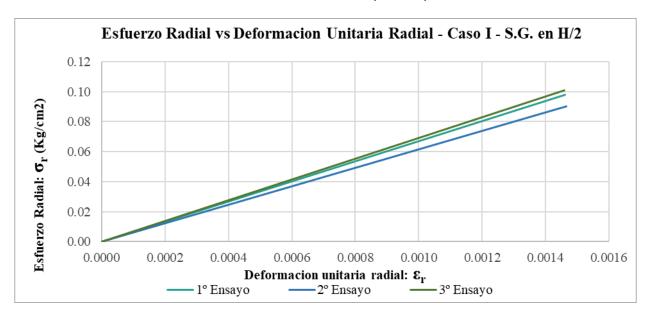
Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento.


Tabla 19Deformación vertical – Caso I – C. Quillahuata

Deformación vertical de la Estructura de Pavimento (mm)	
1° Ensayo	14.221
2° Ensayo	14.390
3° Ensayo	14.571
Promedio	14.394

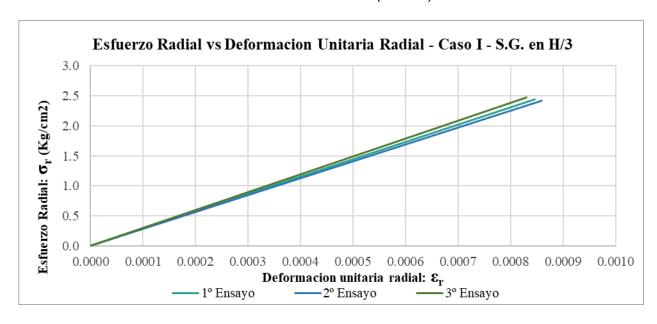
Los gráficos 6,7 y 8 se obtuvieron a partir de las lecturas registradas por los strain gauges, los cuales se colocaron a profundidades de H, H/2 y H/3 en la estructura evaluada

Gráfico 6


Esfuerzol vs Deformación Unitaria Radial – Caso I (en H)– C. Quillahuata

Nota: Las deformaciones se registraron a una profundidad H, utilizando como Subbase la cantera de Quillahuata, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

Gráfico 7


Esfuerzo vs Deformación Unitaria Radial – Caso I (en H/2)– C. Quillahuata

Nota: Las deformaciones se registraron a una profundidad H/2, utilizando como Subbase la cantera de Quillahuata, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

Gráfico 8

Esfuerzo vs Deformación Unitaria Radial – Caso I (en H/3)– C. Quillahuata

Nota: Las deformaciones se registraron a una profundidad H/3, utilizando como Subbase la cantera de Quillahuata, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

Tabla 20Deformación Unitaria – Caso I – C. Quillahuata

Deformación Unitaria (Strain Gauges)			
	Н	H/2	H/3
1° Ensayo	0.0039257	0.0014613	0.0008463
2° Ensayo	0.0038868	0.0014657	0.0008595
3° Ensayo	0.0039640	0.0014595	0.0008297
Promedio	0.0039255	0.0014622	0.0008452

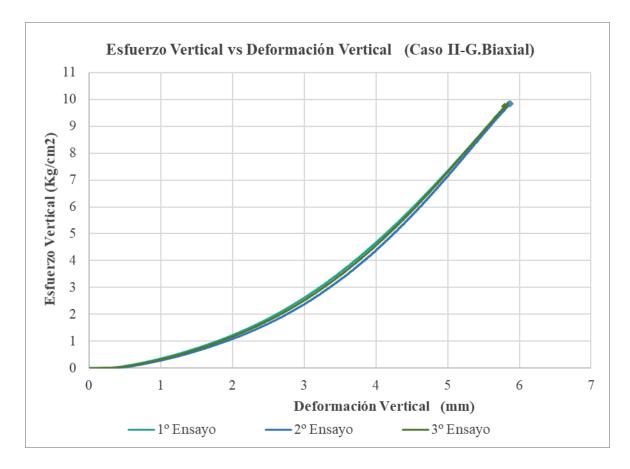
Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 21Esfuerzos horizontales – Caso I – C. Quillahuata

Esfuerzo Horizontales (Kg/cm2)			
	Н	H/2	H/3
1° Ensayo	-6.4268	0.0978	2.4396
2° Ensayo	-6.3600	0.0903	2.4162
3° Ensayo	-6.4927	0.1009	2.4691
Promedio	-6.4265	0.0963	2.4416

Nota. Fuente: Elaboración Propia-Anexo 5.5.2


5.5.2. Caso II: Geomalla ubicada en la interfaz Subrasante - Subbase

5.5.2.1. Cantera Huillque

5.5.2.1.1. Geomalla Biaxial

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 9Deformación vertical – Caso II – C. Huillque – G. Biaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla biaxial a una profundidad H, utilizando como Subbase la cantera de Huillque. Fuente: Elaboración Propia

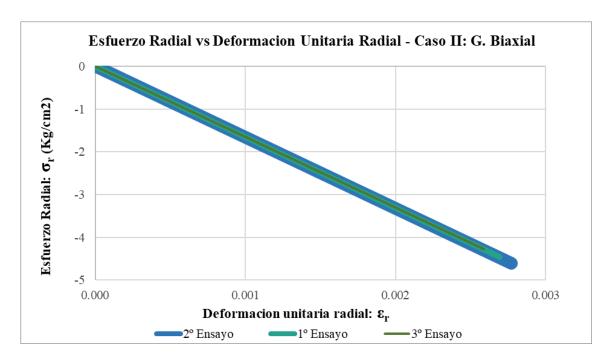

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento

Tabla 22Deformación vertical - Caso II – C. Huillque – G. Biaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)	
1° Ensayo	5.867
2° Ensayo	5.871
3° Ensayo	5.834
Promedio	5.857

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 10Esfuerzo vs Deformación Unitaria Radial – Caso II – C. Huillque – G. Biaxial

Nota: Las deformaciones se registraron con una profundidad H de la estructura reforzada con geomalla biaxial, utilizando como Subbase la cantera de Huillque, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

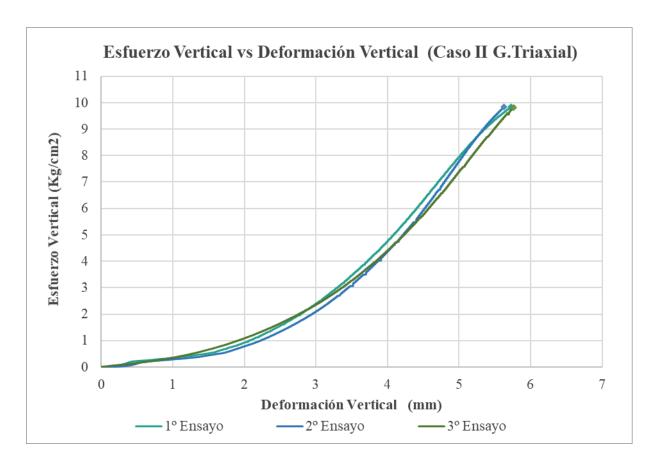
Tabla 23Deformación Unitaria — Caso II – C. Huillque – G. Biaxial

Deformación Unitaria de la Geomalla		
1° Ensayo	0.0026922	
2° Ensayo	0.0027730	
3° Ensayo	0.0025872	
Promedio 0.0026842		

Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 24Esfuerzo horizontal — Caso II – C. Huillque – G. Biaxial


Esfuerzos horizontales (Kg/cm2)	
1° Ensayo	-4.4644
2° Ensayo	-4.6078
3° Ensayo	-4.2779
Promedio	-4.4500

Nota. Fuente: Elaboración Propia - Anexo 5.5.3

5.5.2.1.2. Geomalia Triaxial

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 11Deformación vertical – Caso II – C. Huillque – G. Triaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla triaxial a una profundidad H, utilizando como Subbase la cantera de Huillque. Fuente: Elaboración Propia

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento reforzada.

Tabla 25Deformación vertical—Caso II – C. Huillque – G. Triaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)	
1° Ensayo	5.740
2° Ensayo	5.646
3° Ensayo	5.779
Promedio	5.722

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 12

Esfuerzo vs Deformación Unitaria Radial – Caso II – C. Huillque – G. Triaxial

Nota: Las deformaciones se registraron con una profundidad H de la estructura reforzada con geomalla triaxial, utilizando como Subbase la cantera de Huillque, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

Tabla 26Deformación Unitaria — Caso II – C. Huillque – G. Triaxial

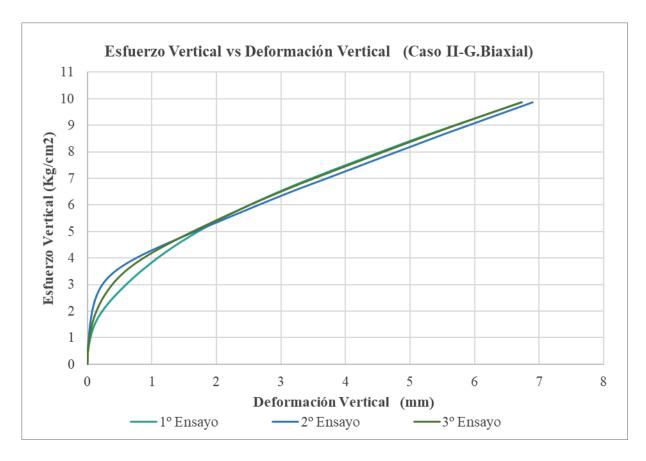
Deformación Unitaria de la Geomalla	
1° Ensayo	0.0025771
2° Ensayo	0.0026982
3° Ensayo	0.0024929
Promedio	0.0025894

Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 27Esfuerzo horizontal — Caso II – C. Huillque – G. Triaxial

Esfuerzos horizontales (Kg/cm2)	
1° Ensayo	-4.2599
2° Ensayo	-4.4749
3° Ensayo	-4.1103
Promedio	-4.2817


Nota. Fuente: Elaboración Propia – Anexo 5.5.3

5.5.2.2. Cantera Quillahuata.

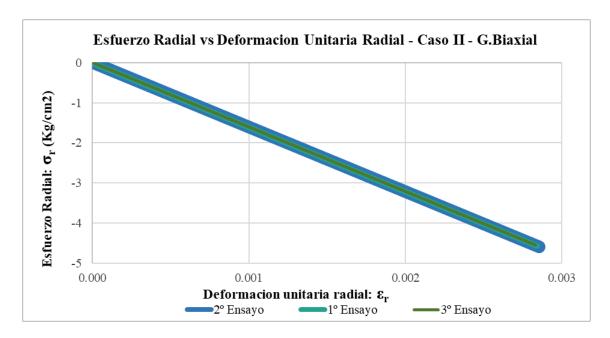
5.5.2.2.1. Geomalla Biaxial

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 13Deformación vertical – Caso II – C. Quillahuata – G. Biaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla biaxial a una profundidad "H", utilizando como Subbase la cantera de Quillahuata. Fuente: Elaboración Propia

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento reforzada.


Tabla 28Deformación vertical – Caso II – C. Quillahuata – G. Biaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)	
1° Ensayo	6.737
2° Ensayo	6.900
3° Ensayo	6.722
Promedio	6.786

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 14

Esfuerzo vs Deformación Unitaria Radial – Caso II– C. Quillahuata – G. Biaxial

Nota: Las deformaciones se registraron con una profundidad H de la estructura reforzada con geomalla biaxial, utilizando como Subbase la cantera de Quillahuata, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

Tabla 29Deformación Unitaria – Caso II – C. Quillahuata – G. Biaxial

Deformación Unitaria de la Geomalla	
1° Ensayo	0.0028409
2° Ensayo	0.0028546
3° Ensayo	0.0028335
Promedio	0.0028430

Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 30Esfuerzo horizontal — Caso II – C. Quillahuata – G. Biaxial


Esfuerzos horizontales (Kg/cm2)	
1° Ensayo	-4.5616
2° Ensayo	-4.5852
3° Ensayo	-4.5489
Promedio	-4.5652

Nota. Fuente: Elaboración Propia- Anexo 5.5.3

5.5.2.2.2. Geomalia Triaxial

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 15Deformación vertical – Caso II – C. Quillahuata – G. Triaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla triaxial a una profundidad H, utilizando como Subbase la cantera de Quillahuata. Fuente: Elaboración Propia

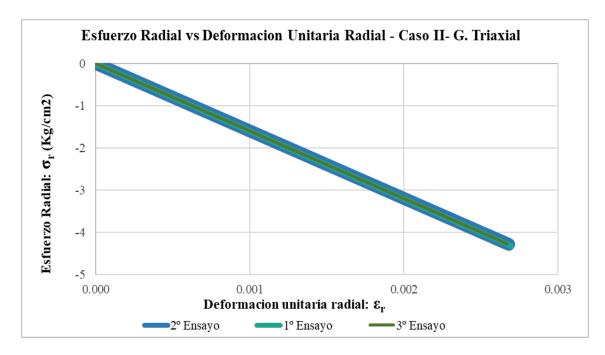

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento reforzada.

Tabla 31Deformación vertical – Caso II – C. Quillahuata – G. Triaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)	
1° Ensayo	6.515
2° Ensayo	6.670
3° Ensayo	6.602
Promedio	6.596

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 16Esfuerzo vs Deformación Unitaria Radial – Caso II– C. Quillahuata – G. Triaxial

Nota: Las deformaciones se registraron con una profundidad H de la estructura reforzada con geomalla triaxial, utilizando como Subbase la cantera de Quillahuata, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

Tabla 32Deformación Unitaria – Caso II – C. Quillahuata – G. Triaxial

Deformación Unitaria de la Geomalla	
1° Ensayo	0.0026942
2° Ensayo	0.0026791
3° Ensayo	0.0026667
Promedio	0.0026800

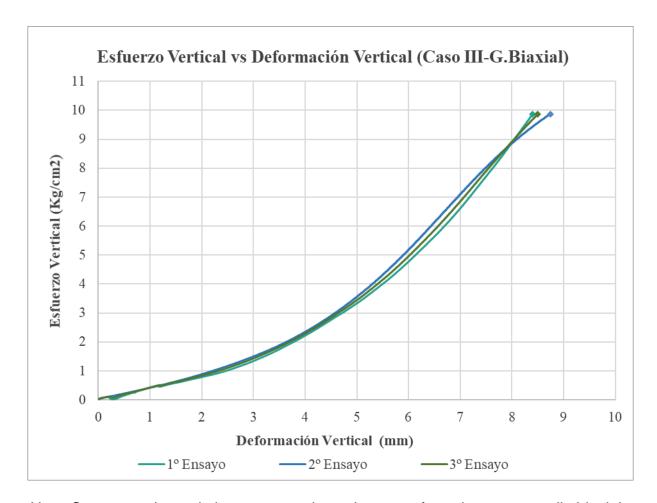
Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 33Esfuerzo horizontal — Caso II – C. Quillahuata – G. Triaxial

Esfuerzos horizontales (Kg/cm2)	
1° Ensayo	-4.3095
2° Ensayo	-4.2835
3° Ensayo	-4.2621
Promedio -4.2850	

Nota. Fuente: Elaboración Propia - Anexo 5.5.3


5.5.3. Caso III: Geomalla ubicada a una profundidad de H/2 de la Subbase

5.5.3.1. Cantera Huillque.

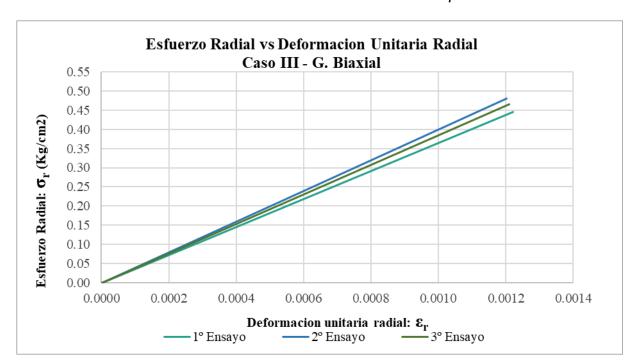
5.5.3.1.1. Geomalla Biaxial

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 17Deformación vertical – Caso III – C. Huillque – G. Biaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla biaxial a una profundidad "H/2", utilizando como Subbase la cantera de Huillque. Fuente: Elaboración Propia

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento reforzada.


Tabla 34Deformación vertical – Caso III – C. Huillque – G. Biaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)	
1° Ensayo	8.399
2° Ensayo	8.742
3° Ensayo	8.501
Promedio	8.547

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 18

Esfuerzo vs Deformación Unitaria Radial – Caso III– C. Huillque – G. Biaxial

Nota: Las deformaciones se registraron con una profundidad H/2 de la estructura reforzada con geomalla biaxial, utilizando como Subbase la cantera de Huillque, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

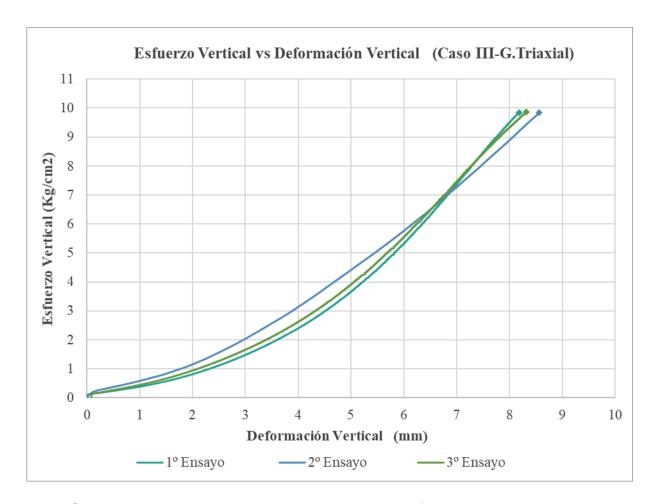
Tabla 35Deformación Unitaria – Caso III – C. Huillque – G. Biaxial

Deformación Unitaria en la Geomalla	
1° Ensayo	0.0012212
2° Ensayo	0.0012016
3° Ensayo	0.0012092
Promedio	0.0012106

Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 36Esfuerzo horizontal — Caso III – C. Huillque – G. Biaxial


Esfuerzos horizontales (Kg/cm2)		
1° Ensayo	0.4381	
2° Ensayo	0.4729	
3° Ensayo	0.4594	
Promedio	0.4568	

Nota. Fuente: Elaboración Propia – Anexo 5.5.4

5.5.3.1.2. Geomalia Triaxial.

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 19Deformación vertical – Caso III – C. Huillque – G. Triaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla triaxial a una profundidad "H/2", utilizando como Subbase la cantera de Huillque. Fuente: Elaboración Propia

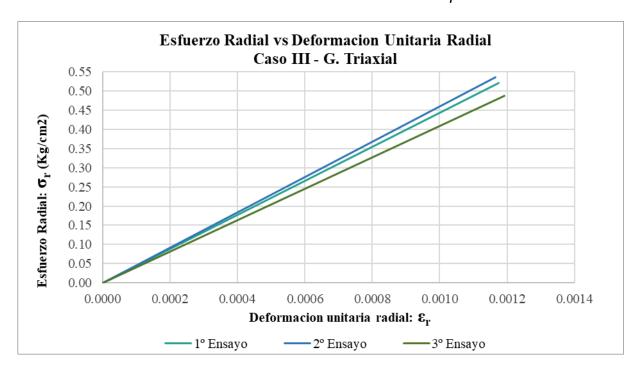

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento reforzada.

Tabla 37Deformación vertical – Caso III – C. Huillque – G. Triaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)		
1° Ensayo	8.188	
2° Ensayo	8.586	
3° Ensayo	8.321	
Promedio	8.365	

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 20
Esfuerzo vs Deformación Unitaria Radial – Caso III– C. Huillque – G. Triaxial

Nota: Las deformaciones se registraron con una profundidad H/2 de la estructura reforzada con geomalla triaxial, utilizando como Subbase la cantera de Huillque, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

Tabla 38Deformación Unitaria – Caso III – C. Huillque – G. Triaxial

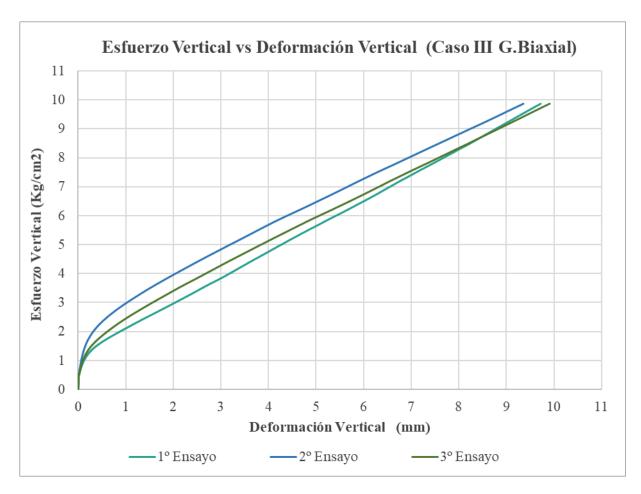
Deformación Unitaria en la Geomalla		
1° Ensayo	0.0011746	
2° Ensayo	0.0011656	
3° Ensayo	0.0011932	
Promedio	0.0011778	

Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 39Esfuerzo horizontal — Caso III – C. Huillque – G. Triaxial

Esfuerzos horizontales (Kg/cm2)		
1° Ensayo	0.5208	
2° Ensayo	0.5368	
3° Ensayo	0.4878	
Promedio	0.5152	


Nota. Fuente: Elaboración Propia – Anexo 5.5.4

5.5.3.2. Cantera Quillahuata.

5.5.3.2.1. Geomalla Biaxial.

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 21Deformación vertical – Caso III – C. Quillahuata – G. Biaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla biaxial a una profundidad "H/2", utilizando como Subbase la cantera de Quillahuata. Fuente: Elaboración Propia

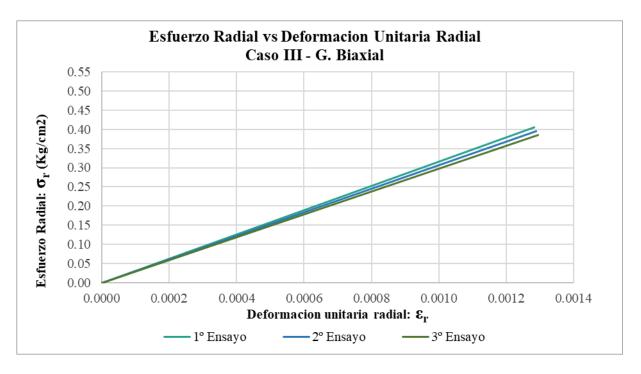

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento reforzada.

Tabla 40Deformación vertical – Caso III – C. Quillahuata – G. Biaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)		
1° Ensayo	9.721	
2° Ensayo	9.358	
3° Ensayo	9.911	
Promedio	9.663	

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 22Esfuerzo vs Deformación Unitaria Radial – Caso III– C. Quillahuata – G. Biaxial

Nota: Las deformaciones se registraron con una profundidad H/2 de la estructura reforzada con geomalla biaxial, utilizando como Subbase la cantera de Quillahuata, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

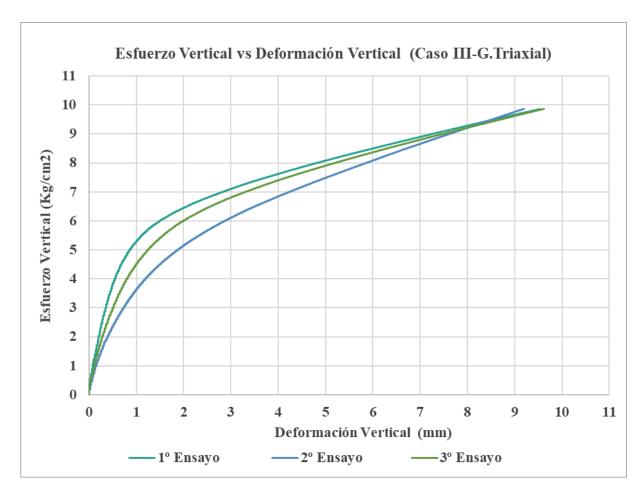
Tabla 41Deformación Unitaria – Caso III – C. Quillahuata – G. Biaxial

Deformación Unitaria		
1° Ensayo	0.0012826	
2° Ensayo	0.0012882	
3° Ensayo	0.0012946	
Promedio	0.0012885	

Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 42Esfuerzo horizontal — Caso III – C. Quillahuata – G. Biaxial


Esfuerzos horizontales (Kg/cm2)		
1° Ensayo	0.4052	
2° Ensayo	0.3944	
3° Ensayo	0.3844	
Promedio	0.3950	

Nota. Fuente: Elaboración Propia – Anexo 5.5.4

5.5.3.2.2. Geomalia Triaxial

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 23Deformación vertical – Caso III – C. Quillahuata – G. Triaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla triaxial a una profundidad "H/2", utilizando como Subbase la cantera de Quillahuata. Fuente: Elaboración Propia

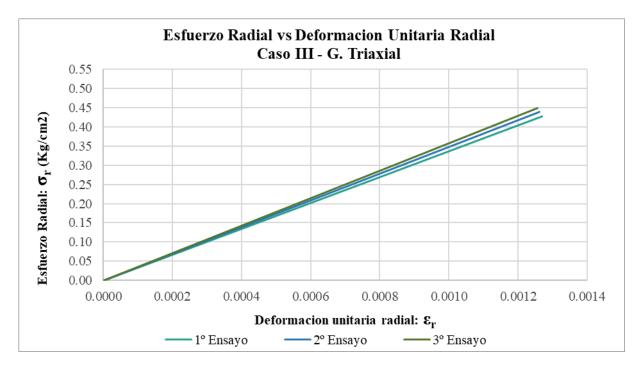

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento reforzada.

Tabla 43Deformación vertical – Caso III – C. Quillahuata – G. Triaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)		
1° Ensayo	9.534	
2° Ensayo	9.195	
3° Ensayo	9.618	
Promedio	9.449	

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 24Esfuerzo vs Deformación Unitaria Radial – Caso III– C. Quillahuata – G. Triaxial

Nota: Las deformaciones se registraron con una profundidad H/2 de la estructura reforzada con geomalla triaxial, utilizando como Subbase la cantera de Quillahuata, se

usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

Tabla 44Deformación Unitaria – Caso III – C. Quillahuata – G. Triaxial

Deformación Unitaria		
1° Ensayo	0.0012698	
2° Ensayo	0.0012626	
3° Ensayo	0.0012567	
Promedio	0.0012630	

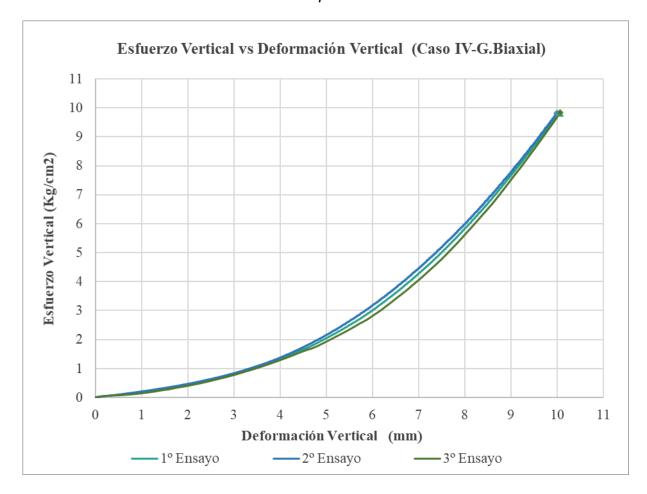
Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 45Esfuerzo horizontal — Caso III – C. Quillahuata – G. Triaxial

Esfuerzos horizontales (Kg/cm2)		
1° Ensayo	0.4271	
2° Ensayo	0.4395	
3° Ensayo	0.4497	
Promedio	0.4388	

Nota. Fuente: Elaboración Propia - Anexo 5.5.4


5.5.4. Caso IV: Geomalla ubicada a una profundidad de H/3 de la Subbase

5.5.4.1. Cantera Huillque.

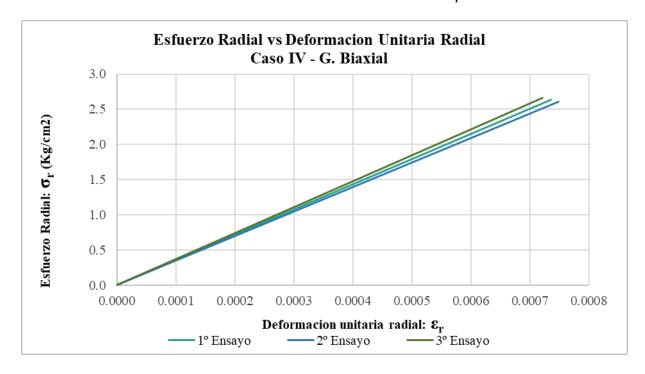
5.5.4.1.1. Geomalla Biaxial

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 25Deformación vertical – Caso IV – C. Huillque – G. Biaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla biaxial a una profundidad "H/3", utilizando como Subbase la cantera de Huillque. Fuente: Elaboración Propia

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento reforzada.


Tabla 46Deformación vertical – Caso IV – C. Huillque – G. Biaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)		
1° Ensayo	10.040	
2° Ensayo	10.015	
3° Ensayo	10.076	
Promedio 10.044		

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 26

Esfuerzo vs Deformación Unitaria Radial – Caso IV– C. Huillque – G. Biaxial

Nota: Las deformaciones se registraron con una profundidad H/3 de la estructura reforzada con geomalla biaxial, utilizando como Subbase la cantera de Huillque, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

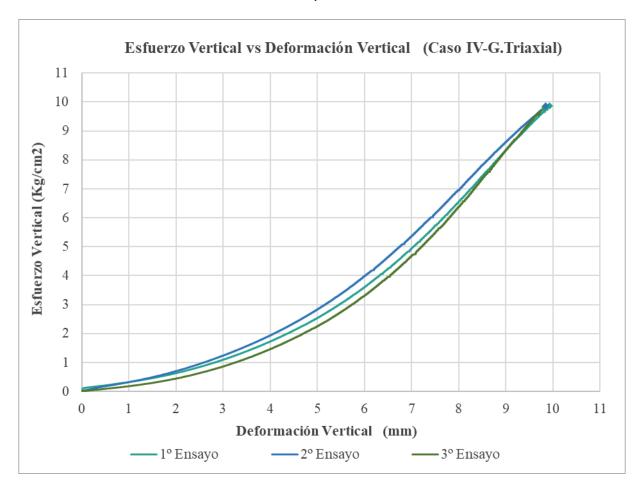
Tabla 47Deformación Unitaria – Caso IV – C. Huillque – G. Biaxial

Deformación Unitaria		
1° Ensayo	0.0007358	
2° Ensayo	0.0007490	
3° Ensayo	0.0007214	
Promedio	0.0007354	

Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 48Esfuerzo horizontal — Caso IV – C. Huillque – G. Biaxial


2° Ensayo 2.6105 3° Ensayo 2.6595	Esfuerzos horizontales (Kg/cm2)	
3° Ensayo 2.6595	1° Ensayo	2.6340
•	2° Ensayo	2.6105
Promedio 2.6347	3° Ensayo	2.6595
	Promedio	2.6347

Nota. Fuente: Elaboración Propia – Anexo 5.5.5

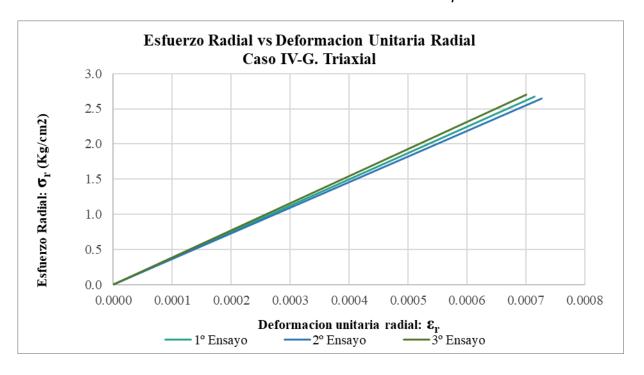
5.5.4.1.2. Geomalia Triaxial

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 27Deformación vertical – Caso IV – C. Huillque – G. Triaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla triaxial a una profundidad "H/3", utilizando como Subbase la cantera de Huillque. Fuente: Elaboración Propia

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento reforzada.


Tabla 49Deformación vertical – Caso IV – C. Huillque – G. Triaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)		
1° Ensayo	9.932	
2° Ensayo	9.868	
3° Ensayo	9.850	
Promedio	9.883	

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 28

Esfuerzo vs Deformación Unitaria Radial – Caso IV– C. Huillque – G. Triaxial

Nota: Las deformaciones se registraron con una profundidad H/3 de la estructura reforzada con geomalla triaxial, utilizando como Subbase la cantera de Huillque, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

Tabla 50Deformación Unitaria – Caso IV – C. Huillque – G. Triaxial

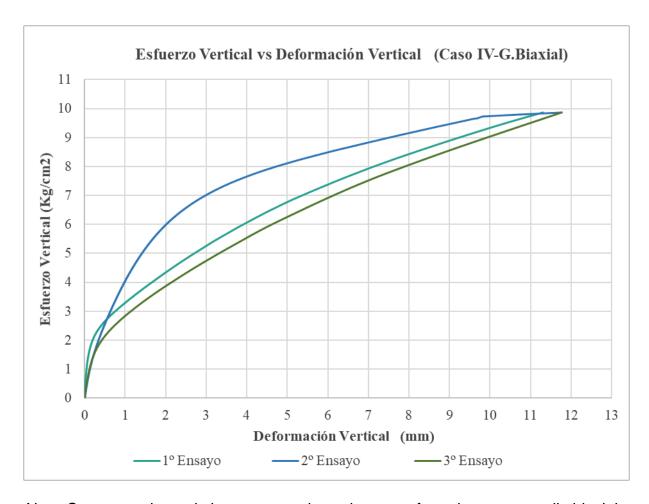
Deformación Unitaria		
1° Ensayo	0.0007141	
2° Ensayo	0.0007266	
3° Ensayo	0.0007000	
Promedio	0.0007136	

Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 51Esfuerzo horizontal — Caso IV – C. Huillque – G. Triaxial

- · ·	
Esfuerzos horizontales (Kg/cm2)	
1° Ensayo	2.6725
2° Ensayo	2.6503
3° Ensayo	2.6976
Promedio	2.6735


Nota. Fuente: Elaboración Propia – Anexo 5.5.5

5.5.4.2. Cantera Quillahuata.

5.5.4.2.1. Geomalia Biaxial.

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 29Deformación vertical – Caso IV – C. Quillahuata – G. Biaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla biaxial a una profundidad "H/3", utilizando como Subbase la cantera de Quillahuata. Fuente: Elaboración Propia

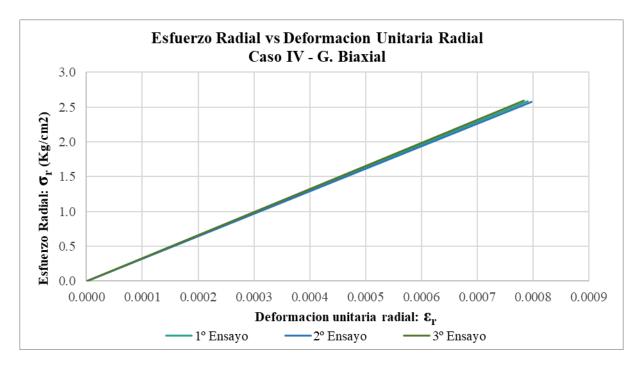

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento reforzada.

Tabla 52Deformación vertical – Caso IV – C. Quillahuata – G. Biaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)		
1° Ensayo	11.303	
2° Ensayo	11.772	
3° Ensayo	11.761	
Promedio	11.612	

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 30Esfuerzo vs Deformación Unitaria Radial – Caso IV– C. Quillahuata – G. Biaxial

Nota: Las deformaciones se registraron con una profundidad H/3 de la estructura reforzada con geomalla biaxial, utilizando como Subbase la cantera de Quillahuata, se

usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

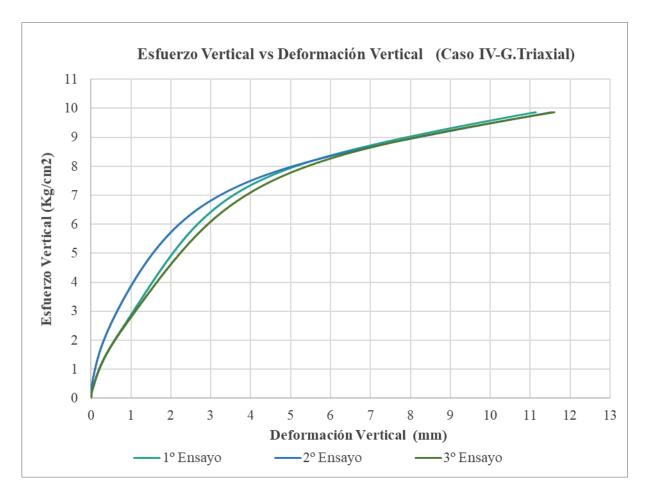
Tabla 53Deformación Unitaria – Caso IV – C. Quillahuata – G. Biaxial

Deformación Unitaria				
1° Ensayo	0.0007899			
2° Ensayo	0.0007977			
3° Ensayo	0.0007831			
Promedio 0.0007903				

Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 54Esfuerzo horizontal — Caso IV – C. Quillahuata – G. Biaxial


Esfuerzos horizontales (Kg/cm2)				
1° Ensayo	2.5844			
2° Ensayo	2.5710			
3° Ensayo	2.5961			
Promedio 2.5838				

Nota. Fuente: Elaboración Propia – Anexo 5.5.5

5.5.4.2.2. Geomalia Triaxial

De la máquina universal se obtuvo el siguiente grafico:

Gráfico 31Deformación vertical – Caso IV – C. Quillahuata – G. Triaxial

Nota: Comportamiento de la estructura de pavimento reforzada con geomalla triaxial a una profundidad "H/3", utilizando como Subbase la cantera de Quillahuata. Fuente: Elaboración Propia

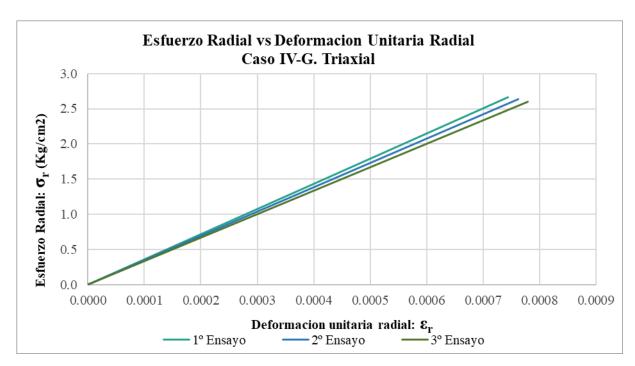

Se obtienen los siguientes valores de deformación vertical del 1°,2° y 3° ensayo y se considera el promedio de estos valores como la deformación vertical de la estructura de pavimento reforzada.

Tabla 55Deformación vertical – Caso IV – C. Quillahuata – G. Triaxial

Deformación vertical de la Estructura de Pavimento Reforzado (mm)				
1° Ensayo	11.137			
2° Ensayo	11.531			
3° Ensayo 11.604				
Promedio 11.424				

El siguiente grafico se obtuvo a partir de las lecturas registradas por los strain gauges:

Gráfico 32
Esfuerzo vs Deformación Unitaria Radial – Caso IV– C. Quillahuata – G. Triaxial

Nota: Las deformaciones se registraron con una profundidad H/3 de la estructura reforzada con geomalla triaxial, utilizando como Subbase la cantera de Quillahuata, se usa los valores absolutos para la deformación unitaria radial. Fuente: Elaboración Propia

La deformación unitaria radial de la estructura se determinó como el promedio de los tres ensayos realizados:

Tabla 56Deformación Unitaria – Caso IV – C. Quillahuata – G. Triaxial

Deformación Unitaria				
1° Ensayo	0.0007434			
2° Ensayo	0.0007620			
3° Ensayo	0.0007795			
Promedio 0.0007616				

Nota. Fuente: Elaboración Propia

Los esfuerzos horizontales de la estructura fueron hallados a partir de las deformaciones unitarias radiales y se determinó como el promedio de los tres datos hallados:

Tabla 57Esfuerzo horizontal — Caso IV – C. Quillahuata – G. Triaxial

Esfuerzos horizontales (Kg/cm2)				
1° Ensayo	2.6644			
2° Ensayo	2.6325			
3° Ensayo	2.6022			
Promedio 2.6330				

Nota. Fuente: Elaboración Propia – Anexo 5.5.5

6. CAPÍTULO VI: RESULTADOS DE LA INVESTIGACIÓN

6.1. Deformación vertical de la estructura de pavimento

Las Tablas 58 al 61 resumen los valores de deformación vertical en estructuras de pavimento con subbases Huillque y Quillahuata, respectivamente. En ambos casos, se observa que el uso de geomallas biaxiales y triaxiales reduce notablemente la deformación en comparación con la condición sin refuerzo.

Tabla 58Deformación vertical – C. Huillque- G. Biaxial

Deformación Vertical de una Estructura de Pavimento con Sub-Base
Huillque reforzado con Geomalla Biaxial (mm)

	Caso I: Sin Geomalla	Caso II (H)	Caso III (H/2)	Caso IV (H/3)
1° Ensayo	14.159	5.867	8.399	10.040
2° Ensayo	12.946	5.871	8.742	10.015
3° Ensayo	13.661	5.834	8.501	10.076
Promedio	13.589	5.857	8.547	10.044
Variación		-56.89%	-37.10%	-26.09%

Tabla 59Deformación vertical— C. Huillque- G. Triaxial

Deformación Vertical de una Estructura de Pavimento con Sub-Base Huillque reforzado con Geomalia Triaxial (mm)

	Caso I: Sin Geomalla	Caso II (H)	Caso III (H/2)	Caso IV (H/3)
1° Ensayo	14.159	5.740	8.188	9.932
2° Ensayo	12.946	5.646	8.586	9.868
3° Ensayo	13.661	5.779	8.321	9.850
Promedio	13.589	5.722	8.365	9.883
Variación		-57.89%	-38.44%	-27.27%

Nota. Fuente: Elaboración Propia

Tabla 60Deformación vertical – C. Quillahuata – G. Biaxial

Deformación Vertical de una Estructura de Pavimento con Sub-Base Quillahuata reforzado con Geomalla Biaxial (mm)

	Caso I: Sin Geomalla en H	Caso II (H)	Caso III (H/2)	Caso IV (H/3)
1° Ensayo	14.221	6.737	9.721	11.303
2° Ensayo	14.390	6.900	9.358	11.772
3° Ensayo	14.571	6.722	9.911	11.761
Promedio	14.394	6.786	9.663	11.612
Variación		-52.85%	-32.87%	-19.33%

Tabla 61Deformación vertical – C. Quillahuata – G. Triaxial

Deformación Vertical de una Estructura de Pavimento con Sub-Base Quillahuata reforzado con Geomalla Triaxial (mm)

	Caso I: Sin Geomalla en H	Caso II (H)	Caso III (H/2)	Caso IV (H/3)
1° Ensayo	14.221	6.515	9.534	11.137
2° Ensayo	14.390	6.670	9.195	11.531
3° Ensayo	14.571	6.602	9.618	11.604
Promedio	14.394	6.596	9.449	11.424
Variación		-54.18%	-34.36%	-20.63%

Nota. Fuente: Elaboración Propia

6.2. Deformación unitaria de los Strain gauges

Las Tablas 62 - 64 y las Tablas 65 - 67 presentan un resumen de los valores de deformación unitaria radial obtenidos en estructuras de pavimento con subbases Huillque y Quillahuata, respectivamente, evaluando diferentes configuraciones con y sin refuerzo de geomalla. Se analizaron los casos II, III y IV mediante tres ensayos por configuración, considerando tanto geomallas biaxiales como triaxiales. Los resultados muestran que la inclusión de geomallas reduce significativamente la deformación respecto al caso sin refuerzo, lo que evidencia una mejora en el desempeño estructural de la subbase al emplear estos materiales geosintéticos.

Tabla 62Deformación unitaria – C. Huillque -Caso II

Deformación Unitaria Radial de una Estructura de Pavimento con Sub-Base Huillque (mm)

	Caso I: Sin Geomalla	Caso	II (H)
	en H	G. Biaxial	G. Triaxial
1° Ensayo	0.0038290	0.0026922	0.0025771
2° Ensayo	0.0037900	0.0027730	0.0026982
3° Ensayo	0.0038410	0.0025872	0.0024929
Promedio	0.0038200	0.0026842	0.0025894
Variación		-29.73%	-32.22%

Nota. Fuente: Elaboración Propia

Tabla 63Deformación unitaria – C. Huillque -Caso III

Deformación Unitaria Radial de una Estructura de Pavimento con Sub-Base Huillque (mm)

	Caso I: Sin	Caso II	I (H/2)
	Geomalla en H/2	G. Biaxial	G. Triaxial
1° Ensayo	0.0014120	0.0012212	0.0011746
2° Ensayo	0.0014150	0.0012016	0.0011656
3° Ensayo	0.0014096	0.0012092	0.0011932
Promedio	0.0014122	0.0012106	0.0011778
Variación		-14.27%	-16.60%

Tabla 64Deformación unitaria – C. Huillque – Caso IV

Deformación Unitaria Radial de una Estructura de
Pavimento con Sub-Base Quillahuata (mm)

	Caso I: Sin	Caso I\	/ (H/3)
	Geomalla en H/3	G. Biaxial	G. Triaxial
1° Ensayo	0.0008078	0.0007358	0.0007141
2° Ensayo	0.0008195	0.0007490	0.0007266
3° Ensayo	0.0007933	0.0007214	0.0007000
Promedio	0.0008069	0.0007354	0.0007136
Variación		-8.85%	-11.56%

Tabla 65Deformación unitaria – C. Quillahuata -Caso II

Deformación Unitaria Radial de una Estructura de Pavimento con Sub-Base Quillahuata (mm)

	Caso I: Sin	Caso	II (H)
	Geomalla en H	G. Biaxial	G. Triaxial
1° Ensayo	0.0039257	0.0028409	0.0026942
2° Ensayo	0.0038868	0.0028546	0.0026791
3° Ensayo	0.0039640	0.0028335	0.0026667
Promedio	0.0039255	0.0028430	0.0026800
Variación		-27.58%	-31.73%

Tabla 66Deformación unitaria – C. Quillahuata - Caso III

Deformación Unitaria Radial de una Estructura de Pavimento con Sub-Base Quillahuata (mm)

	Caso I: Sin Geomalla en H/2	Caso II	I (H/2)
		G. Biaxial	G. Triaxial
1° Ensayo	0.0014613	0.0012826	0.0012698
2° Ensayo	0.0014657	0.0012882	0.0012626
3° Ensayo	0.0014595	0.0012946	0.0012567
Promedio	0.0014622	0.0012885	0.0012630
Variación		-11.88%	-13.62%

Nota. Fuente: Elaboración Propia

Tabla 67Deformación unitaria— C. Quillahuata -Caso IV

Deformación Unitaria Radial de una Estructura de Pavimento con Sub-Base Quillahuata (mm)

	Caso I: Sin	Caso I\	/ (H/3)
	Geomalla en H/3	G. Biaxial	G. Triaxial
1° Ensayo	0.0008463	0.0007899	0.0007434
2° Ensayo	0.0008595	0.0007977	0.0007610
3° Ensayo	0.0008297	0.0007831	0.0007795
Promedio	0.0008452	0.0007903	0.0007613
Variación		-6.50%	-9.89%

6.3. Esfuerzos horizontales en el plano de colocación de la geomalla

Las Tablas 68-70 y las Tablas 71-73 presentan un resumen de los valores de esfuerzos horizontales obtenidos en estructuras de pavimento con subbases Huillque y Quillahuata, respectivamente, evaluando diferentes configuraciones con y sin refuerzo de geomalla. Se analizaron los casos II, III y IV mediante los datos obtenidos de las pruebas en laboratorio, considerando tanto geomallas biaxiales como triaxiales. Los resultados muestran que la inclusión de geomallas reduce los esfuerzos en la zona de tracción.

Tabla 68Esfuerzo Horizontales – C. Huillque -Caso II

con Sub-Base Huillque (Kg/cm2)			
	Caso I: Sin Geomalla en H	Caso	II (H)
		G. Biaxial	G. Triaxial
1° Ensayo	-6.4831	-4.4644	-4.2599
2° Ensayo	-6.4138	-4.6078	-4.4749
3° Ensayo	-6.5044	-4.2779	-4.1103
Promedio	-6.4671	-4.4500	-4.2817
Variación		31.19%	33.79%

Esfuerzo Horizontales de una Estructura de Pavimento

Tabla 69Esfuerzo Horizontales – C. Huillque -Caso III

Esfuerzo Horizontales de una Estructura de Pavimento
con Sub-Base Huillque (Kg/cm2)

	Caso I: Sin Geomalla en H/2	Caso II	I (H/2)
		G. Biaxial	G. Triaxial
1° Ensayo	0.0992	0.4381	0.5208
2° Ensayo	0.0939	0.4729	0.5368
3° Ensayo	0.1035	0.4594	0.4878
Promedio	0.0989	0.4568	0.5152
Variación		-362.12%	-421.11%

Tabla 70Esfuerzo Horizontales – C. Huillque -Caso IV

Esfuerzo Horizontales de una Estructura de Pavimento con Sub-Base Huillque (Kg/cm2)

	Caso I: Sin	Caso I\	/ (H/3)
	Geomalla en H/3	G. Biaxial	G. Triaxial
1° Ensayo	2.5061	2.6340	2.6725
2° Ensayo	2.4853	2.6105	2.6503
3° Ensayo	2.5319	2.6595	2.6976
Promedio	2.5078	2.6347	2.6735
Variación		-5.06%	-6.61%

Tabla 71Esfuerzo Horizontales – C. Quillahuata - Caso II

Esfuerzo Horizontales de una Estructura de Pavimento
con Sub-Base Quillahuata (Kg/cm2)

	Caso I: Sin Geomalla en H	Caso	II (H)
		G. Biaxial	G. Triaxial
1° Ensayo	-6.4268	-4.5616	-4.3095
2° Ensayo	-6.3600	-4.5852	-4.2835
3° Ensayo	-6.4927	-4.5489	-4.2621
Promedio	-6.4265	-4.5652	-4.2850
Variación		28.96%	33.32%

Tabla 72Esfuerzo Horizontales – C. Quillahuata -Caso III

Esfuerzo Horizontales de una Estructura de Pavimento con Sub-Base Quillahuata (mm)

	Caso I: Sin Geomalla en H/2	Caso II	I (H/2)
		G. Biaxial	G. Triaxial
1° Ensayo	0.0978	0.4052	0.4271
2° Ensayo	0.0903	0.3955	0.4395
3° Ensayo	0.1009	0.3844	0.4497
Promedio	0.0963	0.3950	0.4388
Variación		-310.20%	-355.61%

Tabla 73Esfuerzo Horizontales– C. Quillahuata -Caso IV

Esfuerzo Horizontales de una Estructura de Pavimento con Sub-Base Quillahuata (mm)

	Caso I: Sin Geomalla en H/3	Caso IV (H/3)	
		G. Biaxial	G. Triaxial
1° Ensayo	2.4396	2.5844	2.6644
2° Ensayo	2.4162	2.5710	2.6325
3° Ensayo	2.4691	2.5961	2.6022
Promedio	2.4416	2.5838	2.6330
Variación		-5.82%	-7.84%

7. CAPÍTULO VII: ANÁLISIS Y DISCUSIÓN DE RESULTADOS

7.1. Análisis de datos

7.1.1. Material de Sub base

Como se muestra en la Tabla 74 el análisis granulométrico de la cantera Huillque como la cantera Quillahuata presentan una curva similar a la gradación A, pero la mayoría no cumplen con los requerimientos granulométricos. Para la investigación se realizó el estudio de diversas canteras, siendo estas canteras las que se aproximan más a los requerimientos solicitados.

Tabla 74Requerimiento Granulométricos para Subbase Granular

	Porcentaje que Pasa en Peso			
Tamiz	Requerimiento	Sub Base		
	Gradación A	Huillque	Quillahuata	
50 mm (2")	100	100	100	
25 mm (1")		-	-	
9,5 mm (3/8 ")	30-65	65.48	69.98	
4,75 mm (N°4)	25-55	49.94	56.13	
2,0 mm (Nº10)	15-40	37.76	43.769	
425 μm (Nº40)	8-20	26.16	33.403	
75 μm (Nº200)	2-8	18.05	28.28	

Nota. Fuente: Elaboración Propia

En la tabla 75 se observa que ambas canteras cumplen con la mayoría de los requerimientos de calidad para la Subbase excepto por el índice de plasticidad: la cantera Huillque no presenta índice de plasticidad esto significa que el suelo no tiene capacidad de deformarse plásticamente y volver a su forma original; en cambio la cantera Quillahuata su índice de plasticidad es 6% por lo cual el suelo arcilloso se comportara con plasticidad media.

Tabla 75Requerimientos de Calidad para Sub-Base Granular

Ensayo	Requerimiento -	Sub-Base	
		Huillque	Quillahuata
Abrasión Los Ángeles	50% máximo	36.80%	41.33%
CBR de laboratorio	40% mínimo	56.07%	57.01%
Limite Liquido	25% máximo	19%	21%
Índice de Plasticidad	4% máximo	NP	6%
Equivalente de Arena	25% mínimo	32.14%	39.68

7.1.2. Geomalias

Los resultados mostrados en la Tabla 76 permiten identificar una diferencia significativa entre los valores nominales de resistencia a la tracción proporcionados por los fabricantes y los obtenidos en laboratorio para las geomallas evaluadas. En el caso de la geomalla biaxial MacGrid 30, se registró una resistencia de 21.53 kN/m, lo que representa una reducción del 28.23 % respecto al valor teórico de 30 kN/m. Por otro lado, la geomalla triaxial TriAx TX 160 alcanzó solo 14.51 kN/m, frente a los 21.57 kN/m requeridos, lo cual implica una disminución del 32.73 %.

Tabla 76Requerimientos de resistencia a la tracción de las geomallas

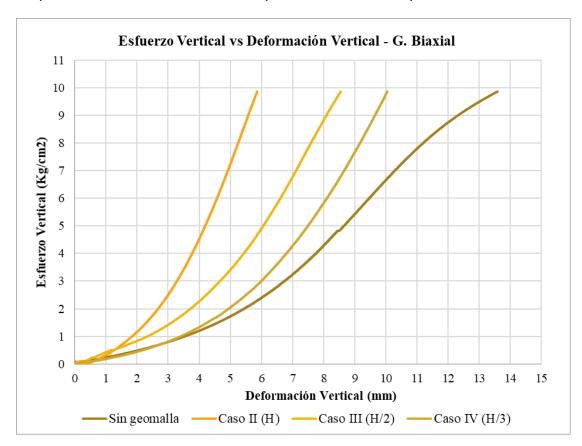
	Resistencia a la tracción		
Descripción	Requerimiento	Ensayo de Laboratorio	Variación
Geomalla Biaxial MacGrid 30	30 KN/m	21.53 KN/m	28.23%
Geomalla Triaxial TriAx TX 160	21.57 KN/m	14.51 KN/m	32.73%

Este comportamiento sugiere que las condiciones reales de los materiales pueden diferir de lo esperado en el diseño, lo cual debe ser considerado en proyectos que utilicen geomallas como elementos de refuerzo. Es probable que factores como el almacenamiento prolongado, la exposición a condiciones ambientales adversas o ligeras variaciones en el proceso de fabricación hayan influido en la pérdida de capacidad resistente.

Además, resulta evidente la importancia de realizar pruebas de control de calidad previas a la instalación, especialmente cuando se trabaja con productos cuyas características técnicas resultan determinantes en el desempeño estructural de una obra. Las diferencias observadas refuerzan la necesidad de incorporar criterios de verificación experimental en la etapa de recepción de materiales, con el fin de asegurar que el comportamiento real de los refuerzos coincida con lo proyectado en el diseño.

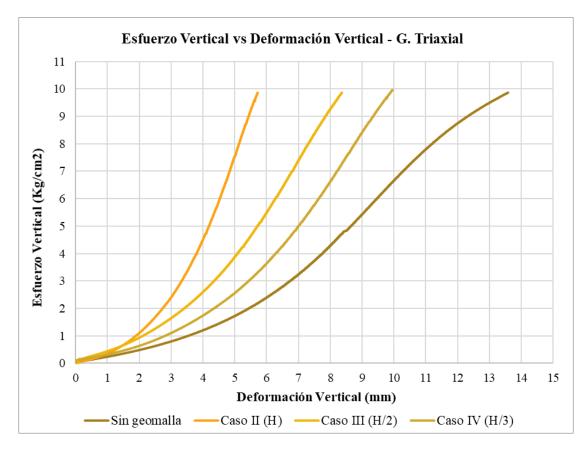
Finalmente, este tipo de hallazgos destaca la conveniencia de adoptar factores de seguridad más conservadores en el dimensionamiento, o bien establecer mecanismos contractuales que exijan el cumplimiento verificable de los parámetros técnicos ofertados por el proveedor.

7.2. Análisis de resultados


7.2.1. Comportamiento de la Estructura de Pavimento

El análisis de los gráficos presentados en el ensayo "Deformación por carga a escala media" en una estructura de pavimento conformada por: subrasante y subbase reforzada con geomallas (biaxial y triaxial) permite identificar una mejora considerable en el comportamiento estructural del pavimento cuando se incorpora refuerzo con geomallas, ya sea biaxial o triaxial, en comparación con la condición sin refuerzo. Asimismo, se evidencia la relevancia de la ubicación de la geomalla dentro de la subbase, observándose que a mayor profundidad de colocación se reducen las deformaciones verticales.

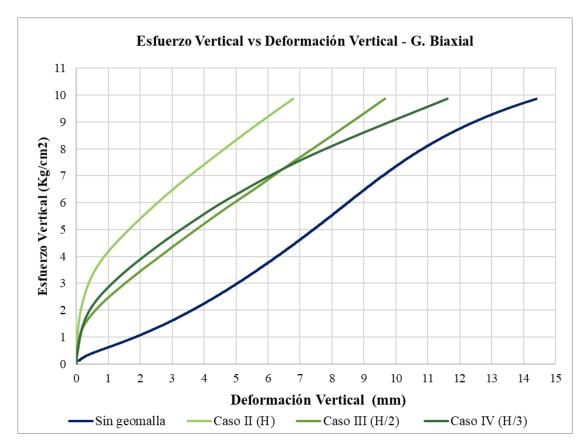
En la subbase procedente de la cantera Huillque, los gráficos 33 y 34 evidencian un comportamiento muy similar entre el uso de geomalla biaxial y triaxial. Si bien ambas configuraciones muestran una respuesta estructural comparable, se aprecian ligeras diferencias atribuibles la geomalla triaxial presenta menor deformación vertical y una curva más uniforme y progresiva, lo que evidencia una mejor redistribución de cargas en varias direcciones. En cambio, la geomalla biaxial tiene deformación ligeramente mayor y su curva muestra un aumento más pronunciado de la pendiente a medida que avanza la deformación, lo que indica que concentra su rigidez en direcciones ortogonales y que su comportamiento depende más de la orientación de la carga.


Gráfico 33

Comportamiento de la estructura de pavimento— C. Huillque – G. Biaxial

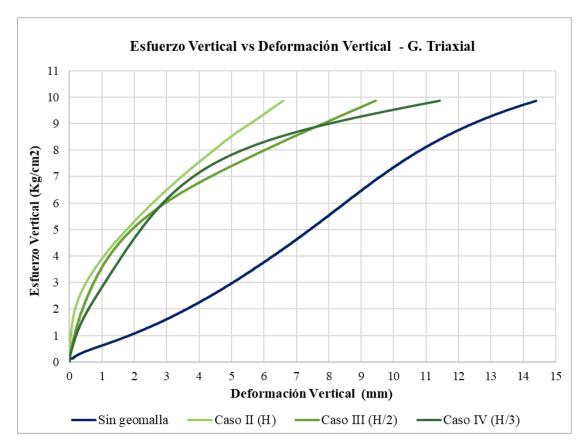
Nota: El análisis de las curvas esfuerzo-deformación evidencia que la posición del refuerzo influye en la magnitud de la deformación vertical. En el Caso I (sin geomalla), la curva presenta una pendiente pronunciada, reflejando una elevada deformación vertical para incrementos de carga. El Caso II (H), con la geomalla ubicada en la interfaz subbase-subrasante, presenta menores deformaciones para una misma carga estática, mientras que los casos III (H/2) y IV (H/3) muestran un desplazamiento de la curva hacia la derecha, indicando un aumento de la deformación vertical. Este comportamiento sugiere que, en este tipo de refuerzo, una ubicación a mayor profundidad dentro de la subbase favorece un mejor control de las deformaciones bajo cargas estáticas. Fuente: Elaboración Propia

Gráfico 34
Comportamiento de la estructura de pavimento— C. Huillque – G. Triaxial


Nota: La ubicación de la geomalla influye en la deformación vertical. Sin refuerzo, la pendiente de la curva es pronunciada, indicando alta deformación. Con la geomalla en la interfaz subbase–subrasante (H) la deformación es menor, mientras que a profundidades menores (H/2 y H/3) esta aumenta. Así, una colocación más profunda mejora el control de deformaciones bajo carga estática. Fuente: Elaboración Propia

En lo que respecta a la cantera Quillahuata, presenta un índice de plasticidad del 6 %, correspondiente a una plasticidad media, lo cual le otorga cierta capacidad de deformarse sin perder completamente su resistencia. Tal como se aprecia en los gráficos 35 y 36, la intersección de curvas entre los distintos casos analizados responde a un comportamiento no lineal del suelo frente a la ubicación del refuerzo. Este tipo de material genera una interacción variable con la geomalla, lo que modifica la redistribución de esfuerzos dependiendo de la profundidad en que se coloca el refuerzo. En consecuencia, no se conserva un orden progresivo entre configuraciones,

y se producen cruces entre trayectorias de esfuerzo vertical en ciertos tramos. Esto evidencia un comportamiento estructural más complejo, condicionado principalmente por la rigidez relativa del sistema suelo-refuerzo.


Gráfico 35

Comportamiento de la estructura de pavimento— C. Quillahuata – G. Biaxial

Nota: En el caso II (H), la curva esfuerzo—deformación muestra un comportamiento más uniforme: mantiene una pendiente estable y, para un mismo esfuerzo, registra menor deformación vertical que el Caso I (sin geomalla). Esto indica un mejor confinamiento y una redistribución más eficiente de cargas, mientras que sin refuerzo la curva es más pronunciada y se desplaza hacia la derecha, evidenciando mayor deformación y menor rigidez del sistema. Fuente: Elaboración Propia

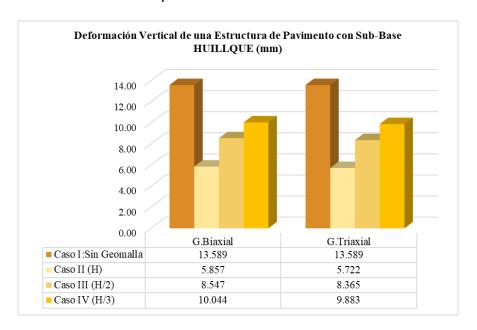
Gráfico 36Comportamiento de la estructura de pavimento— C. Quillahuata – G. Triaxial

Nota: En la posición caso II (H) la respuesta es más estable y con menor deformación con igual esfuerzo, reflejando un mejor confinamiento del material. En cambio, sin geomalla la pendiente es más pronunciada y la deformación vertical aumenta con mayor rapidez, evidenciando menor rigidez estructural. Fuente: Elaboración Propia

En conjunto, los gráficos analizados permiten identificar patrones definidos en la respuesta estructural del pavimento ante la inclusión de geomallas. En el caso de Huillque, tanto la geomalla biaxial como la triaxial muestran un comportamiento coherente entre configuraciones, manteniéndose un orden claro entre las distintas profundidades de colocación. Por otro lado, en la cantera Quillahuata, si bien se observa una tendencia general favorable con ambas geomallas, las trayectorias representadas en los gráficos 35 y 36 revelan cruces entre los casos analizados, lo que sugiere un comportamiento menos uniforme. Estas diferencias ponen en evidencia que la estructura no responde de la misma manera en todos los contextos, y que el tipo de

geomalla influye de forma particular según las condiciones del material de base y la disposición dentro del sistema.

7.2.2. Deformación vertical de la Estructura de Pavimento


En el gráfico 37 y 38 donde se muestran los promedios de los resultados de los casos de estudio; se observa que, la deformación vertical de la estructura de pavimento disminuye al colocar la geomalla (biaxial o triaxial).

También se observa que, el Caso II: Geomalla ubicada en la interfaz Subrasante – Subbase la deformación vertical es menor a las registradas en los demás casos propuestos, las deformaciones verticales decrecen conforme la ubicación horizontal de la geomalla incrementa su profundidad, también se observa que la estructura de pavimento sin reforzamiento presenta mayores deformaciones verticales que la estructura de pavimento reforzado.

Esto se debe a que el reforzamiento de la geomalla genera una membrana tensionada reduciendo así la tensión vertical.

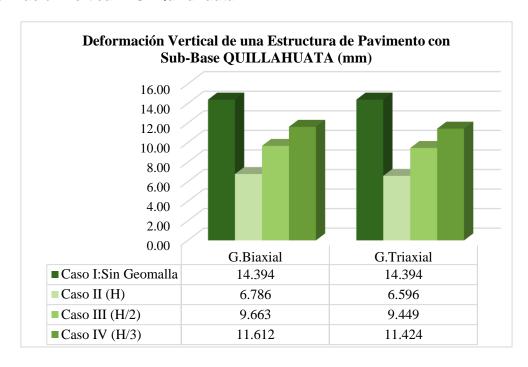
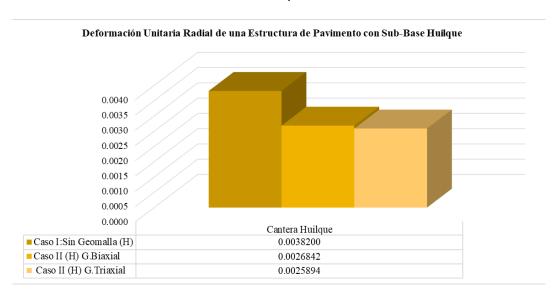

Es importante señalar que la estructura de pavimento reforzada con geomalla biaxial o triaxial presenta un comportamiento general similar, aunque en la mayoría de los casos la geomalla triaxial muestra un desempeño levemente más favorable, con menores niveles de deformación.

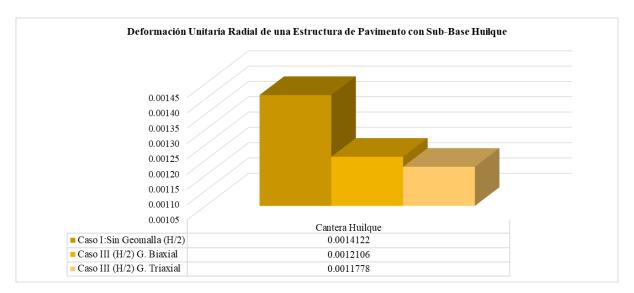
Gráfico 37Deformación vertical – C. Huillque

Nota. Deformación vertical bajo la carga estática de 4,2 Tn en la estructura de pavimento sin y con reforzamiento de geomallas. Fuente: Elaboración Propia

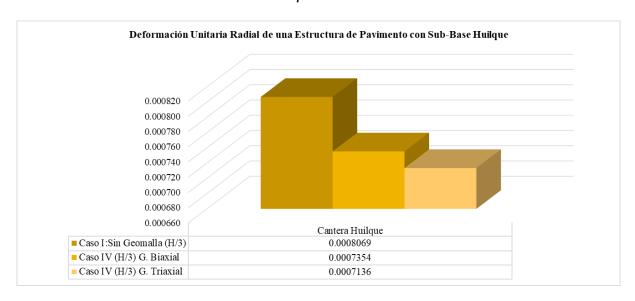
Gráfico 38Deformación vertical – C. Quillahuata

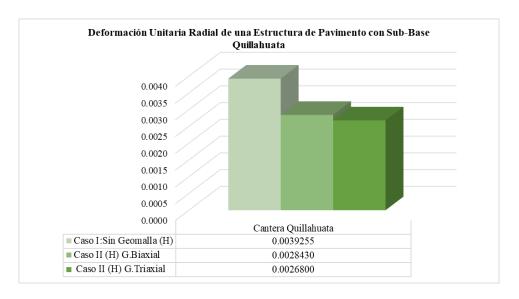


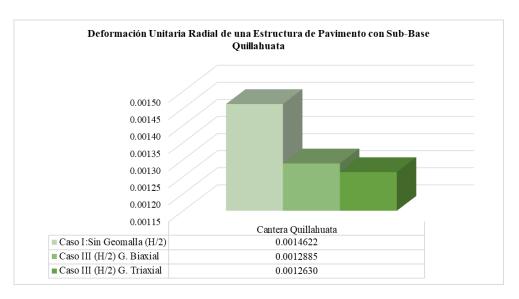
Nota. Deformación vertical bajo la carga estática de 4,2 Tn en la estructura de pavimento sin y con reforzamiento de geomallas. Fuente: Elaboración Propia


7.2.3. Deformación unitaria radial

En los gráficos del 39 al 44 se muestra cómo varían las deformaciones unitarias radiales en las estructuras analizadas, considerando tanto la condición sin refuerzo como aquellas que incorporan geomallas biaxiales y triaxiales, utilizando subbase de las canteras Huillque y Quillahuata. Se advierte una disminución evidente en las deformaciones cuando se emplea refuerzo, siendo más notoria al usar geomalla triaxial. Este comportamiento puede atribuirse al efecto de confinamiento lateral generado por la interacción entre la geomalla y la capa de subbase, donde la rigidez del refuerzo contribuye a limitar los desplazamientos en el plano horizontal.


Gráfico 39Deformación Unitaria Radial – C. Huillque – Caso II


Gráfico 40Deformación Unitaria Radial – C. Huillque – Caso III


Gráfico 41Deformación Unitaria Radial – C. Huillque – Caso IV

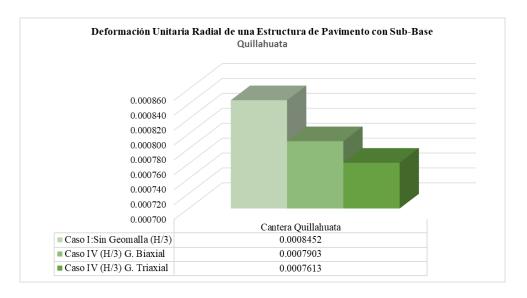
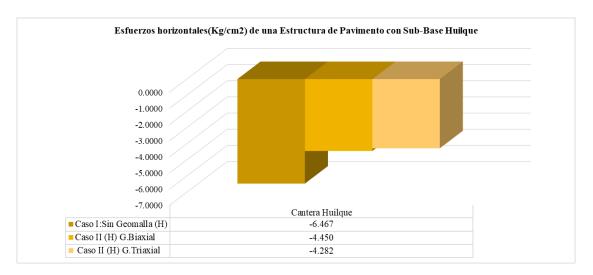
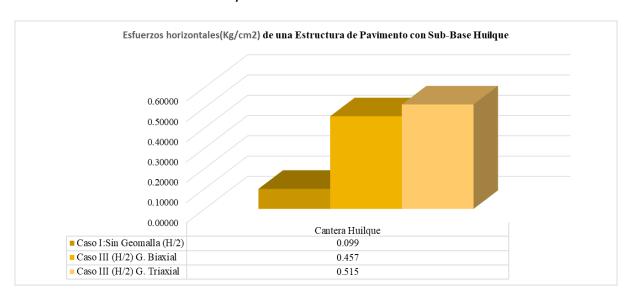

Gráfico 42Deformación Unitaria Radial – C. Quillahuata – Caso II

Gráfico 43Deformación Unitaria Radial – C. Quillahuata – Caso III


Gráfico 44Deformación Unitaria Radial – C. Quillahuata – Caso IV

7.2.4. Esfuerzos horizontales de la estructura de pavimento

En los gráficos del 45 al 50 se muestra cómo varían los esfuerzos horizontales en las estructuras analizadas, considerando tanto la condición sin refuerzo como aquellas que incorporan geomallas biaxiales y triaxiales, utilizando sub-base de las canteras Huillque y Quillahuata. Se advierte una disminución evidente en la zona de tracción cuando se emplea refuerzo, siendo más notoria al usar geomalla triaxial. Este comportamiento puede atribuirse al efecto de confinamiento lateral y membrana tensionada que se genera por la interacción entre la geomalla y la capa de sub-base, donde la rigidez del refuerzo contribuye a limitar los desplazamientos en el plano horizontal.


Gráfico 45Esfuerzo horizontal – C. Huillque – Caso II

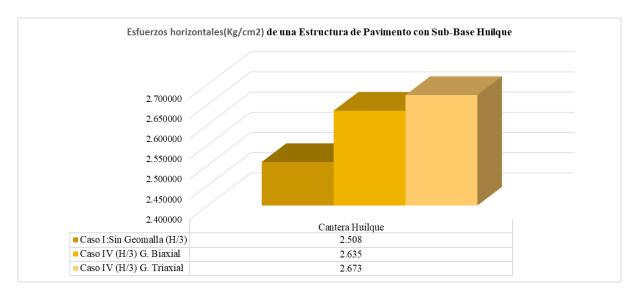
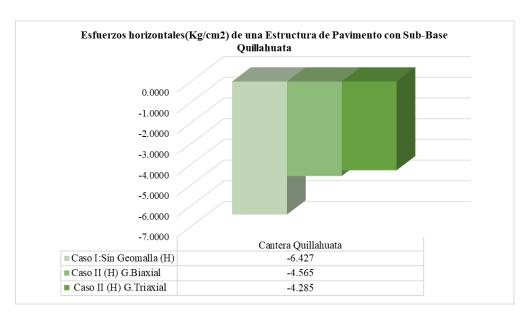
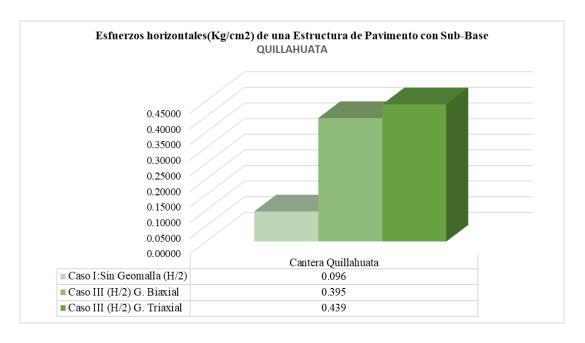

Nota. De acuerdo con (Huang, Pavement Analysis and Design) los esfuerzos radiales al tomar un valor negativo se asocian a un esfuerzo en tensión mientras que los esfuerzos positivos nos indican un esfuerzo en compresión. Fuente: Elaboración Propia

Gráfico 46


Esfuerzo horizontal – C. Huillque – Caso III


Gráfico 47Esfuerzo horizontal – C. Huillque – Caso IV

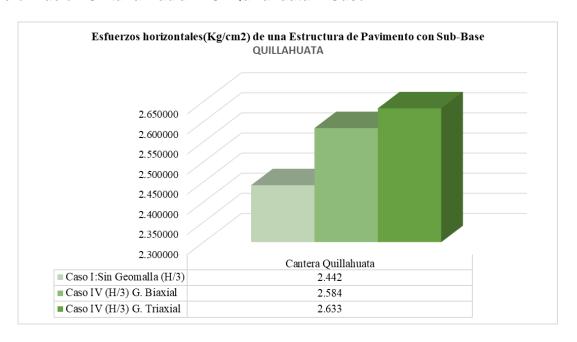

Gráfico 48Esfuerzo horizontal – C. Quillahuata – Caso II

Gráfico 49Deformación Unitaria Radial – C. Quillahuata – Caso III

Gráfico 50Deformación Unitaria Radial – C. Quillahuata – Caso IV

7.2.5. Discusión de resultados

Según (Rutkauskas, 2018) concluyó que para sub rasante débil y una sub base de roca triturada reforzada con una geomalla biaxial ubicada en el interfaz de ambas capas, en un espécimen de 0.6 m x 0.6m x 0.6m donde se aplicó una fuerza de 80 KN mediante una placa de penetración se reduce un 5% de su deformación vertical respecto a una sub rasante débil y una sub base de roca triturada sin presencia de refuerzo de geomalla biaxial, de tal manera en la presente investigación se encontró que el uso como refuerzo de una geomalla biaxial en el interfaz entre la sub base y sub rasante de un espécimen de dimensiones de 0.3m x 0.3m x 0.35m con una carga aplicada de 4.1 ton que simula el paso de una rueda reduce la deformación vertical un 56.89% usando el materia de la cantera Huillque y un 52.85% usando el material de la cantera de Quillahuata. La similitud con la presente investigación radica en que ambas estructuras están conformadas por subrasante y subbase, se les aplicaron cargas estáticas y emplearon refuerzo con geomalla biaxial en la interfaz de las capas, coincidiendo en la conclusión de que esta disposición reduce las deformaciones verticales

De acuerdo con (Bastidas, Herrera, & Bautista, 2024) determino que el refuerzo con geomalla biaxial de resistencia a la tracción de 20KN/m reduce 45% el ahuellamiento aplicando 1000 ciclos de carga dinámica con una presión de 560 kPa mediante una placa de circular de 0.10m de diámetro en un espécimen cubico de 0.35m (0.15m de material de mejoramiento y 0.20m de subrasante), de igual manera se determinó el estudio actual que para la geomalla biaxial EGB 30 de resistencia a la tracción de 21.53 KN/m colocada a una profundidad de 0.25m en un espécimen de dimensiones de 0.3m x 0.3m x 0.35m aplicando una carga estática de 4.1 ton y un radio de contacto de 11.50cm redujo la deformación vertical en 56.89% y 57.89 utilizando el material de subbase de la cantera de Huillque y Quillahuata, respectivamente. Ambas investigaciones tienen semejanza en la estructura del pavimento reforzado con geomalla biaxial a una profundidad H (espesor de la subbase)

Según (Poorahong, Jamsawang, Thanasisathit, Jongpradist, & Horpibulsuk, 2024) concluyó en base a pruebas de escala una sub base de 0.20m reforzada con geomalla triaxial reduce en un 59% su deformación vertical comparada a una sección de sub base de 0.20m sin reforzar, el refuerzo fue colocado en el interfaz de sub base y sub

rasante, de tal manera en la presente investigación se encontró que el uso como refuerzo de una geomalla triaxial en el interfaz entre la sub base y sub rasante reduce la deformación vertical en 57.89% usando el materia de la cantera Huillque y un 54.18% usando el material de la cantera de Quillahuata. La analogía que existe es en la estructura del pavimento reforzado con geomalla triaxial, colocada en la interfaz entre la subbase y la subrasante, contribuye a la reducción de la deformación vertical

De acuerdo con (Yesnik, Soliman, Morozov, Fleming, & Landry, 2025), se concluyó que el refuerzo con geogrillas disminuyo el hundimiento en un 80% después de 4000ciclos y sometido a una carga de 40KN en un modelo a escala de una sub base de roca triturada y sub rasante de arcilla , de esta forma en la investigación actual la estructura de pavimento conformada por subrasante y subbase en un modelo a escala mediana sometida a una carga estática de 4.1 TN reforzada con geomalla triaxial ubicado en la interfaz subrasante – subbase disminuyó la deformación vertical en 57.89% y 54.19% usando como subbase la cantera de Huillque y Quillahuata , respectivamente. Tienen como similitud una estructura de pavimento reforzado con geomalla triaxial

(Cordoni V. , 2018) concluyó que en la estructura de pavimento flexible conformada por sub base y sub rasante en un espécimen de dimensiones 0.25 x 0.20 x 0.80 m reforzado con geotextil tejido ubicado en el interfaz subrasante –subbase y usando como sub base la cantera de Huillque se puede observar que las deformaciones verticales disminuyen 21.52%. así mismo los esfuerzo y deformaciones horizontales también disminuyen en 7.83% y 24.53%, en esta investigación se encontró que la estructura conformada por subrasante y subbase (Huillque) usando geomalla triaxial como refuerzo en un espécimen de 0.30 x 0.30 x 0.35 m, las deformaciones verticales se reducen en un 57.89% y las deformaciones y esfuerzos horizontales se reducen en 32.22% y 33.79% respectivamente. Esta investigación tiene una semejanza con la estructura de pavimento que utilizan como subbase material de la cantera de Huillque, sometidas a carga estática, donde las deformaciones verticales disminuyen al colocar el refuerzo del geosintetico en la interfaz subbase–subrasante.

7.3. Análisis estadístico

El análisis estadístico de los resultados de las pruebas en laboratorio, se realizó el por ANNOVA, entonces se definirá estadísticamente si el reforzamiento con geomalla en la estructura de pavimento tiene influencia sus deformaciones (verticales y horizontales). De acuerdo a las hipótesis se consideraron los siguientes indicadores:

7.3.1. Cantera de Huillque

Tabla 77Análisis de la deformación vertical - C. Huillque – G. Biaxial

Deformación Vertical de una Estructura de Pavimento con subbase Huillque (mm) - G. Biaxial							
	Caso I	Caso II	Caso III	Caso IV			
Media	13.59	5.86	8.55	10.04			
Desviacion Estandar	0.61	0.02	0.17	0.03			
Observaciones	3	3	3	3			
Agrupacion	Α	В	С	D			
Nivel de significación	$\alpha = 0.05$						
Estadistico de Prueba	F = 308.70						
P-valor		0					
D ' ' ' O D '	(0.000 0.050)						

Decisión : Como P – valor es menor que α (0.000 < 0.050), entonces se rechaza la hipótesis nula

Hipotesis	Acept	tación de Hipo	otesis
Hipotesis nula: El reforzamiento con geomalla biaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento no produce una disminución significativa en la deformación vertical comparado con la estructura sin reforzamiento.	NO	NO	NO
Hipotesis alternativa: El reforzamiento con geomalla biaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento produce una disminución significativa en la deformación vertical comparado con la estructura sin reforzamiento	SI	SI	SI

Tabla 78Análisis de la deformación vertical - C. Huillque – G. Triaxial

Deformación Vertical de una Estructura de Pavimento con subbase Huillque (mm) - G. Triaxial

	Caso I	Caso II	Caso III	Caso IV		
Media	13.59	5.72	8.37	9.88		
Desviacion Estandar	0.61	0.07	0.20	0.04		
Observaciones	3	3	3	3		
Agrupacion	Α	В	С	D		
Nivel de significación	$\alpha = 0.05$					
Estadistico de Prueba	F = 308.86					
P-valor	0					

Decisión : Como P – valor es menor que α (0.000 < 0.050), entonces se rechaza la hipótesis nula

Hipotesis	Acep	tación de Hipo	otesis
Hipotesis nula: El reforzamiento con geomalla triaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento no produce una disminución significativa en la deformación vertical comparado con la estructura sin reforzamiento.	NO	NO	NO
Hipotesis alternativa: El reforzamiento con geomalla triaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento produce una disminución significativa en la deformación vertical comparado con la estructura sin reforzamiento	SI	SI	SI

Tabla 79Análisis de la deformación horizontal - C. Huillque – G. Biaxial

Deformación Unitaria Radial (εr) de una Estructura de Pavimento con subbase Huillque (mm) - G. Biaxial						
	Caso I (H)	Caso I (H/2)0	Caso I (H/3)	Caso II	Caso III	Caso IV
Media	0.038200	0.001412	0.000807	0.003684	0.001211	0.000735
Desviacion Estandar	0.000027	0.000003	0.000013	0.000093	0.000010	0.000014
Observaciones	3	3	3	3	3	3
Agrupacion	Α	В	E	С	D	E
Nivel de significación			α =	0.05		
Estadistico de Prueba			F = 27	731.10		
P-valor			()		
Decisión : Como P - v	valor es meno	or que a (0.0 nul), entonces	se rechaza l	a hipótesis
Hipotesis				Aceptación (de Hipotesis	
Hipotesis nula: El reforzamiento con geomalla biaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento no produce una disminución significativa en la deformación horizontal comparado con la estructura sin reforzamiento.					SI	
biaxial a diferentes pro estructura del pavimer	civa: El reforzamiento con geomalla es profundidades (H, H/2 y H/3) en la vimento produce una disminución deformación horizontal comparado con reforzamiento			SI	SI	NO

Tabla 80Análisis de la deformación horizontal - C. Huillque – G. Triaxial

Deformación Unitaria Radial (ɛr) de una Estructura de Pavimento con subbase Huillque (mm) - G. Triaxial Caso I (H) Caso I (H/2)Caso I (H/3) Caso II Caso III Caso IV Media 0.038200 0.001412 0.000807 0.002589 0.001178 0.000714 Desviacion Estandar 0.000027 0.000003 0.000013 0.000103 0.000014 0.000013 Observaciones 3 3 3 3 3 В Ε С D Ε Agrupacion Α Nivel de significación $\alpha = 0.05$ F = 2233.53Estadistico de Prueba 0 P-valor Decisión : Como P – valor es menor que α (0.000 < 0.050), entonces se rechaza la hipótesis nula **Hipotesis** Aceptacón de Hipotesis Hipotesis nula: El reforzamiento con geomalla triaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento no produce una disminución significativa en NO SI NO la deformación horizontal comparado con la estructura sin reforzamiento. Hipotesis alternativa: El reforzamiento con geomalla triaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento produce una disminución SI SI NO

Nota. Fuente: Elaboración Propia

la estructura sin reforzamiento

significativa en la deformación horizontal comparado con

7.3.2. Cantera de Quillahuata

Tabla 81Análisis de la deformación vertical - C. Quillahuata – G. Biaxial

Deformación Vertical de una Estructura de Pavimento con subbase Quillahuata (mm) - G. Biaxial

	Caso I	Caso II	Caso III	Caso IV	
Media	14.39	6.79	9.66	11.61	
Desviacion Estandar	0.18	0.10	0.28	0.27	
Observaciones	3	3	3	3	
Agrupacion	Α	В	С	D	
Nivel de significación	$\alpha = 0.05$				
Estadistico de Prueba	F = 645.98				
P-valor	0				

Decisión : Como P – valor es menor que α (0.000 < 0.050), entonces se rechaza la hipótesis nula

Hipotesis	Acep	tación de Hip	otesis
Hipotesis nula: El reforzamiento con geomalla biaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento no produce una disminución significativa en la deformación vertical comparado con la estructura sin reforzamiento.	NO	NO	NO
Hipotesis alternativa: El reforzamiento con geomalla biaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento produce una disminución significativa en la deformación vertical comparado con la estructura sin reforzamiento	SI	SI	SI

Tabla 82Análisis de la deformación vertical - C. Quillahuata – G. Triaxial

Deformación Vertical de una Estructura de Pavimento con subbase Quillahuata (mm) - G. Triaxial

Caso I	Caso II	Caso III	Caso IV		
14.39	6.60	9.45	11.42		
0.18	0.08	0.22	0.25		
3	3	3	3		
Α	В	С	D		
$\alpha = 0.05$					
F = 863.48					
0					
	14.39 0.18 3	14.39 6.60 0.18 0.08 3 3 A B α = F = 8	14.39 6.60 9.45 0.18 0.08 0.22 3 3 3 3 A B C α = 0.05 F = 863.48		

Decisión : Como P – valor es menor que α (0.000 < 0.050), entonces se rechaza la hipótesis nula

Hipotesis	Acep	tación de Hipo	otesis
Hipotesis nula: El reforzamiento con geomalla triaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento no produce una disminución significativa en la deformación vertical comparado con la estructura sin reforzamiento.	NO	NO	NO
Hipotesis alternativa: El reforzamiento con geomalla triaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento produce una disminución significativa en la deformación vertical comparado con la estructura sin reforzamiento	SI	SI	SI

Tabla 83Análisis de la deformación horizontal - C. Quillahuata – G. Biaxial

Deformación Unitaria Radial (εr) de una Estructura de Pavimento con subbase Quillahuata (mm) - G. Biaxial Caso I (H) Caso I (H/2)Caso I (H/3) Caso II Caso III Caso IV Media 0.003925 0.001462 0.000845 0.002843 0.001288 0.000790 0.000039 0.000003 0.000015 0.000011 0.000007 Desviacion Estandar 0.000006 Observaciones 3 3 3 3 3 3 В Ε C D F Agrupacion Α Nivel de significación $\alpha = 0.05$ Estadistico de Prueba F = 14738.340 P-valor Decisión : Como P – valor es menor que α (0.000 < 0.050), entonces se rechaza la hipótesis nula **Hipotesis** Aceptacón de Hipotesis Hipotesis nula: El reforzamiento con geomalla biaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento no produce una disminución significativa en NO NO NO la deformación horizontal comparado con la estructura sin reforzamiento. Hipotesis alternativa: El reforzamiento con geomalla biaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento produce una disminución SI SI SI significativa en la deformación horizontal comparado con la estructura sin reforzamiento

Tabla 84Análisis de la deformación horizontal - C. Quillahuata – G. Triaxial

Deformación Unitaria Radial (ɛr) de una Estructura de Pavimento con subbase Quillahuata (mm) - G. Triaxial					base	
	Caso I (H) Caso I (H/2)Caso I (H/3) Caso II Caso III Caso IV					
Media	0.003925	0.001462	0.000845	0.002680	0.001263	0.000762
Desviacion Estandar	0.000039	0.000003	0.000015	0.000014	0.000007	0.000018
Observaciones	3	3	3	3	3	3
Agrupacion	Α	В	Ε (C 1	D I	F
Nivel de significación	$\alpha = 0.05$					
Estadistico de Prueba	F = 12114.61					
P-valor			0			

Decisión : Como P – valor es menor que α (0.000 < 0.050), entonces se rechaza la hipótesis n **Hipotesis** Aceptacón de Hipotesis Hipotesis nula: El reforzamiento con geomalla triaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento no produce una disminución significativa en NO NO NO la deformación horizontal comparado con la estructura sin reforzamiento. Hipotesis alternativa: El reforzamiento con geomalla triaxial a diferentes profundidades (H, H/2 y H/3) en la estructura del pavimento produce una disminución SI SI SI significativa en la deformación horizontal comparado con la estructura sin reforzamiento

7.3.3. Resumen de Análisis Estadístico

Tabla 85Cuadro resumen de aceptación de hipótesis- C. Huillque

	Caso II	Caso III	Caso IV
Deformación vertical - G. Biaxial	Hipótesi	s Alternativa	
Deformación vertical - G. Triaxial	Hipótesi	s Alternativa	
Deformación horizontal - G. Biaxial	Hipótesi	s Alternativa	
Deformación horizontal - G. Triaxial	Hipótesis Alteri	nativa	Hipótesis Nula

Nota. Fuente: Elaboración Propia

De acuerdo a la tabla 97, se puede observar que el reforzamiento con geomalla biaxial y triaxial en la estructura de pavimento usada como subbase la cantera de Huillque, presenta aceptación en los casos II y III.

Tabla 86Cuadro resumen de aceptación de hipótesis- C. Quillahuata

	Caso II	Caso III	Caso IV
Deformación vertical - G. Biaxial	Н	ipótesis Altern	ativa
Deformación vertical - G. Triaxial	Hipótesis Alternativa		ativa
Deformación horizontal - G. Biaxial	Н	ipótesis Altern	ativa
Deformación horizontal - G. Triaxial	Н	ipótesis Altern	ativa

Nota. Fuente: Elaboración Propia

De acuerdo a la tabla anterior , se puede visualizar que el reforzamiento con geomalla biaxial y triaxial en la estructura de pavimento usada como subbase la cantera de Quillahuata, presenta aceptación en todos los casos, entonces se puede mencionar que el reforzamiento con geomalla presenta una influencia en todas las hipótesis formuladas para la presente investigación.

8. CAPÍTULO VIII: CONCLUSIONES Y RECOMENDACIONES

8.1. Conclusiones

Conclusión N°1: Con base en los resultados obtenidos mediante los ensayos de "deformación de carga a escala madia" realizados con la Máquina Universal INSTRON 600DX, se confirma que el uso de geomallas (biaxiales y triaxiales) mejora significativamente el comportamiento mecánico de las estructuras de pavimento. Esta afirmación se sustenta en los valores registrados en las gráficas 33, 34, 35 y 36, donde se evidencia una reducción considerable en las deformaciones verticales. Como se presentan a continuación:

- En la cantera Huillque, la deformación vertical sin refuerzo fue de 13.589 mm. Al incorporar geomalla en la interfaz subbase—subrasante (Caso II profundidad H), la deformación se redujo a 5.857 mm con geomalla biaxial y a 5.722 mm con geomalla triaxial.
- En la cantera Quillahuata, se registró una deformación vertical sin refuerzo de 14.394 mm En la misma configuración reforzada (Caso II – profundidad H), los valores disminuyeron a 6.786 mm con geomalla biaxial y a 6.596 mm con geomalla triaxial.

Esta mejora estructural es más notoria en el caso de la geomalla triaxial, gracias a su diseño que permite una distribución más eficiente de los esfuerzos y un mayor confinamiento del material granular. Como resultado, la reducción porcentual de la deformación vertical en la cantera Huillque alcanza el 57.89 % con geomalla triaxial, frente a un 56.89 % con geomalla biaxial. De igual manera, en la cantera Quillahuata se observa una reducción del 54.18 % con geomalla triaxial, frente al 52.85 % con geomalla biaxial.

Conclusión N°2: Con base en los resultados presentados en los gráficos del 37 al 50, se observa que los valores más bajos de deformación y esfuerzo horizontal se obtienen al utilizar geomalla triaxial, especialmente en la configuración donde el refuerzo se ubica en la interfaz subbase–subrasante (Caso II).

• En la cantera Huillque, para el Caso II, se registró un esfuerzo horizontal de 4.281 kg/cm² en tracción, una deformación unitaria radial de 0.0025894 y una

deformación vertical de 5.722 mm. En comparación, el Caso I (sin refuerzo) arrojó un esfuerzo horizontal de 6.467 kg/cm², una deformación unitaria radial de 0.0038200 y una deformación vertical de 13.589 mm, evidenciando mejoras considerables con el uso del refuerzo.

• En la cantera Quillahuata, para el Caso II, se registró un esfuerzo horizontal de 4.285 kg/cm² en tracción, una deformación unitaria radial de 0.0026800 y una deformación vertical de 6.596 mm. En comparación, el Caso I (sin refuerzo) arrojó un esfuerzo horizontal de 6.427 kg/cm², una deformación unitaria radial de 0.0039255 y una deformación vertical de 14.394 mm, evidenciando mejoras considerables con el uso del refuerzo.

Asimismo, se confirma que tanto la deformación vertical como la deformación unitaria radial y los esfuerzos horizontales disminuyen de manera significativa al incorporar geomallas en la estructura del pavimento, siendo más notoria la mejora al emplear geomalla triaxial en la interfaz subrasante—subbase. Las reducciones observadas fueron las siguientes:

- Esfuerzo horizontal: reducción del 33.79 % en la cantera Huillque y 33.32 % en la cantera Quillahuata.
- Deformación unitaria radial: disminución del 32.22 % en Huillque y 31.73 % en Quillahuata.
- Deformación vertical: reducción del 57.89 % en Huillque y 54.18 % en Quillahuata.

Estos resultados evidencian la efectividad del refuerzo con geomallas triaxiales, particularmente cuando se ubican en zonas críticas como la interfaz subbase—subrasante, donde su capacidad de confinamiento mejora notablemente la respuesta estructural del pavimento.

Conclusión N°3: De acuerdo con los resultados obtenidos en las gráficas 37 al 44, se evidencia:

• Deformación vertical:

En la cantera Huillque, las reducciones con geomalla biaxial fueron de 56.89 % (Caso II), 37.10 % (Caso III) y 26.09 % (Caso IV); mientras que con geomalla triaxial, los valores mejoraron a 57.89 %, 38.44 % y 27.27 %, respectivamente.

En la cantera Quillahuata, con geomalla biaxial se obtuvo una reducción de 52.85 % (Caso II), 32.87 % (Caso III) y 19.33 % (Caso IV); en tanto que con geomalla triaxial, las reducciones fueron de 54.18 %, 34.36 % y 20.63 %, respectivamente.

Deformación unitaria radial:

En la cantera Huillque, la geomalla biaxial logró reducir la deformación en 29.73 % (Caso II), 14.27 % (Caso III) y 8.85 % (Caso IV); mientras que la triaxial alcanzó reducciones de 32.22 %, 16.60 % y 11.56 %, respectivamente. En la cantera Quillahuata, los porcentajes de reducción con geomalla biaxial fueron de 27.58 %, 11.88 % y 6.50 %; y con geomalla triaxial, se obtuvieron valores de 31.73 %, 13.62 % y 9.89 %.

En función de estos resultados, se concluye que el mejor desempeño estructural de las geomallas (biaxiales y triaxiales) se logra cuando se ubican en la parte inferior de la subbase (profundidad H). Esta ubicación permite una reducción más significativa tanto en la deformación vertical como en la deformación unitaria radial, en comparación con configuraciones sin refuerzo o con reforzamiento (Casos III y IV).

Conclusión N°4: De acuerdo con los resultados presentados en la Tabla 78, se observó que la geomalla biaxial (MacGrid 30) alcanzó una resistencia de 21.53 kN/m, por debajo del valor especificado de 30 kN/m. De manera similar, la geomalla triaxial (TriAx TX 160) presentó una resistencia de 14.51 kN/m, frente a un valor de referencia de 21.57 kN/m. Esto representa una variación del 28.23 % para la geomalla biaxial y del 32.73 % para la triaxial. De acuerdo a estos resultados la subhipótesis que planteaba el cumplimiento de las especificaciones técnicas de resistencia a tracción por parte de las geomallas biaxial y triaxial no fue verificada.

Estas diferencias reflejan una disminución considerable en la capacidad resistente de los materiales, lo cual genera dudas sobre la fidelidad de las propiedades mecánicas indicadas por el fabricante. Esta situación evidencia la importancia de realizar ensayos experimentales que permitan verificar la calidad de los productos antes de su utilización en obras reales.

8.2. Recomendaciones

En primer lugar, los ensayos de laboratorio revelaron que las geomallas biaxial y triaxial no alcanzaron los valores de resistencia a tracción especificados por los fabricantes, por ende, se recomienda realizar pruebas de validación de calidad antes de la instalación.

Segundo: Debido a las dimensiones del espécimen utilizado, no fue posible incorporar sensores que permitan registrar la transmisión de esfuerzos verticales hacia la subrasante. Por ello, se recomienda que en futuras investigaciones se implementen dispositivos como celdas de carga, con el fin de obtener una caracterización más precisa del comportamiento estructural del sistema reforzado.

Tercero: Las limitaciones de la Máquina Universal impidieron el uso de especímenes de mayor escala. En tal sentido, se sugiere realizar ensayos a escala ampliada que permitan representar con mayor fidelidad las condiciones reales de funcionamiento de una estructura de pavimento.

Cuarto: En función de los resultados obtenidos, se constató que la interacción entre el refuerzo y la subbase no es constante, sino que depende directamente del tipo de suelo. Así se evidenció en las pruebas realizadas en Huillque, con suelos sin plasticidad, y en Quillahuata, donde el suelo presenta plasticidad media. Por lo tanto, se recomienda ajustar la profundidad de instalación del refuerzo considerando las particularidades del terreno, y verificar su desempeño mediante observaciones en campo o simulaciones previas.

Quinto: En suelos con plasticidad media, como los encontrados en la cantera Quillahuata, se observó un comportamiento no lineal en la respuesta del refuerzo, evidenciado por el cruce entre curvas de respuesta. Ante ello, es recomendable emplear modelos de diseño que consideren este tipo de comportamiento, ya que permiten predecir con mayor precisión el desempeño del sistema reforzado bajo condiciones reales de carga.

Sexto: A fin de optimizar el diseño estructural del pavimento reforzado con geomalla, se sugiere realizar estudios que analicen el comportamiento del sistema ante diferentes espesores de subbase, ya que esta variable influye directamente en la distribución de esfuerzos y en la eficiencia del refuerzo aplicado.

Séptimo: Para validar el desempeño estructural de las soluciones propuestas, especialmente en suelos de comportamiento variable o en proyectos de larga duración, se recomienda complementar el diseño con un sistema de monitoreo en campo. Esto permitirá registrar el comportamiento real del pavimento reforzado con geomallas, y ajustar los modelos según el rendimiento observado en condiciones operativas reales.

Octavo: Para una evaluación más realista del comportamiento del pavimento reforzado, se recomienda realizar ensayos con cargas cíclicas que simulen el tránsito vehicular. Esta metodología permitirá analizar los efectos acumulativos, como el ahuellamiento, y su impacto sobre la estructura a lo largo del tiempo.

9.REFERENCIAS BIBLIOGRÁFICAS

- Aladwani, A. (2019). Optimising the Performance of Geogridas in Unpaved Road. Geosynthetics Leading the Way to a Resilient Planet, 12, 1220-1226. doi:https://doi.org/10.1201/9781003386889-154
- Araujo, E. (n.d.). *Métodos Numéricos para Simulación en la Ingeniería*. Retrieved from https://www.esss.com/es/blog/metodos-numericos-para-simulacion-en-la-ingenieria/#:~:text=El%20an%C3%A1lisis%20num%C3%A9rico%20es%20el,e n%20directos%2C%20recursivos%20e%20iterativos.
- ASTM International. (2023). Standard test method for determining the tensile Properties of Geogrids by the single or Multi-Rib Tensile Method. Retrieved from https://www.astm.org/Standards/D6637.htm
- ASTM, I. (2015). Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method. West Conshohocken.
- Bastidas, J., Herrera, C., & Bautista, H. (2024). Desempeño de una via no pavimentada reforzada con geomalla: Construccion de un modelo fisico en laboratorio y validacion numèrica. *DYNA-MEDELLIN*.
- Bathe, K. J. (1996). Finite Element Procedures. Prentice Hall.
- Berg, R., Barry R., C., & Perkins, S. (2000). Geosynthetics Reinforcement of the Aggregate Base/Subbase Courses of Pavement Structures.
- Caballero, E. (2006). Utilizacion de la geomalla como refuerzo de la estructura del pavimento flexible. (*Trabajo de graduacion*). Universidad de San Carlos de Guatemala.
- Calvanaro, L., Leonardi, G., & Palamar, R. (2017). *Modelo de elementos de un camino sin pavimentar reforzado con geosinteticos*. Science Direct.
- Campos Zeledón, J. J. (2019). Implementacion de los metodos de ensayo para la determinacion de las propiedad a traccion en geomallas y geotextiles segun Normas ASTM D6637 y ASTM D4595. (*Proyecto pata el grado de Licenciatura en Ingenieria Civil*). Universidad de Costa Rica.
- CE.010 Pavimentos Urbanos. (2010). Reglamento Nacional de Edificaciones.

- CEDEX. (2013). *Materiales Geosinteticos Centro de Estudios y Experimentación de Obras Públicas.* España: Ministerio de Fomento.
- Comunicaciones, M. d. (2013). *Manual de carreteras: Especificaciones tecnicas generales para construccion (EG-2013).* Lima: Dirección General de Caminos y Ferrocarriles.
- Cook, R., Malkus, D., & Plesha, M. (2002). Concepts and Applications of Finite Element Analysis.
- Cordoni, V. (2018). La Carga de Rotura y la Elongación por el Mètodo Grab de Geotextiles Tejidos y No Tejidos y los Esuerzos de Tension en la Estrutura de Pavimentos Flexibles. (Tesis para optar el Grado Academico de Ingenierio Civil). Universidad Nacional San Antonio Abad del Cusco, Cusco.
- Cordoni, V. (2021). Evaluación del comportamiento mecánico de un suelo reforzado con geomallas mediante modelado numérico con elementos finitos. (*Tesina para Epecialista en Geotecnia*). Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico.
- Das S.K., Samadhiya N.K. (2020). A numerical parametric study on the efficiency of prestressed geogrid reinforced soil.
- Das, B. (2011). *Principles of foundation enginnering* (7th ed ed.). Cengage Learning.
- Flaherty, G. (2020). The Performance of Geogrid-Reinforced Unpaved Roads under Cyclic Loading. *Bachelor of Engineering (Hons) thesis*. Technological University Dublin.
- Huang, Y. (2006). *Pavement Analysis and Desing* (Vol. Second Edition). (P. P. Hall, Ed.)
- Huang, Y. (n.d.). Pavement Analysis and Design (Second Edition ed.).
- Hussein, A., & Ahmad, M. (2024). Effect of Strip on the Stress-Strain Behavior of Soil-Geogrid Interaction: A New Simple Concept. Geosynthetics: Leading the Way to a Resilient Planet.

- Hussein, M. (2016). A three-dimensional finite element approach for modeling biaxial geogrid with aplication to geogrid-reinforced soils. *Geotex. Geommembranes*, *44*(6), 295-307.
- IngeOexpert. (n.d.). Curso de modelización numérica con PLAXIS 2D. Retrieved from https://ingeoexpert.com/cursos/curso-de-modelizacion-numerica-con-plaxis-2d/#:~:text=PLAXIS%202D%20es%20un%20software,m%C3%A1s%20extendi do%20a%20nivel%20mundial
- INTERNATIONAL, A. (2015). Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method.
- Jiang, X., Zhang, F., Huang, B., Titi, H., Polaczyk, P., Ma, Y., . . . Cheng, Z. (2024). Full-scale accelerated testing of geogrid-reinforced inverted pavements. *Geotextiles and Geomembranes*.
- Jiang, Y. & Nimbalkar, S. (2019). Finite Element Modeling of Ballasted Rail Track
 Capturing Effects of Geosynthetic Inclusions. *Geotechnical Innovation for*Transport Infrastructure. doi:10.3389/fbuil.2019.00069
- Koerner, R. (2005). Designing with geosynthetics. New Jersey: Pearson Prentice Hall.
- Manual de Carreteras, Suelos, Geotecnia y Pavimento, M. (2014). R.D.Nº 10-2014-MTC-14.
- MINISTERIO DE TRANSPORTE Y COMUNICACIONES. (2014). MANUAL DE CARRETERAS SUELOS GEOLOGIA, GEOTECNIA Y PAVIMENTOS. LIMA.
- MONTEJO, F. (1997). *iNGENIERIA DE PAVIMENTOS PARA CARRTERAS .*BOGOTA: UNIVERSIDAD CATOLICA DE COLOMBIA.
- PAVCO, S. (2009). *MANUAL DE DISEÑO CON GEOSINTETICOS.* Bogota: Norte grafico.
- Poorahong, H., Jamsawang, P., Thanasisathit, N., Jongpradist, P., & Horpibulsuk, S. (2024). Enhancing the bearing capacity of unpaved roads on soft clay subgrade using geogrid reinforcement with a triaxial configuration.

- Reilly C. & Nell K. (2023). Behaviour of biaxial geogrid in unpaved roads research from Ireland. *Geosynthetics: Leading the Way to aResilient Planet, XII*, 1220-1226. doi:https://doi.org/10.1201/9781003386889
- RODAS, V. (1980). CARRETERAS, CALLES Y AEROPISTAS: PRINCIPIOS

 GENERALES DE LA MECANICA DE SEULOS APLICAODS A LA

 PAVIMENTACION Y METODOS PARA EL CALCULO DE PAVIMENTOS

 FLEXIBLES. BUENOS AIRES: EL ATENEO.
- Rutkauskas, A. (2018). Performance of Geogrids in Soft Soil. *Bachelor of Engineering* (Hons) thesis.
- Sampieri, R., Collado, C., & Lucio, M. (2014). *Metodología de la Investigación.* McGraw-Hill.
- Shahkolahi, A. &. (2024). Field Performance and Monitoring of Geogrid Stabilised/Reinforced Pavement on Soft and Expansive Subgrade. Geosynthetics: Leading the Way to a Resilient Planet, 1301-1306.
- Shukla, S. K. (2002). *Geosinteticos y sus aplicaciones*. Londres: Thomas Telford.
- Sicha Flores, G. G. (2018). Diseño con Geosintéticos para la Función de Separación, Filtración y Refuerzo en Pavimentos Flexibles. Pontificia Universidad Católica del Perú.
- TENSAR, I. (2016). THE PROPRTIES AND PERFOMANCE OF TENSAR TRIAXIAL GRIDS. TENSAR INTERNATIONAL.
- VIVAR, R. (1995). *DISEÑO Y CONSTRUCCION DE PAVIMENTOS*. LIMA: Colegio de ingenieros del Peru, Capituli de Ingenieria Civil, Consejo Departamental de Lima.
- Yesnik, C., Soliman, H., Morozov, I., Fleming, I., & Landry, E. (2025). Spatial and temporal changes in small-strain shear modulus of geogrid-stabilized crushed aggregate materials.
- Yoder, Witczak. (1975). Principles of Pavement Design. Nueva York.
- Zhang, J., Ji, M., Jia, Y., Miao, C., Wang, C., Zhao, Z., & Zheng, Y. (2021). Anisotropic Shear Strength Behavior of Soil-Geogrid Interfaces. 3.

Zornberg, J., & Gupta, R. (2010). Geosynthetics in pavements: North American contributions. *International Conference on Geosynthetics*.

10. ANEXOS

10.1 Matriz de Consistencia

PROBLEMA	OBJETIVO	HIPOTESIS	VARIABLES	DIMENSIO	INDICACODRES	INSTRUMENTO DE	METODOLOGÍA DE LA
PROBLEMA GENERAL	OBJETIVO GENERAL	HIPOTESIS GENERAL	VARIABLE INDEPENDIENTE	NES		INVESTIGACION	INVESTIGACION
¿Cómo es el comportamiento mecánico de una estructura de pavimento reforzado con geomalla biaxial y triaxial, Cusco 2024?	Evaluar el comportamiento mecánico de una estructura de pavimento reforzado con geomalla biaxial y triaxial en la interfaz subbase – sub rasante y a diferentes profundidades de la subbase.	El mejor comportamiento mecánico de una estructura de pavimento reforzado con geomalla triaxial se presenta en la interfaz subbase-subrasante	Geomalla	Tipos Ubicación	Propiedades de la Geomalla Biaxial Extruida MacGrid EGB 30 Propiedades de la Geomalla Triaxial TriAx TX160 Profundidad H Profundidad H/2	Ensayo de Laboratorio: Resistencia a la Tracción	Método de Investigación: Método Experimental Tipo de
					Profundidad H/3	métrica durante la colocación, desde	Investigación
PROBLEMA ESPECIFICO	OBJETIVO ESPECIFICO	HIPOTESIS ESPECÍFICAS	VARIABLE DEPENDIENTE			la superficie hasta Aplicada el plano reforzado	Aplicada
¿Cuáles son los esfuerzos y deformaciones en las diferentes profundidades de la subbase e interfaz de la estructura de pavimento reforzado?	Determinar los esfuerzos y deformaciones a diferentes profundidades de la subbase e interfaz subbase – subrasante de la estructura de pavimento flexible reforzado	Los esfuerzos y las deformaciones son menores en la interfaz subbase – subrasante de la estructura de pavimento flexible reforzado.	Comportamiento Mecánico de la Estructura de Pavimento Reforzado	Deformac ión Vertical	Compresión de la estructura de pavimento en la Maquina Universal	Medición de desplazamiento vertical en la Maquina Universal	Nivel de Investigación: Descriptivo correlacional
¿ Cuál es la profundidad óptima de la geomalla dentro de la estructura de pavimento reforzado?	Determinar la profundidad óptima de la geomalla dentro de la estructura de pavimento reforzado.	La profundidad óptima de la geomalla dentro de la estructura de pavimento flexible reforzado se encuentra en la parte inferior de la subbase.		Esfuerzos y deformaci ones unitarias	Dispositivo de lectura de los sensores de deformación ubicados en el	Sensores de deformación ubicados en el plano reforzado	
¿ Cuáles son las propiedades de resistencia a la tracción de la geomalla biaxial y triaxial?	Determinar las propiedades de resistencia a la tracción de la geomalla: biaxial y triaxial.	Las propiedades de resistencia a tracción de las geomallas biaxial y triaxial cumplen con sus especificaciones técnicas	radiales	radiales	radiales plano reforzado		

10.2 ASTMD 6637 Ensayo de Tracción Ultima

Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method¹

This standard is issued under the fixed designation D 6637; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 These test methods cover the determination of the tensile strength properties of geogrids by subjecting strips of varying width to tensile loading.
- 1.2 Three alternative procedures are provided to determine the tensile strength, as follows:
- 1.2.1 Method A—Testing a single geogrid rib in tension (N or lbf).
- 1.2.2 Method B—Testing multiple geogrid ribs in tension (kN/m or lbf/ft).
- 1.2.3 Method C—Testing multiple layers of multiple geogrid ribs in tension (kN/m or lbf/ft)
- 1.3 This test method is intended for quality control and conformance testing of geogrids.
- 1.4 The values stated in SI units are to be regarded as the standard. The inch-pound values stated in parentheses are provided for information only.
- 1.5 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:
- D 76 Specifications for Tensile Testing Machines for Textiles²
- D 123 Terminology Relating to Textiles²
- D 1909 Table of Commercial Moisture Regains for Textile Fibers²
- D 4354 Practice for Sampling of Goosynthetics for Testing³ D 4439 Terminology for Goosynthetics³

3. Terminology

- 3.1 Definitions:
- 3.1.1 atmosphere for testing geosynthetics, n—air maintained at a relative humidity of 50 to 70 % and a temperature
- ¹ This test method is under the jurisdiction of ASTM Committee D35 on Geosynthetics and is the direct responsibility of Subcommittee D35.01 on Mechanical Properties.
 - Current edition approved Feb. 10, 2001. Published May 2001.
- ² Annual Book of ASTM Standards, Vol 07.01.
- 3 Annual Book of ASTM Standards, Vol 04.09.

- of 21 \pm 2°C (70 \pm 4°F).
 - 3.1.2 breaking force, (F), n-the force at failure.
- 3.1.3 corresponding force, n—synonym for force at specified elongation.
- 3.1.4 force at specified elongation, FASE, n—a force associated with a specific elongation on the force-elongation curve. (synonym for corresponding force.)
- 3.1.5 force-elongation curve, n—in a tensile test, a graphical representation of the relationship between the magnitude of an externally applied force and the change in length of the specimen in the direction of the applied force. (synonym for stress-strain curve.)
- 3.16 geogrid, n—a geosynthetic formed by a regular network of integrally connected elements with aperetures greater than 6.35 mm (1/4 inch) to allow interlocking with surrounding soil, tock, earth, and other surrounding materials to primarily function as reinforcement. (D 5262)
- 3.1.7 integral, adj—in geosynthetics, forming a necessary part of the whole; a constituent.
- 3.1.8 geosynthetic, n—a product manufactured from polymeric material used with soil, rock, earth, or other geotechnical engineering related material as an integral part of a man made project, structure, or system.
- 3.1.9 *index test*, n—a test procedure which may contain known bias, but which may be used to establish an order for a set of specimens with respect to the property of interest.
- 3.1.10 junction, n—the point where geogrid ribs are interconnected to provide structure and dimensional stability.
- 3.1.11 rib, n—for geogrids, the continuous elements of a geogrid which are either in the machine or cross-machine direction as manufactured.
- 3.1.12 rupture, n—for geogrids, the breaking or tearing apart of ribs.
- 3.1.13 *tensile*, *adj*—capable of tensions, or relating to tension of a material.
- 3.1.14 tensile strength, (α_t) , n—for geogrids the maximum resistance to deformation developed for a specific material when subjected to tension by an external force. Tensile strength of geogrids is the characteristic of a sample as distinct from a specimen and is expressed in force per unit width.
- 3.1.15 tensile test, n—for geosynthetics, a test in which a material is stretched uniaxially to determine the forceelongation characteristics, the breaking force, or the breaking elongation.

Copyright & ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.

Copyright by ASTM Int'l (all rights reserved); Sun Dec 14 23:24:20 EST 2008 Downloaded/printed by

Robert Wallace () pursuant to License Agreement. No further reproductions authorized.

- 3.1.16 tension, n—the force that produces a specified elon-
- 3.2 For definitions of other terms used in this test method, refer to Terminologies D 123 and D 4439.

4. Summary of Test Method

- 4.1 Method A-In this method, a single, representative rib specimen of a geogrid is clamped and placed under a tensile force using a constant rate of extension testing machine. The tensile force required to fail (rupture) the specimen is recorded. The ultimate single rib tensile strength (N or lbf) is then determined based on the average of six single rib tensile tests.
- 4.2 Method B-A relatively wide specimen is gripped across its entire width in the clamps of a constant rate of extension type tensile testing machine operated at a prescribed rate of extension, applying a uniaxial load to the specimen until the specimen ruptures. Tensile strength (kN/m or lbf/ft), elongation, and secant modulus of the test specimen can be calculated from machine scales, dials, recording charts, or an interfaced computer.
- 4.3 Method C-A relatively wide, multiple layered specimen is gripped across its entire width in the clamps of a constant rate of extension type tensile testing machine operated at a prescribed rate of extension, applying a uniaxial load to the specimen until the specimen ruptures. Tensile strength (kN/m or lbf/ft), elongation and secant modulus of the test specimen can be calculated from machine scales, dials recording charts, or an interfaced computer.

5. Significance and Use

- 5.1 The determination of the tensile force-elongation values of geogrids provides index property values. This test method shall be used for quality control and acceptance testing of commercial shipments of geogrids.
- 5.2 In cases of dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the purchaser and supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens which are as homogeneous as possible and which are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using student's t-test for unpaired data and an acceptable probability level chosen by the two parties before the testing began. If a bias is found, either its cause must be found and corrected or the purchaser and supplier must agree to interpret future test results in light of the known bias.
- 5.3 All geogrids can be tested by any of these methods. Some modification of techniques may be necessary for a given geogrid depending upon its physical make-up. Special adaptations may be necessary with strong geogrids, multiple layered geogrids, or geogrids that tend to slip in the clamps or those which tend to be damaged by the clamps.

6. Apparatus

6.1 Testing Clamps—The clamps shall be sufficiently wide

- to grip the entire width of the specimen (as determined by the test method) and with appropriate clamping power to prevent slipping or crushing (damage). For a given product, the same clamps shall be used in testing methods A, B, and C prior to making any comparison between results.
- 6.1.1 Size of Jaw Faces-Each clamp shall have jaw faces measuring wider than the width of the specimen
- 6.2 Tensile Testing Machine-A testing machine of the constant rate of extension type as described in Specification D 76 shall be used. The machine shall be equipped with a device for recording the tensile force and the amount of separation of the grips. Both of these measuring systems shall be accurate to \pm 1.0 % and, preferably, shall be external to the testing machine. The rate of separation shall be uniform and capable of adjustment within the range of the test.
- 6.3 Distilled Water and Nonionic Wetting Agent, shall be used for wet specimens only.
- 6.4 Extensometer-When required by the method, a device capable of measuring the distance between two reference points on the specimen without any damage to the specimen or slippage, care being taken to ensure that the measurement represents the true movement of the reference points. Examples of extensometers include mechanical, optical, infrared or electrical devices.

Sampling

- 7. Lot Sample—Divide the product into lots and take the los sample as directed in Practice D 4354.
- 7.2 Laboratory Sample—For the laboratory sample, take a full roll width swatch long enough in the machine direction from each roll in the lot sample to ensure that the requirements in 8.1 can be met. The sample may be taken from the end portion of a roll provided there is no evidence it is distorted or different from other portions of the roll.

8. Test Specimen

8.1 The specimens shall consist of three (3) junctions or 300 mm in length (12 in.), in order to establish a minimum specimen length in the direction of the test (either the machine or cross-machine direction). All specimens should be free of surface defects, etc., not typical of the laboratory sample. Take no specimens nearer the selvage edge along the geogrid than 1/10 the width of the sample.

Note 1-If a comparison of one geogrid to another is to be made the length of each specimen shall be the same (as similar as possibly) and agreed upon by all parties.

8.2 Preparation:

- 8.2.1 Method A-Prepare each finished specimen, as shown in Fig. 1, to contain one rib in the cross-test wide by at least three junctions (two apertures) long in the direction of the testing, with the length dimension being designated and accurately cut parallel to the direction for which the tensile strength is being measured.
- 8.2.2 Method B-Prepare each finished specimen, as shown in Fig. 2, to be a minimum of 200 mm wide and contain five ribs in the cross-test direction wide by at least three junctions (two apertures) or 300 mm (12 in.) long in the direction of the

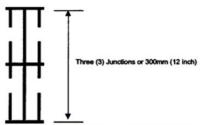


FIG. 1 Specimen Dimensions for Method A

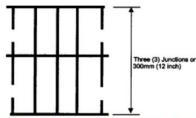


FIG. 2 Specimen Dimensions for Methods B and C

testing, with the length dimension being designated and accurately cut parallel to the direction for which the tensile strength is being measured.

8.2.3 Method C—Prepare each finished specimen, as shown in Fig. 2, to be a minimum of 200 mm wide and contain five ribs in the cross-test direction wide by at least three junction (two apertures) or 300 mm (12 in.) long in the direction of the testing, with the length dimension being designated and accurately cut parallel to the direction for which the tensile strength is being measured. This must be repeated for each layer of geogrid included in the test.

8.2.4 Within test methods A, B and C the outermost ribs are cut prior to testing to prevent slippage from occurring within the clamps. For those cases where the outermost ribs are severed, the test results shall be based on the unit of width associated with the number of intact ribs

8.3 Number of Test Specimens:

8.3.1 Unless otherwise agreed upon as when provided in an applicable material specification, take a number of test specimens per swatch in the laboratory sample such that the user may expect at the 95 % probability level that the test result is no more than 5 % above the true average for each swatch in the laboratory sample for each required direction, see Note 2.

Note 2-In some applications, it may be necessary to perform tensile tests in both the machine and the cross-machine directions. In all cases, the direction of the tensile est specimen(s) should be clearly noted.

8.3.2 Reliable Estimate of v-When there is a reliable estimate of v based upon extensive past records for similar materials tested in the user's laboratory as directed in the method, calculate the required number of specimens using Eq 1, as follows:

$$n = (tv/A)^2 \tag{1}$$

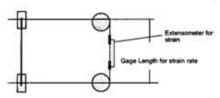
where:

- number of test specimens (rounded upward to a whole number).
- reliable estimate of the coefficient of variation of individual observations on similar materials in the user's laboratory under conditions of single-operator precision, %,
- = the value of Student's t for one-sided limits, a 95 % probability level, and the degrees of freedom associ-
- ated with the estimate of v, and A = 5.0% of the average, the value of allowable variation. 8.3.3 No Reliable Estimate of ... When there is no reliable estimate of v for the user's laboratory, Eq 1 should not be used directly. Instead, specify the fixed number of 5 specimens for the required direction. The number of specimens is calculated using v = 9.5 % of the average for the required direction. This value for v is somewhat larger than usually found in practice. When a reliable estimate of v for the user's laboratory becomes available, Eq 1 will usually require fewer than the fixed number of specimens.

9. Conditioning

- 9.1 Expose the specimens to the atmosphere for testing geosyntheties for a period long enough to allow the geogrid to reach equilibrium within this standard atmosphere. Consider the specimen to be at moisture equilibrium when the change in mass of the specimen in successive weighings made at intervals of not less than 2 h does not exceed 0.1 % of the mass of the specimen. Consider the specimen to be at temperature equilibrium after 1 h of exposure to the atmosphere for testing
- 9.2 Specimens to be tested in the wet condition shall be immersed in water for a minimum of one hour, maintained at a temperature of 21 \pm 2°C (70 \pm 4°F). The time of immersion must be sufficient to wet-out the specimens thoroughly, as indicated by no significant change in strength or elongation following a longer period of immersion, and at least 2 min. To obtain thorough wetting, it may be necessary or advisable to use distilled water.
- 9.3 Geogrids may be received in the laboratory rolled, thus it is important to flatten the specimens to avoid misleading elongation measurements. Geogrids which exhibit curl memory should be laid flat and weighted, until the geogrid remains flat without weight.

10. Procedure


10.1 Zero the testing system.

10.2 Machine Set-Up Conditions-At the start of the test, adjust the distance between the clamps or the distance from centerline to centerline of rollers to the greater distance of three junctions or $200 \pm 3 \text{ mm} (8.0 \pm 0.1 \text{ in.})$, such that at least one transverse rib is contained centrally within the gage length. At least one clamp should be supported by a free swivel or universal joint which will allow the clamp to rotate in the plane of the geogrid. Select the force range of the testing machine so the break occurs between 10 and 90 % of full-scale force. The test shall be conducted at a strain rate of 10 ± 3 % per minute of the gage length based on the gage length as depicted in Fig.

10.3 Mount the specimen centrally in the clamps and tighten

Copyright by ASTM Int'l (all rights reserved); Sun Dec 14 23:24:20 EST 2008 Downloaded/printed by Robert Wallace () pursuant to License Agreement, No further reproductions authorized.

Fixed Clamping System Roller Grip Clamping System FIG. 3 Gage Length For Fixed and Roller Grip Clamping Systems

sufficiently to prevent damage to the specimen, see Notes 3 and 4. Measure the distance between clamp faces or centerline to centerline of the roller grips to determine test specimen gage length External extensometers or other external means of measurement (for example, photo methods) are encouraged for all tests where modulus is to be measured, and must be used to determine displacement when roller clamps are used in testing. Documentation should be provided if a discrepancy arises when extensometers are not used during testing.

Note 3-Some modifications of clamping techniques may be necessary for a given geogrid depending upon its construction. Special clamping configurations may be necessary for geogrids constructed of coated fibers or yarns to prevent them from slipping in the clamps or being damaged as a result of being gripped too tightly in the clamps. When roller clamps are used an external extensometer, per Fig. 3, is often used to determine displacement. In this case, the distance between the moving feet of the extensometer will determine the gage length for use in elongation calculations and not test speed.

Note 4-Care shall be taken while testing multiple geogrid layers to assure even tensioning of the layers and uniform clamping pressure. The test result shall be discarded if the result is a load at a small displacement or peak strength is reached without having all of the layers tensioned.

10.4 Initiate the test by starting the testing machine and continue running the test until rupture occurs. Report the maximum force obtained to cause failure, the time to failure and the elongation at the measured maximum force.

10.4.1 If a specimen of one or more layers shas in the jaws, breaks at the edge of or in the jaws, or if for any reason attributed to faulty operation the result falls markedly below the average for the set of specimens, see 10.4.2.

10.4.2 The decision to discard the results as discussed in 10.4.1 shall be based on observation of the specimen during the tests, any test which results in a value below 20 % of the average of all the other breaks shall be discarded. No other break shall be discarded unless the test is known to be faulty.

10.4.3 It is difficult to determine the precise reason why

certain specimens break pear the edge of the jaws. If a jaw break is caused by damage to the specimen by the jaws, then the results should be discarded. If, however, it is merely due to randomly distributed weak places, it is a perfectly legitimate result. In some eases, it may also be caused by a concentration of stress in the trea adjacent to the jaws because they prevent the specimen from contracting in width as the force is applied. In these cases, a break near the edge of the jaws is inevitable and shall be accepted as a characteristic of the particular method of test.

10.5 If a geogrid manifests any slippage in the jaws or if more than 24 % of the specimens break at a point within 5 mm (0.25 in.) of the edge of the jaw, then (1) the jaws may be padded, (2) the geogrid may be coated under the jaw face area, or (3) the surface of the jaw face may be modified. If any of the modifications listed above are used, state the method of modification in the report.

10.6 Measurement of Elongation-Measure the elongation of the geogrid at any stated force by means of a suitable recording device at the same time as the tensile strength is determined, unless otherwise agreed upon, as provided for in an applicable material specification. Measure the elongation to three significant figures.

10.6.1 The strain within the specimen is calculated from the measurement of elongation as discussed in 10.6 and shown in Fig. 3. It can also be obtained independently of the cross head movement. These measurements can be made with extensometers or area measuring devices which are set to read the center portion of the specimen and containing at least one transverse rib. When used, the minimum extensometer gage length shall be 60 mm.

11. Calculation

11.1 For Method A (Single Rib Specimen)-From the test data, the average ultimate rib strength in N (lbf) is calculated by averaging the value of maximum force at rupture for all accepted specimen results. The average elongation at failure shall be determined separately for machine direction specimens and cross-machine direction specimens and expressed as the ercentage increase in length, based upon the initial gage length of the specimen. Report this as the elongation at failure.

11.2 For Methods B and C (Wide Width Specimen):

11.2.1 Slack Displacement (do) and Slack Tension (To)-Slack in the geosynthetic reinforcement may have developed during test set-up or due to the testing equipment. For each test, the tensile load-displacement curve (Fig. 4) may be examined to establish a point where the testing equipment fully engages the specimen, that is, pick up load. The displacement where this occurs will be designated as the slack displacement, d_o . The applied tension at the slack displacement will be designated as the slack tension, T_o . Both values must be recorded in the report.

11.2.1.1 The slack tension, To, shall be limited to 1.25 % of the peak tensile strength or 225N (50 lbf). The slack tension may only be applied once. The time between application of slack tension and test initiation must be less than two minutes.

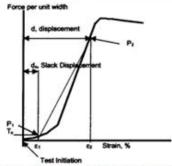


FIG. 4 Stress-Strain Curve with Complete Test Results

Copyright by ASTM Int'l (all rights reserved); Sun Dec 14 23:24:20 EST 2008 Downloaded/printed by

Robert Wallace () pursuant to License Agreement. No further reproductions authorized.

A slack displacement, d_o , should be selected in which the slack tension, To, does not violate these criteria.

Note 5—The slack tension, T_o , and slack displacement, d_o , may both be designated as equal to zero even if there is some slack behavior.

11.2.2 Calculate the tensile strength for individual wide width specimens (see Note 6); that is, calculate the equivalent force per unit width expressed in N/m (lbf/in.) of width, using Eq 2:

$$\alpha_f = [(F_p - T_o)/Nr] \times Nt$$
 (2)

where:

= equivalent force per unit width, N/m (lbf/in.);

 \vec{F}_p = observed maximum force, N (lbf); T_o = Slack tensile load, N (lbf); Nr = number of tensile elements being tested, and

Nt = number of tensile elements per unit width, equal to N/b (see Note 7).

Note 6-This equation is only for use in the determination of the wide-width tensile strength of the specimen based on Methods B and C above. This standard does not address the possible correlation between single-rib and wide-width tensile strength.

Note 7-Nt is determined by taking the average of three measurements from samples that are 95 % of the manufactured product roll width. Each measurement is performed by measuring the distance from the central point of the starting aperture (center line to center line aperture dimension divided by 2) to the center point of the aperture a distance equal to 95 % of the manufactured product roll width away from the starting aperture (This establishes the b value). As such, this measurement will result in a fractional value. The number of tensile elements, Ne, within this distance b, are counted and Nt is determined by dividing the N_c value by the value. For multiple layer geogrids, "b" should be measured using th single layer. The number of tensile elements, No, within this distance." are counted and multiplied by the number of layers found in the test specimen.

11.2.3 Strain—Calculate the percent strain for individual specimens; see Fig. 4. That is, calculate the elongation of specimens, expressed as the percentage increase in length of the specimen using Eq 2 for XY type recorders, or Eq 3 for manual readings.

$$\epsilon \rho = (\Delta L \times R \times 100)/CL \times L$$

$$\epsilon \rho = (\Delta L \times 100)/L$$
(3)

where:

elongation, %; €ρ

distance from zero force to the point where the curve do

leaves the zero load axis, mm (in.); distance along the zero load axis from the point the curve leaves the zero load axis to a point of corresponding force, mm (in.);

= testing speed rate, m/min (in./min);

recording chart speed, m/min (in./min); $L_o + d_o = \text{slack}$ displacement plus the initial nominal

gage length, mm (in.), and; (d - d) = the unit change in length from the slack displacement point to the corresponding measured force, mm (in.)

11.2.4 Gage marks or extensometers are preferred to define a specific test section of the specimen, per Fig. 3; when these devices are used, only the length defined by the gage marks or extensometers shall be used in the calculation. Gage marks must not damage the geogrid.

11.2.5 Secant Modulus-Per Fig. 4, select a force per unit width for a specified elongation ϵ_2 , and label the corresponding point on the force-elongation curve as P2. Likewise, label a second point, P_1 , at a specified elongation, ϵ_1 , taken at d_0 . Draw a straight line (secant) through both points P1 and P2 intersecting the zero load axis. Calculate secant tensile modulus using Eq 4.

$$J_{\mu c} = (\alpha_f \times 100) / \epsilon$$
(4)

where:

secant tensile modulus N/m (lbf/ft.), at correspond- J_{sec} ing elongation;

peak force minus slack tension times the number of tensile elements in a unit width (m or ft) divided by the number of elements tested. This is the equivalent force per unit width, N/m (lbf/ft.) at a designated percent strain, and;

= per Eq 4, corresponding percent strain with respect to the force per unit width.

12. Report

12.1 For Test Method A-The report for geogrid rib tensile strength should include the following:

12. The maximum individual rib tensile strength, N(lbf), d clongation at failure for each specimen and the average ultimate rib tensile strength, N(lbf), average elongation at failure, and standard deviation for each set of specimens;

12.1.2 Make and model of the testing machine;

12.1.3 Type, size, and facing of grips, and description of any changes made to the grips;

12.1.4 The number of specimen tested;

12.1.5 Test conditions;

12.1.6 Any departures from standard procedure;

12.1.7 Identification and description of geogrid sample(s);

12.1.8 Description of type and location of failure for each test;

12.1.9 Direction of testing, and,

12.1.10 Full set of load versus strain charts.

12.2 For Test Methods B and C-Report that the specimens were tested as directed in this test method, or any deviations from this test method. Describe all materials or products sampled and the method of sampling for each material.

12.2.1 Report all of the following applicable items for the machine direction and where appropriate, the cross machine direction of all materials tested:

12.2.2 Ultimate tensile strength, αf, in kN/m (lbf/ft);

12.2.3 Elongation at the ultimate tensile strength in percent, and the method of measuring elongation;

12.2.4 Secant modulus in kN (lbf) of width, see Fig. 4, and section 11.2.4. If the secant modulus is reported, state that portion of the force-elongation curve used to determine the modulus, that is, ϵ_1 to ϵ_2 at zero tension, elongation reported as €2 secant modulus. If it is agreed between parties that the secant modulus be reported then the entire load-strain curve should be recorded and reported as depicted in Fig. 4.

12.2.5 The standard deviation or the coefficient of variation of the test results:

Copyright by ASTM Int'l (all rights reserved); Sun Dec 14 23:24:20 EST 2008 Downloaded/printed by Robert Wallace () pursuant to License Agreement. No further reproductions authorized.

- 12.2.6 Number of tensile elements, ribs, within the width of specimens;
 - 12.2.7 Number of specimens tested;
 - 12.2.8 Make and model of the testing machine;
 - 12.2.9 Grip separation (initial);
- 12.2.10 Type, size, and facing of grips, and description of any changes made to the grips;
- 12.2.11 Conditioning of specimens, including details of temperature, relative humidity, and conditioning time, and;
- 12.2.12 Anomalous behavior, such as tear failure or failure

13. Precision and Bias

- 13.1 Precision-The precision of this test method is being
- 13.2 Bias-This test method has no bias since the values of those properties can be defined only in terms of a test method.

14. Keywords

14.1 geogrid; geogrid rib; geosymbetic, geotextile; index test; tensile test

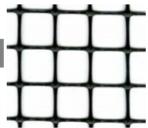
The American Society for Testing and Materials takes no position respecting the validity of any patent rights asseted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend, if you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

Box C.

ay be obta.

Ag (e-mail); or b. This standard is copyrighted by ASTM, 100 Barr Harbor Drive, PO Box C700, West Consholiocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).


10.3 Ficha Técnica de la Geomalla

MacGrid® EGB 30

Geomalla Biaxial Extruida

Características técnicas

MacGrid[®] EGB 30 es una geomalla biaxial extruida de polipropileno, indicada para refuerzo y estabilización de suelos.

Propiedades Físicas	Unidades	Ensayo	EG B 30
Abertura nominal de la malla longitudinal (MD) (1)	mm		36
Abertura nominal de la malla transversal (TD) (1)	mm		38
Polimero			Polipropileno
Color			negro

Propiedades Mecánicas	Unidades	Ensayo	EG B 30
Resistencia longitudinal a la tracción (MD)	kN/m	ASTM D 6637	30.0
Resistencia transversal a la tracción (TD)	kN/m	ASTM D 6637	30.0
Resistencia longitudinal al 2% de deformación (MD)	kN/m	ASTM D 6637	10.5
Resistencia transversal al 2% de deformación (TD)	kN/m	ASTM D 6637	10.5
Resistencia longitudinal al 5% de deformación (MD)	kN/m	ASTM D 6637	21.0
Resistencia transversal al 5% de deformación (TD)	kN/m	ASTM D 6637	21.0
Eficiencia de las juntas	%	GRI GG2	93
Rigidez Flexural	mg-cm	ASTM D 1388	3,500,000
Espesor mínimo de la costilla Longitudinal (MD)	mm	ASTM D 1777	2.00
Espesor mínimo de la costilla Transversal (TD)	mm	ASTM D 1777	1.50
Estabilidad de las Aperturas	m-N/deg	COE Method	1.40

Presentación del Rollo	Unidades	Ensayo	EG B 30
Ancho del rollo	m		3.95
Largo del rollo	m		50

⁽¹⁾ La tolerancia de las dimensiones de la abertura es de ± 2mm.

Los datos técnicos e informaciones indicadas en la presente heja técnica están basados en la más recientes informaciones disponibles y pueden estar sujetas a variaciones, debido a modificaciones de los procesos productivos y de la política comercial.

Maccaferri se reserva el derecho de revisar estas especificaciones en cualquier momento, de acuerdo con las caracteráticas de los productos fabricados.

www.maccaferri.com.pe

Sistema de Gestión de Calidad
Certificado de Conformidad con la
Norma ISO 90012000

Especificación de Producto - Geomalla TriAx®TX160®

Tensar International Corporation se resena el derecho de modificar las especificaciones del producto en qualquier momento. Es responsabilidad de qui én diseña y de qui én compra el aseguerse de que las especificaciones del producto son las sigentes y apropiadas para cada caso.

Genera

- La geomalla es manufacturada utilizando una lámina de Polipropileno perforada la cual se orienta en tres direcciones sustancialmente equiláteras de manera que las costillas resultantes tengan un alto grado de orientación mol ecular que continuará parcialmente a través de la masa del nodo integral.
- 2. La s cara cterísticas contribuyentes al desempeño de la carpeta mecán icamente estabilizada i ncluyen:

Propiedades Índices	Longitudinal	Diagonal	Transversal	General	
 Lo ngitu d de la costil la⁽²⁾, mm (in) 	40 (1.60)	40 (1.60)	-		
 Pro fun di da d media de la costil la ⁽²⁾, mm (in) 		1.6 (0.06)	1.4 (0.06)		
 Ancho medio de la costil la Pi, mm (in) 		10 (0.04)	1.2 (0.05)		
 Geometría de la costilla 				Rectan gula r	
 Geo metría de la a bertura 				Trian gula r	
Integridad Estructural					
 Eficien d a de l a junta™, % 				93	
 Pro porción de la Rigidez Isotrópica™ 				0.6	
 Rigid ez radial a baja deformación ₱, kN/ m@ 0.5% strain 				300	
(lb/ft@0.5%strain)				(20,580)	
Durabil idad					
 Resistencia a degradación química^(q) 				100%	
 Resistencia a rayos UV y des gaste⁽⁷⁾ 				70%	

Dimensiones ventre ga

La geomafia debe ser entregada en campo en rollos identificados individualmente de acuerdo a las siguientes dimensiones nominales:

- Ancho de 3.0 metros (9.8 pies) y largo desenmollado de 75 metros (246 pies).
- Ancho de 4.0 metros (13.1 pies) y largo desentrollado de 75 metros (246 pies).
- Ancho de 4.87 metros (16 pies) y largo desenvollado de 100 metros (328 pies).

Notas

- Excepto cuando se indique lo contrario, lo valores que se muestran son valores promedio mínimos de rollo, MARV, siguiendo los requisitos del ASTM D 47 59. Las notas a continuación incluyen una breve descripción de los ensayos.
- 2. Dimensiones nominales.
- Capacidad de transferencia de carga es determinada de acuerdo a los ensayos ASTM D6637 and ASTM D7737 y expresada como porciento de la capacidad última a la tensión.
- La proporción entre los valores observados mínimos y máximos de la rigidez radial a 0.5% de tensión, medidos en una costilla y a media distancia en las direcciones de la costilla.
- 5, Rigidez radial es determinada de la rigideza la tensión medida en cualquier eje planar del ensayo según descrito en ASTM D6637.
- 6. Resistencia a la pérdida de capacidad de carga o integridad estructural al estar expuesto a ambiente químicamente a gresivo según el ensayo de inmersión EFA9 09 0.
- 7. Resistencia a la pérdida de capacidad de carga o integridad estructural al estar expuesto a 500 horas de rayos UV y desgas te agresivo según el ensayo ASTMD 43 55-05.

Tensar International Corporation 2500 Northwinds Pkwy. Atlanta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com La passente especificación recesplaza cualquier especificación presta pass el antes descrito producto y no exválida para productos enilados antesado 31 de enero de 2014. Los necebras Tensary Niño son macasarquite edas popiedados fe Tensar International Copporation prio essen filialisane los tatados biblios y en emchasostes partes. Tálivis regispida y el suo están potegidos por la pates tata. No. 7,001, 112. Patentes o selicidades de patente tembién están vigorita en otros países. La determinación final de la identificación de la información contentida en este documento y de la desolpción del producto para un suo o aplicación especifica y sun efecto de sitiración son responsabilidades siricas del suserio. Tensar international Corporation sensorias acualquier garantés espesas, implicita o establistaria, lediquendo y so limitado a cualquier garantés espesas, implicita o establistaria, lediquendo y so limitado a cualquier garantés espesas, implicita o establistaria, lediquendo y so limitado a cualquier garantés de converdabilidade ol desetidad para un suo paténtar en relacción a este sotos poductos, tendologias o senidos de la empresa. La información concentrada del desentado para un suo paténtar en relacción a este sotos poductos, tendologias o senidos de la empresa. La información concentrada del forectario.

10.4 Ensayos de Laboratorio

10.4.1 Material de Subrasante

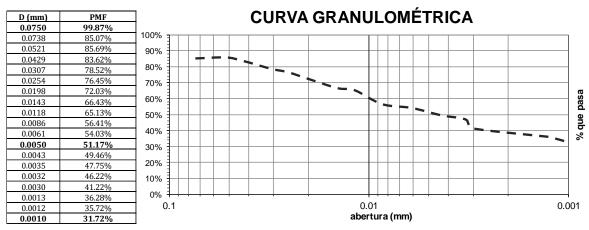

10.4.1.1 Análisis Granulométrico por Medio del Hidrómetro

Tabla 1Análisis Granulométrico por Medio del Hidrómetro - Subrasante

TESIS:		"Evaluaciòn del	Comport	amiento Me	cànico de ui	na Estructura de	Pavimento r	eforzado c	on geomalla, Cusco -2024	,"
Tesistas:	Bach. Rosmo	ery Condori Mama	ani							
i esistas:	Bach. Fabrio	cio Francisco Mira	no Sucñi	ier						
Ensayo:	Análisis Gra	nulométrico por l	Medio de	l Hidrómet	ro					
Norma:	MTC E 109	*								
Material:	Material de	Sub Rasante								
Laboratorio:	Laboratorio	de Mecànica de S	uelos y l	Materiales -	- Escuela Pr	ofesional de In	genieria Civ	il - UNSAA	С	
Fecha	·									
	, ,			DATOS Y C	ORRECCION	S DE LOS MATER	RIALES			
			muestra1	muestra 2						
Peso de la cápsula	a (g)		40.00	40.52		Tipo de densímo	etro			152-H
Peso de la cápsula	a + Suelo seco a	al aire (g)	52.86	55.57		Lectura de 0 a 60 del densímetro (cm)			9.81	
Peso de la cápsula		al horno(g)	52.17	54.77		Lectura del densímetro por cada unidad de medida (cm)			0.16	
Contenido de Hur	nedad (%)		5.67%	5.61%		Lectura desde 60 al borde extremo del bubo del densímetro (cm)				14.91
Contenido de pro				64%		Volumen del bulbo (cm³)				64
Peso del suelo pa		•		0.00		Distancia entre 100ml de agua (cm)				3.26
Peso del suelo se				7.33		Área transversal de la probeta de sedimentación (cm²)			30.67	
Peso específico re				2.56		Corrección por Lectura del densímetro sin agente defloculante			2	
Corrección por		ncima del menisco		1.1		Lectura del densimetro con agente defloculante			6	
menisco		ebajo del menisco		2.2			cd			4
	cm			1.1						
					LECTURAS	INCIALES				
					LECTORAS	INCIALLS				
Tiempo	Lectura g/L	Temperatura °C		Tiempo	Lectura g/L	Temperatura °C		Tiempo	Lectura g/L	Temperatura °C
20 s	46	16.7		20 s	46	16.3		20 s	42.2	17.9
40 s	45	16.7		40 s	45	16.3		40 s	45	17.8
1 min	44.5	16.7		1 min	43.2	16.3		1 min	44.4	17.8
2 min	42.1	17.5		2 min	41	17.3		2 min	41.2	17.9
3 min	40.5	15.9		3 min	40.5	17.7		3 min	40.7	17.8

LECTURAS DEL ANÁLISIS GRANULOMÉTRICO POR HIDROMETRÍA										
Tiempo	Lectura g/L	Temperatura °C	Ct	Rc	L1	L	К	D (cm/min) (mm)	PMF	
20 s	44.7	16.9	-0.814	40.99	3.11	9.52	0.01381	0.0738	85.07%	
40 s	45.0	16.9	-0.814	41.29	3.06	9.47	0.01381	0.0521	85.69%	
1 min	44.0	16.9	-0.814	40.29	3.22	9.64	0.01381	0.0429	83.62%	
2 min	41.4	17.5	-0.671	37.83	3.62	10.04	0.01371	0.0307	78.52%	
3 min	40.5	17.1	-0.767	36.83	3.79	10.20	0.01378	0.0254	76.45%	
5 min	38.2	17.8	-0.597	34.70	4.14	10.55	0.01366	0.0198	72.03%	
10 min	35.5	17.8	-0.597	32.00	4.58	10.99	0.01366	0.0143	66.43%	
15 min	34.9	17.7	-0.622	31.38	4.68	11.09	0.01367	0.0118	65.13%	
30 min	30.7	17.7	-0.622	27.18	5.37	11.78	0.01367	0.0086	56.41%	
60 min	29.5	17.9	-0.572	26.03	5.55	11.97	0.01364	0.0061	54.03%	
120 min	27.2	18.3	-0.470	23.83	5.91	12.33	0.01357	0.0043	49.46%	
180 min	26.0	19.7	-0.093	23.01	6.05	12.46	0.01333	0.0035	47.75%	
211 min	25.0	20.6	0.167	22.27	6.17	12.58	0.01318	0.0032	46.22%	
248 min	22.5	20.9	0.257	19.86	6.56	12.98	0.01313	0.0030	41.22%	
1392 min	21.0	17.7	-0.622	17.48	6.95	13.36	0.01367	0.0013	36.28%	
1540 min	20.0	20.4	0.108	17.21	7.00	13.41	0.01322	0.0012	35.72%	
2858 min	18.9	17.3	-0.719	15.28	7.31	13.72	0.01374	0.0010	31.72%	

DIÁMETROS Y PORCENTAJES QUE PASA

RESULTADOS DEL ANÁLISIS GRANULOMÉTRICO POR HIDROMETRÍA						
Partículas menores	Porcentaje					
75 μm	99.87%					
5 μm	51.17%					
1 μm	31.72%					

Granulometría						
0.13%	arena					
48.70%	limo					
51.17%	arcilla					

10.4.1.2 Determinación del Limite Liquido de los Suelos y Determinación del Limite Plástico (L.P.) de los Suelos e Índice de Plasticidad (I.P.)

Tabla 2 *Limites de Consistencia - Subrasante*

TESIS:	"Evaluación del Comportamiento Mecànico de una Estructura de Pavimento reforzado con geomalla, Cusco -2024"							
T ' - 1	Bach. Rosmery Condori Mamani							
Tesistas:	Bach. Fabricio Francisco Mirano Sucñier							
Ensayo:	istencia							
Lìmite Liquido:	MTC E 110							
Limite Plàstico:	MTC E 111							
Material:	Material de Sub	Material de Sub Rasante						
Laboratorio:		Mecànica de Sue ngenieria Civil - I	los y Materiales - UNSAAC	Escuela				
Fecha	29/02/2024							
	LIMITES DE	CONSISTENCIA						
LIMITE LIQUIDO								
Capsula Nº	A	В	С	D				
Peso de capsula	40.59	33.67	39.23	40.52				
Capsula + suelo humedo	68.61	63.21	66.9	67.82				
capsula + suelo seco	63.25	57.45	61.45	62.3				
humedad	23.654%	24.222%	24.527%	25.344%				
numero de golpes	32	27	23	18				
25.6% 25.4% 25.2% 24.8% 24.6% 24.4% 24.2% 24.0% 23.8% 23.6% 23.4%	10 15 NUM	5 20 ERO DE GOLPES	25 30	35				
LIMITE PLASTICO			RESULT	CADOS				
Capsula Nº	1	2						
Peso de capsula (gr)	14.4			24.00%				
Capsula + suelo humedo(gr)				17.00%				
capsula + suelo seco (gr)	19.77	19.77		7.00%				
humedad (%)	18%	16%						

10.4.1.3 Método de Ensayo Estándar para la Gravedad Especifica de Solidos de Suelo mediante Picnómetro de Agua

Tabla 3Gravedad Especifica - Subrasante

mpore	"Evaluaciòn del Comportamiento Mecànico de una Estructura de					
TESIS:	Pavimento reforzado con geomalla, Cusco -2024"					
Tesistas:	Bach. Rosmery	Condori Mamani				
i esistas.	Bach. Fabricio F	rancisco				
Encavo	Metodo de Ensa	ayo Estandar par	a la Gravedad Es	pecifica de		
Ensayo:	Solido de Suelos	s mediante Picno	metro de Agua			
Norma	MTC E 113					
Material:	Material de Sub	Rasante				
Laboratorio:	Laboratorio de Mecànica de Suelos y Materiales - Escuela					
Laboratorio.	Profesional de Ingenieria Civil - UNSAAC					
Fecha	18/04/2024					
Peso suelo humedo (gr)						
Porcentaje de humedad (g	r)					
Peso del suelo seco (gr)		Ws	50.04	50.01		
Peso Picnometro + Agua (g	gr)	Wfw	659.24	659.24		
Peso Picnometro + Suelo Seco + Agua (gr)		Wfsw	689.57	689.84		
Peso especifico		Gs	2.54	2.58		
		Gs=	2.56			

10.4.1.4 Compactación de Suelos en Laboratorio Utilizando una Energía Modificada (Proctor Modificado)

Tabla 4Proctor Modificado - Subrasante

TESIS:	"Evaluaciòn del Comportamiento Mecànico de una Estructura de Pavimento reforzado con geomalla, Cusco -2024"
TESISTAS:	Bach. Rosmery Condori Mamani Bach. Fabricio Francisco Mirano Sucñier
ENSAYO	Compactación de Suelos en Laboratorio Utilizando una Energía Modificada (Proctor Modificado)
NORMA	MTC E 115
MATERIAL	Material de Sub Rasante
	Laboratorio de Mecànica de Suelos y Materiales - Escuela
LABORATORIO	Profesional de Ingenieria Civil - UNSAAC
Fecha	06/03/2024

DENSIDAD SECA

MUESTRA	H1	H2	Н3	H4
PESO BASE + MOLDE + S	3787.5	3960.91	4160.06	4109.18
PESO BASE + MOLDE	2029.24	2029.24	2029.24	2029.24
SUELO HUMEDO	1758.26	1931.67	2130.82	2079.94
VOLUMEN	943.96	943.96	943.96	943.96
DENSIDAD HUMEDA	1.863	2.046	2.257	2.203
DENSIDAD SECA(GR/CM3)	1.745	1.882	1.985	1.900

CONTENIDO DE HUMEDAD

CAPSULA		1 Y B	Qур	AyR	2 y D
	arriba	39.7	40.11	41	41.01
peso capsula	abajo	39.98	39.84	40.57	39.24
peso capsula +	arriba	95.16	100.17	81.94	101.52
suelo	abajo	93.09	80.68	93.15	97.84
peso capsula +	arriba	91.83	95.65	77.56	94.06
suelo seco	abajo	89.96	77.68	87.45	90.89
		6.388	8.138	11.980	14.062
HUMEDAD		6.263	7.928	12.159	13.456
HUMEDAD (%)		6.33	8.03	12.07	13.76

γd màximo

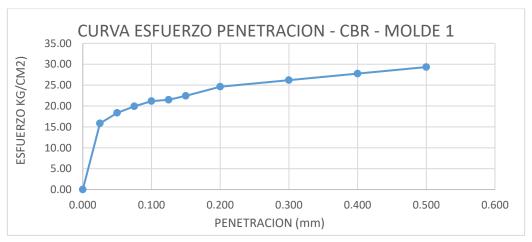
1.99 gr/ cm3

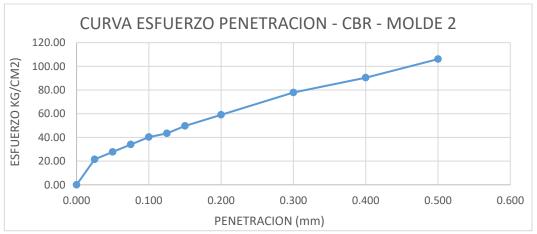
10.4.1.5 CBR de Suelos (Laboratorio)

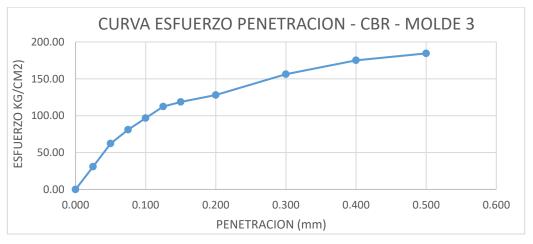
Tabla 5CBR - procesamiento de datos – Subrasante

TESIS	"Evaluación del Comportamiento Mecànico de una Estructura de Pavimento reforzado con geomalla, Cusco -2024"
Tesistas:	Bach. Rosmery Condori Mamani Bach. Fabricio Francisco Mirano Sucñier
Ensayo:	CBR en Laboratorio
Norma:	MTC E 132
Material:	Material de Sub Rasante
Laboratorio:	Laboratorio de Mecànica de Suelos y Materiales - Escuela Profesional de Ingenieria Civil - UNSAAC
Fecha:	11/03/2024

Fecha:	11/03/2024								
				CALIFORNIA B	EARIN RATIO - CBR				
MOLDE	SR1			SR2			SR3		
Alltura de Molde mm		127			129		129		
N capas		5			5			5	
Ngole X capa		12			25			56	
Cond. Muestra	Antes de	empapar	Despues	Antes	de empapar	Despues	Antes de	empapar	Despues
P. Hum + Molde	11!	559	11770	-	12040	12133	112	225	11355
Peso molde (gr)	68	65	6865		7145	7145	5881		5881
Peso Humedo (gr)	46	94	4905		4895	4988	5344		5474
Vol. Molde (cc)	230	4.52	2304.52	2	340.81	2340.81	2340.81		2340.81
Densidad h (gr/cc)	2.	04	2.13		2.09	2.13	2.28		2.34
Numero de ensayo	SR1 - A	SR1 - B	SR1 - C	SR2 - A	SR2 - B	SR2 - C	SR3 - A	SR3 - B	SR3 - C
P. Hum + capsula	166.05	176.08	108.65	180.22	162.05	109.25	185.49	167.93	121.06
Peso Seco + Cpasula	153.66	160.27	97.49	167.04	148.21	98.59	168.22	152.87	105.54
Peso agua	12.39	15.81	11.16	13.18	13.84	10.66	17.27	15.06	15.52
Peso capsula	39.78	40.4	39.65	38.29	39.33	40.08	39.69	39.88	39.47
P muestra seca	113.88	119.87	57.84	128.75	108.88	58.51	128.53	112.99	66.07
Cant humedad	10.88%	13.19%	19.29%	10.24%	12.71%	18.22%	13.44%	13.33%	23.49%
Conr hum.prom	12.0)4%	19.29%	11.48%		18.22%	13.39%		23.49%
DENSIDAD SECA	1.7	'92	1.718	1.851		1.743	1.977		1.789


LECTURAS DE EXPANSION


TIEME	20	NUMERO DE MOLDE SR1		NU	NUMERO DE MOLDE SR1			NUMERO DE MOLDE SR1		
ACUMUL	ADO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHAMI	ENTO	LECTURA	HINCHA	AMIENTO
(HS)	(DIAS)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0	0	0.0000	0	0	0.0000
24	1	13.000	0.330	0.26	9	0.229	0.1772	2	0.051	0.0394
48	2	15.000	0.381	0.30	13	0.330	0.2560	9	0.229	0.1772
72	3	18.000	0.457	0.36	15	0.381	0.2953	11	0.279	0.2166
96	4	18.000	0.457	0.36	15	0.381	0.2953	11	0.279	0.2166


ENSAYO CARGA - PENETRACION

PENETRA	CION		MOLDE SR1		MOLDE SR2			MOLDE SR3		
(mm)	(pulg)	CARGA	ESFUERZO	O(lbf/pulg2)	CARGA	ESFUERZO(lb	f/pulg2)	CARGA	ESFUERZO	(lbf/pulg2)
0.0	0.000	0.0		0.00	0.0		0.00	0		0.00
0.64	0.025	1.2		15.85	3.0		21.49	6		30.90
1.27	0.050	2.0		18.36	5.0		27.76	16		62.24
1.91	0.075	2.5		19.92	7.0		34.03	22		81.05
2.54	0.100	2.9		21.18	9.0		40.30	27		96.73
3.17	0.125	3.0		21.49	10.0		43.43	32		112.40
3.81	0.150	3.3		22.43	12.0		49.70	34		118.67
5.08	0.200	4.0		24.63	15.0		59.11	37		128.07
7.62	0.300	4.5		26.19	21.0		77.92	46		156.29
10.16	0.400	5.0		27.76	25.0		90.46	52		175.10
12.7	0.500	5.5		29.33	30.0		106.13	55		184.50

Gráfico 1Curva esfuerzo – penetración - Subrasante

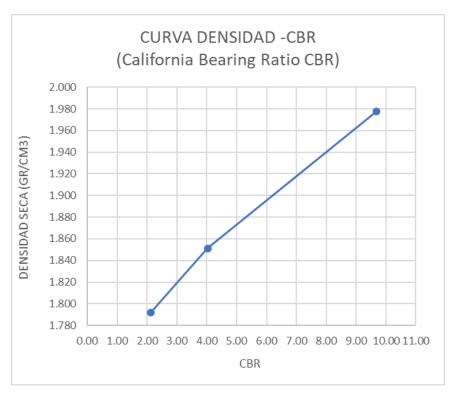


Tabla 6

CBR - resultados - Subrasante

PENETRACION	0.1	0.2
MOLDE 1	21.18	24.63
MOLDE 2	40.30	59.11
MOLDE 3	96.73	128.07

	DENS	0.1	0.2	CBR
MOLDE 1	1.792	2.12	1.64	2.12
MOLDE 2	1.851	4.03	3.94	4.03
MOLDE 3	1.977	9.67	8.54	9.67

DENS. MAX	1.99
95% DENS. MAX	1.89

CBR AL 100%	9.67
CBR AL 95%	5.25

10.4.2 Material de Subbase

10.4.2.1 Análisis Granulométrico de Suelos por Tamizado

Tabla 7Análisis Granulométrico de Suelos por Tamizado – Subbase Huillque

TESIS	"Evaluaciòn	del Comportam			ura de Pavim	ento refo	rzado			
	-	con geomalla, Cusco -2024" Bach. Rosmery Condori Mamani								
Tesistas:			-	Condori Maman cisco Mirano Su						
Ensayo		Aná	lisis Granulom	étrico por Tamiz	zado					
Norma	MTC E 107									
Material		Cantera Huillque								
Laboratorio	Laboratorio	de Mecanica de S			ofesional de l	ngenieria	Civil -			
Laboratorio		UNSAAC								
Fecha:				2/2024						
		IS GRANULOMÉ	TRICO DE SUE	LOS POR TAMI						
Peso Inicial de l	a Muestra Sec	a	1531.98		7.99		-			
Peso de la Mues	stra Despues d	lel Lavado	1256.95	D30=	0.74	Cc=	-			
Perdida por Lav	/ado		275.03	D10=	-					
TAMIZ	ABERTURA	PESO	% PESO	%RETENIDO	%QUE	ESPEC	IFIC.			
IAMIL	(mm)	RETENIDO	RETENIDO	ACUMULADO	PASA	" <i>A</i>	Α"			
2"	50	0.00	0.00	0.00	100.00	100	100			
1 1/2"	38.1	0.00	0.00	0.00	100.00					
1"	25.4	135.25	8.83	8.83	91.17					
3/4"	19.05	81.10	5.29	14.12	85.88					
1/2"	12.7	191.71	12.51	26.64	73.36					
3/8"	9.525	120.74	7.88	34.52	65.48	30	65			
#4	4.76	238.16	15.55	50.06	49.94	25	55			
#10	2	186.49	12.17	62.24	37.76	15	40			
#40	0.42	177.76	11.60	73.84	26.16	8	20			
#100	0.149	76.46	4.99	78.83	21.17					
#200	0.074	47.78	3.12	81.95	18.05	2	8			
cazuela	0	1.50	0.10	100.00	0.00					
lavado		275.03	17.95							
		1256.95	100							
Porcentaje que pasa (%)	00 00 00 00 00 00 00 00 00 00 00 00 00	10	RA HUILLQ	0.1	0.0	1				
		Δ	bertura (mm)							
GRAVA (%) =	50.06	ARENA (%) =	31.89	FINOS (%) =	18.05					

Tabla 8Análisis Granulométrico de Suelos por Tamizado – Subbase Quillahuata

	"Evaluaciò	n del Comport	amiento Me	cànico de una	Estructura	de Pavir	nento			
TESIS		-		omalla, Cusco -						
	Bach. Rosme	ery Condori Ma								
Tesistas:		io Francisco M		ier						
Ensayo		nulométrico p								
Norma	MTC E 107									
Material	Cantera Qu	Cantera Quillahuata								
Laboratorio	Laboratorio	Laboratorio de Mecanica de Suelos y Materiales, Esciela Profesional de Ingenieria Civil - UNSAAC								
Fecha:	21/03/2024		2005 20	D. C 0						
Peso Inicial de			2885.22		6.09		-			
Peso de la Mue			2072.18		0.15	CC	-			
Perdida por La		CD ANUL ONE	813.04		- -					
				ELOS POR TAM						
TAMIZ	ABERTURA	PESO	% PESO	%RETENIDO	%QUE	ESPE				
	(mm)	RETENIDO	RETENIDO	ACUMULADO	PASA		Α"			
2"	50	0.00	0.00	0.00	100.00	100	100			
1 1/2"	38.1	112.81	3.91	3.91	96.09					
1"	25.4	176.77	6.13	10.04	89.96					
3/4"	19.05	104.71	3.63	13.67	86.33					
1/2"	12.7	291.47	10.10	23.77	76.23					
3/8"	9.525	180.26	6.25	30.02	69.98		65			
#4	4.76	399.59	13.85	43.87	56.13	25	55			
#10	2	356.77	12.37	56.23	43.77	15	40			
#40	0.42	299.09	10.37	66.60	33.40	8	20			
#100	0.149	97.50	3.38	69.98	30.02					
#200	0.074	50.25	1.74	71.72	28.28	2	8			
cazuela	0	2.96	0.10	100.00	0.00					
lavado		813.04	28.179							
		2072.18	100							
		CANTERA	\bigcirc				1			
90.00 80.00 90.00 60.00 40.00 30.00 10.00 10.00			QUILLA	HUAIA						
90.00 80.00 70.00 50.00 40.00 30.00 20.00						0.01				
90.00 80.00 70.00 50.00 40.00 30.00 10.00		10	QUILLA 1 Abertura (mm)	0.3		0.01				
80.00 80.00 40.00 30.00 20.00 10.00			1	0.3		0.01				
80.00 80.00 40.00 30.00 20.00 10.00	100		1 Abertura (mm)	0.3	28.28	0.01				

10.4.2.2 Determinación del Limite Liquido de los Suelos y Determinación del Limite Plástico (L.P.) de los Suelos e Índice de Plasticidad (I.P.)

Tabla 9 *Límites de Consistencia – Subbase Huillque*

TESIS	S:		-	o Mecànico de una n geomalla, Cusco				
Tesista	as:	Bach. Rosmery Condori Mamani Bach. Fabricio Francisco Mirano Sucñier						
Ensay	o:	Limites de Con	sistencia					
Lìmite Lic	quido:	MTC E 110						
Limite Plà	ite Plàstico: MTC E 111							
Materi	al:	Cantera Huillque						
Laborato	orio:	Laboratorio de Mecànica de Suelos y Materiales - Escuela Profesional de Ingenieria Civil - UNSAAC						
Fecha	a:	04/03/2024	8					
1 00110		01/00/2021						
LIMITE LIQUID				T				
Capsula		A	В	С	D			
Peso de ca	-	52.85	53.45	59.63	52.68			
Capsula + suel	lo humedo	74.63	71.49	76.45	72.94			
capsula + su	elo seco	71.55	68.79	73.53	69.51			
humed	lad	16.471%	17.601%	21.007%	20.380%			
numero de	golpes	35 26 21		15				
25%								
25% 20% (%) 15% HNWEDAD (%) 10%	5	10 15	20 25	30 35	40			
20% (%) 15% HNWEDAD (%) 5%								
20% (%) 15% HNWEDAD (%) 5%			20 25	RESHL	40 TADOS			
20% (%) 15% QP 15% UN 10% 5% 0%	CO	NUME	20 25 RO DE GOLPES	RESUL				
20% (%) 15% OW 10% 5% 0% 0 LIMITE PLASTIC Capsula Nº	CO (gr)	NUME	20 25 RO DE GOLPES	RESUL'	TADOS			
20% S 15% O 15% O 0 LIMITE PLASTIC Capsula Nº Peso de capsula	CO (gr) humedo(gr)	1 58.8	20 25 RO DE GOLPES	RESUL LL LP	TADOS 19.00%			

Tabla 10

Límites de Consistencia – Subbase Quillahuata

Capsula + suelo humedo 69.56 72.48 78.15 72.3 capsula + suelo seco 66.29 67.24 71.5 64.8 humedad 11.687% 15.623% 20.965% 30.458 numero de golpes 36 29 24 11 LIMITE LIQUIDO Solve the suelo seco 15 LIMITE LIQUIDO LIMITE PLASTICO Capsula Nº	TESIS:		el Comportamien ento reforzado co		una Estructura de co -2024"				
Limite Liquido: MTC E 110	Tesistas:	Bach. Fabricio Francisco							
Limite Plàstico: MTC E 111	Ensayo:	Limites de Consistencia							
Material: Cantera Quillahuata	Lìmite Liquido:	MTC E 110	MTC E 110						
Laboratorio: Laboratorio de Mecànica de Suelos y Materiales - Escuela Profesional de Ingenieria Civil - UNSAAC Fecha: 18/04/2024	Limite Plàstico:	MTC E 111	MTC E 111						
Profesional de Ingenieria Civil - UNSAAC Fecha: 18/04/2024	Material:	Cantera Quilla	Cantera Quillahuata						
LIMITE LIQUIDO Capsula №	Laboratorio:			-	Escuela				
Capsula № A-1 B-3 C-3 D-4 Peso de capsula 38.31 33.7 39.78 40.1 Capsula + suelo humedo 69.56 72.48 78.15 72.3 capsula + suelo seco 66.29 67.24 71.5 64.8 humedad 11.687% 15.623% 20.965% 30.458 numero de golpes 36 29 24 1 LIMITE LIQUIDO LIMITE PLASTICO Capsula № 1 2 RESULTADOS Peso de capsula 14.3 14.48 LL 21.00 Capsula + suelo humedo 21.98 20.35 LP 15.00 capsula + suelo seco 20.95 19.58 IP 6.00	Fecha:	18/04/2024							
Capsula № A-1 B-3 C-3 D-4 Peso de capsula 38.31 33.7 39.78 40.1 Capsula + suelo humedo 69.56 72.48 78.15 72.3 capsula + suelo seco 66.29 67.24 71.5 64.8 humedad 11.687% 15.623% 20.965% 30.458 numero de golpes 36 29 24 1 LIMITE LIQUIDO LIMITE PLASTICO Capsula № 1 2 RESULTADOS Peso de capsula 14.3 14.48 LL 21.00 Capsula + suelo humedo 21.98 20.35 LP 15.00 capsula + suelo seco 20.95 19.58 IP 6.00									
Peso de capsula 38.31 33.7 39.78 40.3		T	I	T	T				
Capsula + suelo humedo	-								
Capsula + suelo seco	•			t e					
humedad 11.687% 15.623% 20.965% 30.458 numero de golpes 36 29 24 30.458 LIMITE LIQUIDO	•								
NUMERO DE GOLPES 1 2 2 2 2 2 1 2 2 2									
LIMITE LIQUIDO 35% 30% 25% 20% 0 5 10 15 20 25 30 35 40 NUMERO DE GOLPES LIMITE PLASTICO Capsula Nº 1 2 Peso de capsula 14.3 14.48 LL 21.00% Capsula + suelo humedo 21.98 20.35 LP 15.00% capsula + suelo seco 20.95 19.58 IP 6.00%									
35% 30% 25% 20% 15% 10% 15 20 25 30 35 40 NUMERO DE GOLPES 20% 15% 10% 1	numero de goipes	36			16				
LIMITE PLASTICO Capsula N° 1 2 Peso de capsula 14.3 14.48 LL 21.00° Capsula + suelo humedo 21.98 20.35 LP 15.00° capsula + suelo seco 20.95 19.58 IP 6.00°	30% 25% Q 20% DH 10% 5% 0%								
Capsula № 1 2 RESULTADOS Peso de capsula 14.3 14.48 LL 21.00° Capsula + suelo humedo 21.98 20.35 LP 15.00° capsula + suelo seco 20.95 19.58 IP 6.00°		N	NUMERO DE GOLPES	5					
Peso de capsula 14.3 14.48 LL 21.00° Capsula + suelo humedo 21.98 20.35 LP 15.00° capsula + suelo seco 20.95 19.58 IP 6.00°		1	2	RESU	LTADOS				
Capsula + suelo humedo 21.98 20.35 LP 15.000 capsula + suelo seco 20.95 19.58 IP 6.000			14 48	LL	21 00%				
capsula + suelo seco 20.95 19.58 IP 6.00					15.00%				
	_				6.00%				
numegag 15% 15%	humedad	15%			0.0070				

10.4.2.3 Método de Ensayo Estándar para el Valor Equivalente de Arena de Suelos y Agregado Fino

Tabla 11Equivalente de Arena – Subbase Huillque y Quillahuata

TESIS:	"Evaluación del Comportamiento Mecànico de una Estructura de Pavimento reforzado con geomalla, Cusco -2024"							
Tagistag	Bach. Rosmery Condori Mamani							
Tesistas:	Bach. Fabricio Fran	Bach. Fabricio Francisco Mirano Sucñier						
F	Método de Ensavo Estándar para el Valor Equivalente de Arena de							
Ensayo:	Suelos y Agregado	Fino						
Norma	MTC E 114							
Material:	Cantera Huillque	y Quillahua	ta					
Labanatania	Laboratorio de Mecànica de Suelos y Materiales - Escuela Profesional							
Laboratorio:	de Ingenieria Civil -	UNSAAC						
Fecha:	22/05/2024							
Cante	ra Huillque		Cantera (Quillahuata				
	altura (pulg)			altura (pulg)				
arena	1.8		arena	2.5				
arcilla	5.6		arcilla	6.3				
Equivalente	22 140/		Equivalente de	20.600/				
de Arena	32.14%		Arena	39.68%				

10.4.2.4 Compactación de Suelos en Laboratorio Utilizando una Energía Modificada (Proctor Modificado)

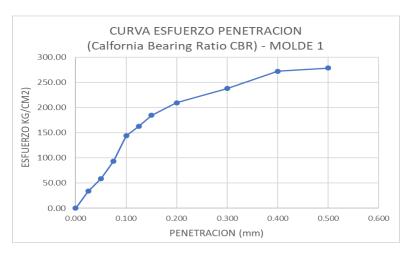
Tabla 12Proctor Modificado – Subbase Huillque

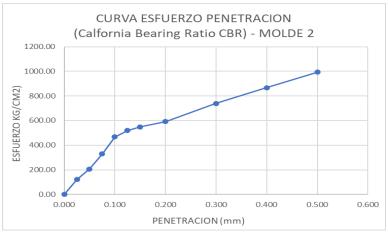
TESIS:	"Evaluaciòn del Comporta reforzado con geomalla, Cu		o de una Estr	uctura de Pav	imento			
Tesistas:	Bach. Rosmery Condori Mamani Bach. Fabricio Francisco Mirano Sucñier							
Г	Compactación de Suelos en Laboratorio Utilizando una Energía Modificada							
Ensayo:	Proctor Modificado)							
Norma:	MTC E 115							
Material:	Cantera Huillque							
Laboratorio:	aboratorio de Mecànica de Suelos y Materiales - Escuela Profesional de ngenieria Civil - UNSAAC							
Fecha:	Ingenieria Civii - UNSAAC				07/03/2024			
DENSIDAD SECA		,			0.7007202			
	STRA	H1	H2	НЗ	H4			
	+ MOLDE + S	10800						
	E + MOLDE	6516						
SUELO H		4284	-					
	JMEN	2123.46	2123.46	2123.46	2123.4			
DENSIDAI	HUMEDA	2.017	2.111	2.236	2.19			
DENSIDAD SI	ECA(GR/CM3)	1.945	1.993	2.001	1.890			
CONTENIDO DE HUMEDAD								
CAPSULA		1 Y B	Qур	AyR	2 y D			
	arriba	39.14	40.54	39.65	39.6			
peso capsula	abajo	38.39		39.31	40.60			
	arriba	117.22			139.72			
peso capsula + suelo	abajo	142.67						
	arriba	113.96	1					
peso capsula + suelo seco	abajo	139.78						
	77. A.D.	4.357	6.578		14.36			
	EDAD	2.850			12.919			
HUMED	AD (%)	3.60	5.57	10.50	13.64			
2.040 2.020 2.020 2.000 1.980 1.960 1.920 1.920 1.920 1.920 1.920 1.930 1.880 0 1	2 3 4 5 6	cm3	JA 10 11 12	13 14 1	15			
Conte	HUN	ЛEDAD (%)	_					

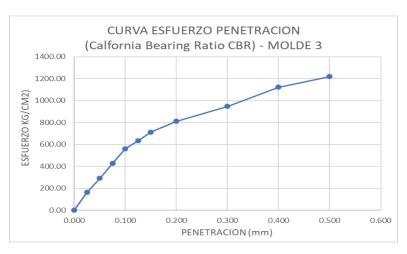
Tabla 13Proctor Modificado – Subbase Quillahuata

TES	SIS:	"Evaluaciòn del Compor refor	tamiento Med zado con geoi			Pavimento	
Tesistas: Bach. Rosmery Condori M Bach. Fabricio Francisco			Mirano Sucñier				
Ensa	ayo:	Compactación de Suelos e (Proctor Modificado)	n Laboratorio	Utilizando ur	na Energía Mo	dificada	
Nor	ma:	MTC E 115					
Mate	erial:	Cantera Quillahuata					
Labora	atorio:	Laboratorio de Mecànica d Ingenieria Civil - UNSAAC	de Suelos y Ma	ateriales - Esc	uela Profesioi	nal de	
Fed	ha:	24/04/2024					
DENSIDAD SEC	A						
MUESTRA			H1	H2	Н3	H4	
PESO BASE + MO			10983		11539	11390	
PESO BASE + MO			6520	,	6520	6520	
SUELO HUMEDO)		4463				
VOLUMEN			2124.00				
DENSIDAD HUM	IEDA		2.101	2.228			
DENSIDAD SECA			2.022	2.112	2.190	2.090	
CONTENIDO DI			_	1	T	1	
	CAPSU		1 Y B	Qур	A y R	2 y D	
		arriba	39.7		38.11	41.02	
peso c	apsula	abajo	39.98				
		arriba	222.44		162.42		
peso capsi	ıla + suelo	abajo	190.02		180.42		
		arriba	215.92		153.74		
peso capsula	+ suelo seco	abajo	184.54		171.01	186.57	
			3.700		7.507	9.176	
	HUMED		3.791	5.432	7.166		
	HUMEDAI	0 (%)	3.75	5.20	7.34	8.83	
2.200 E 2.180 2.160		CONTENIDO OPTIM	O DE AGUA 2.19 g				
2.180 2.160 2.140 2.120 2.120 2.020 2.020 2.020 2.020 2.020							
2	.00 3.00	4.00 5.00 6.00 HUMEDA		8.00	9.00 10.0	0	
	Contenido Ò	otimo de Agua:	7.40%				
	γd màximo	(gr/cm3)	2.19	1			
	,	(8- / CINO)	2.17	<u> </u>			

10.4.2.5 CBR de Suelos (Laboratorio)


Tabla 14


CBR - procesamiento de datos – Subbase Huillque


TESIS	"Evalı	"Evaluación del Comportamiento Mecànico de una Estructura de Pavimento reforzado con geomalla, Cusco -2024"								
Tesistas:		ch. Rosmery Condori Mamani ch. Fabricio Francisco Mirano Sucñier								
Ensayo:	CBR en Labor	atorio								
Norma:	MTC E 132									
Material:	Cantera Hui	llque								
Laboratorio:	Laboratorio d	le Mecànica d	le Suelos y Mat	teriales - Escuela	a Profesional de I	ngenieria Civil	- UNSAAC			
Fecha:	13/03/2024									
		CALIFORNIA BEARIN RATIO - CBR								
MOLDE		SR1			SR2			SR3		
Alltura de Molde mm						126	127			
N capas			5	5			5			
Ngole X capa			12			25	56			
Cond. Muestra	Antes de	empapar	Despues	Antes de empapar		Despues	Antes de empapar		Despues	
P. Hum + Molde		10606	11155	11512		11755		11883	12040	
Peso molde (gr)		5963	5963	6756		6756		6865	6865	
Peso Humedo (gr)		4643	5192				5018	5175		
Vol. Molde (cc)		2340.81	2340.81	2286.38 2286.38			2304.52	2304.52		
Densidad h (gr/cc)		1.98	2.22		2.08	2.19		2.18	2.25	
Numero de ensayo	SR1 - A	SR1 - B	SR1 - C	SR2 - A	SR2 - B	SR2 - C	SR3 - A	SR3 - B	SR3 - C	
P. Hum + capsula	161.04	152.11	90.3	153.84	138.24	93.75	154.26	168.39	97.92	
Peso Seco + Cpasula	153.85	145.07	83.4	146.38	130.78	88.94	146.65	159.71	93.48	
Peso agua	7.19	7.04	6.9	7.46	7.46	4.81	7.61	8.68	4.44	
Peso capsula	40.1	39.5	39.74	38.47	40.3	39.5	40.52	41	41.01	
P muestra seca	113.75	105.57	43.66	107.91	90.48	49.44	106.13	118.71	52.47	
Cant humedad	6.32%	6.67%	15.80%	6.91%	8.24%	9.73%	7.17%	7.31%	8.46%	
Conr hum.prom		6.50%	15.80%	7.58%		9.73%		7.24%	8.46%	
DENSIDAD SECA		1.855	1.868		1.923	1.974		2.020	2.056	

LECTURAS DE EXPAN	NSION									
TIEMPO		NUMERO DE MOLDE SR1		NUMERO DE MOLDE SR1			NUMERO DE MOLDE SR1			
ACUMULADO)	LECTURA	HINCHA	AMIENTO	LECTURA	HINCHAM	IIENTO	LECTURA	HINCHA	AMIENTO
(HS)	(DIAS)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0	0	0.0000	0	0	0.0000
24	1	13.000	0.330	0.26	9	0.229	0.1814	2	0.051	0.0400
48	2	15.000	0.381	0.30	13	0.330	0.2621	9	0.229	0.1800
72	3	18.000	0.457	0.35	15	0.381	0.3024	11	0.279	0.2200
96	4	18.000	0.457	0.35	15	0.381	0.3024	11	0.279	0.2200
ENSAYO CARGA - PE	NETRACI	ON								
PENETRACION		MOLDE SR1		MOLDE SR2			MOLDE SR3			
(mm)	(pulg)	CARGA	ESFUERZO	(lbf/pulg2)	CARGA	ESFUERZO(l	bf/pulg2)	CARGA	ESFUERZO	(lbf/pulg2)
0.0	0.000	0		0.00	0		0.00	0		0.00
0.64	0.025	7		34.03	35		121.80	48		162.56
1.27	0.050	15		59.11	62		206.44	89		291.08
1.91	0.075	26		93.59	101		328.70	132		425.88
2.54	0.100	42		143.75	145		466.63	175		560.68
3.17	0.125	48		162.56	162		519.92	198		632.78
3.81	0.150	55		184.50	171		548.14	223		711.15
5.08	0.200	63		209.58	185		592.02	255		811.46
7.62	0.300	72		237.79	232		739.36	298		946.26
10.16	0.400	83		272.28	273		867.89	354		1121.81
12.7	0.500	85		278.54	313		993.28	385		1218.98

Gráfico 2Curva esfuerzo – penetración - Subbase Huillque

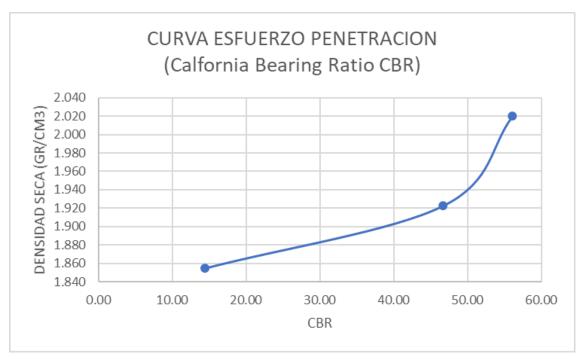


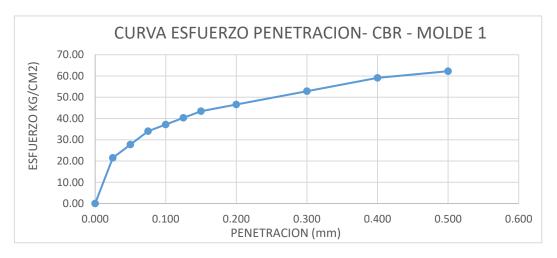
Tabla 15

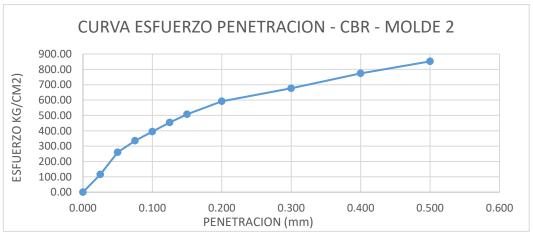
CBR - resultados – Subbase Huillque

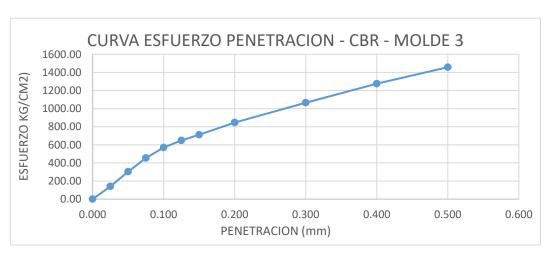
PENETRACION	0.1	0.2
MOLDE 1	143.75	209.58
MOLDE 2	466.63	592.02
MOLDE 3	560.68	811.46

	DENS	0.1	0.2	CBR
MOLDE 1	1.855	14.37	13.97	14.37
MOLDE 2	1.923	46.66	39.47	46.66
MOLDE 3	2.020	56.07	54.10	56.07

DENS. MAX	2.02
95% DENS. MAX	1.92


CBR AL 100%	56.07
CBR AL 95%	45.5


Tabla 16CBR - procesamiento de datos – Subbase Quillahuata


TESIS	"Evalı	"Evaluación del Comportamiento Mecànico de una Estructura de Pavimento reforzado con geomalla, Cusco -2024"							
Tesistas:	Bach. Rosme	ch. Rosmery Condori Mamani							
i esistas.	Bach. Fabrici	ch. Fabricio Francisco Mirano Sucñier							
Ensayo:	CBR en Labo	ratorio							
Norma:	MTC E 132								
Material:	Cantera Qui	llahuata							
Laboratorio:	Laboratorio	de Mecànica d	le Suelos y Mat	eriales - Escuela F	rofesional de	Ingenieria Civ	il - UNSAAC		
Fecha:	08/07/2024								
				CALIFORNIA BEA	ARIN RATIO -	CBR			
MOLDE		SR1			SR2			SR3	
Alltura de Molde mm	128					128			127
N capas	5				5				
Ngole X capa	12					25			56
Cond. Muestra	Antes de empapar Despues		Antes de en	npapar	Despues	Antes de	empapar	Despues	
P. Hum + Molde		11505	11868	11133 11442		12500		12641	
Peso molde (gr)		7100	7100	5880 5880				7142	
Peso Humedo (gr)		4405	4768	5253 5562			5358	5499	
Vol. Molde (cc)		2322.67	2322.67		2322.67	2322.67		2304.52	2304.52
Densidad h (gr/cc)		1.90	2.05		2.26	2.39		2.32	2.39
Numero de ensayo	SR1 - A	SR1 - B	SR1 - C	SR2 - A	SR2 - B	SR2 - C	SR3 - A	SR3 - B	SR3 - C
P. Hum + capsula	194.17	179.49	90.3	188.71	171.73	93.75	197.28	173.53	97.92
Peso Seco + Cpasula	184.1	169.4	83.4	178.47	160.03	88.94	189.36	165.82	93.48
Peso agua	10.07	10.09	6.9	10.24	11.7	4.81	7.92	7.71	4.44
Peso capsula	39.35	33.67	39.74	36.33	39.51	39.5	40.1	38.3	41.01
P muestra seca	144.75	135.73	43.66	142.14	120.52	49.44	149.26	127.52	52.47
Cant humedad	6.96%	7.43%	15.80%	7.20%	9.71%	9.73%	5.31%	6.05%	8.46%
Conr hum.prom	_	7.20%	15.80%		8.46%	9.73%		5.68%	8.46%
DENSIDAD SECA		1.760	1.728		2.070	2.162		2.193	2.184

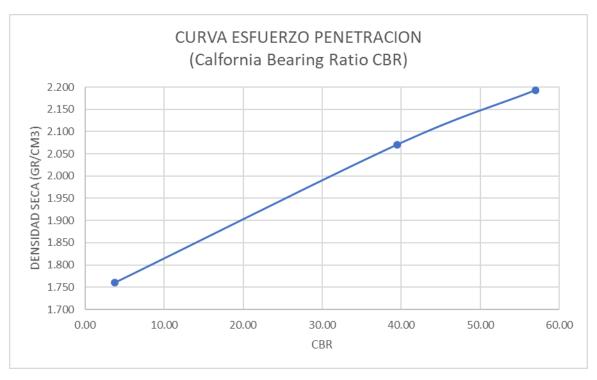

LECTURAS DE E	EXPANSIO	N									
TIEM	P0	NUMERO DE MOLDE SR1			NUMERO DE MOLDE SR1			NUMERO DE MOLDE SR1			
ACUMUI	LADO	LECT	URA	HINCHA	AMIENTO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO
(HS)	(DIA	S) DEFO	RM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
	0	0	0.000	0.000	0.00	0	0	0.0000	0	0	0.0000
	24	1 1	3.000	0.330	0.26	9	0.229	0.1786	2	0.051	0.0400
	48	2 1	5.000	0.381	0.30	13	0.330	0.2580	9	0.229	0.1800
	72	3 1	8.000	0.457	0.36	15	0.381	0.2977	11	0.279	0.2200
	96	4 1	8.000	0.457	0.36	15	0.381	0.2977	11	0.279	0.2200
ENSAYO CARGA	- PENET	RACION									
PENETRA	PENETRACION MOLDE SR1			MOLDE SR2			MOLDE SR3				
(mm)	(pulg) CAR	GA	ESFUERZO	(lbf/pulg2)	CARGA	ESFUERZO	(lbf/pulg2)	CARGA	ESFUERZO	(lbf/pulg2)
	0.0	000	0		0.00	0		0.00	0		0.00
C	0.64)25	3		21.49	33		115.54	41		140.61
1	.27 0.0)50	5		27.76	79		259.74	93		303.62
1	.91 0.0)75	7		34.03	103		334.97	141		454.09
2	2.54 0.1	100	8		37.17	122		394.53	178		570.08
3	3.17 0.1	125	9		40.30	141		454.09	203		648.45
3	3.81 0.1	150	10		43.43	158		507.39	223		711.15
5	5.08 0.2	200	11		46.57	185		592.02	266		845.94
7	7.62 0.3	300	13		52.84	212		676.66	336		1065.38
10	0.16	100	15		59.11	243		773.84	403		1275.41
1	2.7 0.5	500	16		62.24	268		852.21	461		1457.23

Gráfico 3Curva esfuerzo – penetración - Subbase Quillahuata

Tabla 17CBR - resultados – Subbase Quillahuata

PENETRACION	0.1	0.2
MOLDE 1	37.17	46.57
MOLDE 2	394.53	592.02
MOLDE 3	570.08	845.94

		0.1	0.2	CBR
MOLDE 1	1.760	3.72	3.10	3.72
MOLDE 2	2.070	39.45	39.47	39.47
MOLDE 3	2.193	57.01	56.40	57.01

DENS. MAX	2.19
95% DENS. MAX	2.08

CBR AL 100%	57.01
CBR AL 95%	40.9

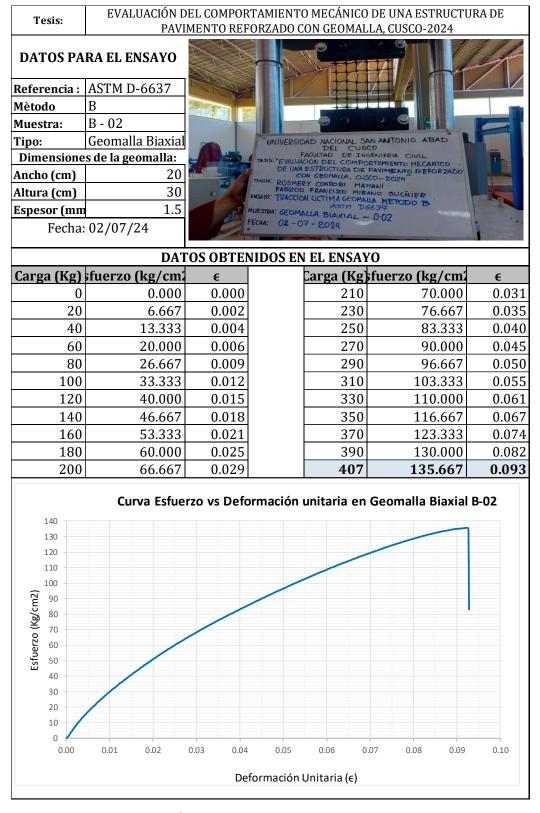
10.4.2.6 Abrasión de los Ángeles (L.A.) al Desgaste de los Agregados de Tamaños Menores de 37.5mm (1 $\frac{1}{2}$ ")

Tabla 18Abrasión de los Ángeles – Subbase Huillque

TESIS:	"Evaluación del Comportamiento Mecànico de una Estructura de Pavimento reforzado con geomalla, Cusco -2024"								
Tesistas:		ach. Rosmery Condori Mamani ach. Fabricio Francisco Mirano Sucñier							
Ensayo:	Abrasión de los Áng	eles (L.A.) al Des	sgaste de los Agregad	os de Tamaño	os Menores de 37,	5mm (1½")			
Norma:	MTC E 207								
Material:	Cantera Huillque								
Laboratorio:	Laboratorio de Mec	ànica de Suelos y	y Materiales - Escuela	Profesional d	le Ingenieria Civil	- UNSAAC			
Fecha:	22/03/2024								
			_						
DATOS DE L	A MAQUINA DE LOS	ANGELES		DATOS	DE LA CARGA AB	RASIVA			
Longitud interior ((cm)	50.8		DIAMETRO F	ROMEDIO (mm)	46.65			
Diametro Interior	(cm)	m) 71.1 PESO PROMEDIO (gr)			EDIO (gr)	146.06			
Revoluciones del o	cilindro (RPM)	33		Numero de e	Numero de esferas				
Numero total de v	ueltas	500							
Masa	de Tamaño indicado	(gr)		Peso re	tenido (gr) GRAD	ACION A			
QUE PASA	RETENIDO SOBRE	GRADACION A		Retenido	o sobte tamiz	Peso			
37.5 mm (1 1/2")	25.00 mm (1")	1250±25		25.00) mm (1")	1253.41			
25.00 mm (1")	19.00 mm (3/4")	1250±25		19.00	mm (3/4")	1255.42			
19.00 mm (3/4")	12.5 mm (1/2")	1250±10		12.5 r	nm (1/2")	1244.11			
12.5 mm (1/2")	9.5mm (3/8")	1250±10		9.5m	ım (3/8")	1256.01			
9.5mm (3/8")	6.3mm(1/4")			6.3n	nm(1/4")				
6.3mm(1/4")	4.75mm(N°4)			4.75	mm(N°4)				
4.75mm(N°4)	2.36 mm(N°8)			2.36	2.36 mm(N°8)				
TO	TAL	5000±10			total	5008.95			
			Datos de ensayo						
	Peso	total antes del e	nsayo	50	008.95				
	Peso total despues	del ensayo (rete	nido en tamiz N°12)	31	165.52				
	Por	centaje de desg	aste	30	6.80%				

Tabla 19Abrasión de los Ángeles – Subbase Quillahuata

TESIS:	"Evaluaciòn d	"Evaluación del Comportamiento Mecànico de una Estructura de Pavimento reforzado con geomalla, Cusco -2024"							
Tesistas:	-	ach. Rosmery Condori Mamani							
Ensayo:	Abrasión de los Án (1½")	brasión de los Ángeles (L.A.) al Desgaste de los Agregados de Tamaños Menores de 37,5mm							
Norma:	MTC E 207								
Material:	Cantera Quillahuat	a							
Laboratorio:	Laboratorio de Me	cànica de Suelos	s y Materiales - Escue	la Profesional	de Ingenieria Civ	il - UNSAAC			
Fecha:	18/09/2024								
DATOS DE LA	A MAQUINA DE LOS	ANGELES		DATOS	DE LA CARGA AB	RASIVA			
Longitud interior ((cm)	50.8		DIAMETRO F	PROMEDIO (mm)	46.65			
Diametro Interior	(cm)	71.1		PESO PROMEDIO (gr)					
Revoluciones del o	· ,					12			
Numero total de v	ueltas	500							
Masa d	e Tamaño indicado	(gr)		Peso re	tenido (gr) GRAD.	ACION A			
QUE PASA	RETENIDO SOBRE	GRADACION A		Retenido	o sobte tamiz	Peso			
37.5 mm (1 1/2")	25.00 mm (1")	1250±25		25.00) mm (1")	1242.86			
25.00 mm (1")	19.00 mm (3/4")	1250±25		19.00	mm (3/4")	1239.06			
19.00 mm (3/4")	12.5 mm (1/2")	1250±10		12.5 r	nm (1/2")	1249.31			
12.5 mm (1/2")	9.5mm (3/8")	1250±10		9.5m	ım (3/8")	1259.54			
9.5mm (3/8")	6.3mm(1/4")			6.3n	nm(1/4")				
6.3mm(1/4")	4.75mm(N°4)			4.75	mm(N°4)				
4.75mm(N°4)	2.36 mm(N°8)			2.36	mm(N°8)				
TO	TAL	5000±10			total	4990.77			
			Datos de ensayo		<u> </u>				
	Peso total antes del ensayo 4990.77								
	Peso total despues	del ensayo (ret	enido en tamiz N°12)	29	928.23				
	Por	centaje de des	gaste	4:	1.33%				


10.4.3 Geomalia

10.4.3.1 Tracción Ultima de la Geomalla Biaxial

Tabla 20 *Tracción Ultima de la Geomalla Biaxial – B - 01*

Tesis:					CO DE UNA ESTRUCTU ALLA, CUSCO-2024	RA DE
DATOS	PARA EL ENSAYO					
Referencia:	ASTM D-6637					
Mètodo	В					
Muestra:	B - 01	- matel				
Tipo:	Geomalla Biaxial					
Dimension	nes de la geomalla:			UNIVERSIDAD N	ACIONAL SAN ANTONIO ABAD	4
Ancho (cm)	20	41 -	TES	FACULTA FACULTA FACULTA	PEL CUSCO	
Altura (cm)	30		TESUS	CON GE	DHALLA, CUSCO-2024	
Espesor (mm)	1.5		ENSAY	FABRICIO FRA	NOOR MAHANI NCISO MIRAND SUCHIER TIMA GEOMALLA METODO B	
. ,	ha: 02/07/24		MUES		BIAXIAL - B-01	
	DAT	OS OBTI	ENIDOS EN	EL ENSAY	0	
Carga (Kg)	Esfuerzo (kg/cm2)	ε		Carga (Kg)	Esfuerzo (kg/cm2)	E
0	0.000	0.000		210	70.000	0.033
20	6.667	0.003		230	76.667	0.037
40	13.334	0.005		250	83.333	0.042
60	20.000	0.008		270	90.000	0.047
80	26.667	0.010		290	96.667	0.052
100	33.333	0.013		310	103.333	0.058
120	40.000	0.016		330	110.000	0.063
140	46.667	0.019		350	116.667	0.070
160	53.333	0.023		370	123.333	0.076
180	60.000	0.027		390	130.000	0.083
200	66.667	0.031		402	134.000	0.090
140	Curva Esfuerzo	vs Defori	mación uni	taria en Ge	omalla Biaxial B-1	
130						
110						
100						
90 g						
(Kg/cm2)						
- /() -						
Esfuerzo 20 09 09						
40 - 30 -						
20						
10						
0						
0.00	0.01 0.02 0.03	3 0.04	1 0.05	0.06	0.07 0.08 0.09	0.10
		5	eformación l	lmitavia (a)		

Tabla 21Tracción Ultima de la Geomalla Biaxial – B - 02

Tabla 22 *Tracción Ultima de la Geomalla Biaxial – B - 03*

Tesis:					CO DE UNA ESTR ALLA, CUSCO-202	
DATOS P	ARA EL ENSAYO					
eferencia :	ASTM D-6637					
Mètodo	В	- A				
Muestra:	B - 03					0.1
Tipo:	Geomalla Biaxial		ONIV	ERSIDAD NACION DEL FACULTAD I	Cusco	
Dimensio	nes de la geomalla:		TESIS: *E	E UNA ESTRUCTURE	OMPORTAMIENTO MECANICA A DE PAVIMENTO REFORZ	
Ancho (cm)	20	•		CON GEORALL OSMERY CONDO & ABRICIO FRANCISCO	HAMMII 2024	ABO
Altura (cm)	30		ENSAYO: T	KACCION ULTIMA	SEDMAULA METODO	
pesor (mm	1.5		FECHA:	02 -07 - 2024	NAL - B-03	A
Fech	a: 02/07/24					
		TOS OBTI	ENIDOS EN	EL ENSAY		
Carga (Kg)	Esfuerzo (kg/cm2)	€		Carga (Kg)	Esfuerzo (kg/cm2)	ε
0	0.000	0.000		210	70.000	0.034
20	6.667	0.002		230	76.667	0.039
40	13.334	0.004		250	83.333	0.043
60	20.000	0.007		270	90.000	0.048
80	26.667	0.010		290	96.667	0.054
100	33.333	0.013		310	103.333	0.059
120	40.000	0.016		330	110.000	0.065
140	46.667	0.020		350	116.667	0.072
160	53.333	0.023		370	123.333	0.078
180	60.000	0.028		390	130.000	0.087
190	63.333	0.030		395	131.667	0.091
200	66.667	0.032				
140	Curva Esfu	erzo vs Def	ormación ı	unitaria en	Geomalla Biaxial	B-03
130						1
120						
110						
100						
90 +						
86/6 80 +						•
Esfuerzo (Kg/cm2)						
fuer.						
40 - 30 -						
20						
10						
0						
0.00	0.01 0.02	0.03 0.0	0.05	0.06	0.07 0.08 0.09	0.10
			eformación			

Tabla 23 *Tracción Ultima de la Geomalla Biaxial – Procesamiento de datos*

	Datos Iniciales		
Número de elementos de tracción (Nc)	104		
Ancho del rollo (b)	3.75 m		
	Formulas Aplicadas		
$\alpha_f = \left[\frac{F_p - T_0}{N_r}\right] \times N_t \dots (2)$	$J_{sec} = \frac{\epsilon}{2}$	$\frac{\alpha_f x 100)}{\epsilon_p} \dots (4)$	
Donde: α_f = Fuerza equivalente por unidad de ancho, N/m F_p = Fuerza máxima observada, N (lbf) T_0 = Tensión de relajación, N (lbf) N_r = Número de elementos siendo ensayados a tensión N_t = Numero de elementos a tension por unidad de ancho, igual a N_c/b (ver Nota 7)	Donde: Jsec = módulo de tracción elongación correspondier α_f = fuerza máxima menos el número de elementos dancho (m o ft) dividido po probados. Esta es la fuerzancho, N/m (lbf/ft.) a una designada, y; ϵ_p = según la ecuación 4, la correspondiente con respancho.	nte; s tensión floja m le tracción en un or el número de e a equivalente po deformación po a deformación po	ultiplicada por a unidad de elementos r unidad de rcentual
Datos	de la Maquina Universal		
En/Kg) Posición (mm)	Esfuerzo (kg/sm2)	6	

			Datos	de la Maquina	Universal		
	Fp(Kg)	Posició	n (mm)	Esfuerzo	(kg/cm2)	ε	
B1	402.00	26.	88	13	4.00	0.0896	
B2	407.00	27.	76	13	5.67	0.0925	
B3	395.00	27.	34	13	1.67	0.0911	
			Pro	cesamientos de	Datos		
	Fp (KN)	To (KN)	Nr	Nt	αf (KN/m)	ε p (%)	Jsec (KN/m)
B1	3.94	0.05	5	27.71	21.56	8.96	240.67
B2	3.99	0.05	5	27.71	21.83	9.25	235.98
В3	3.87	0.05	5	27.71	21.19	9.11	232.53
		Resisten	cia a la tra	acción última=	21.53		236.393

10.4.3.2 Tracción Ultima de la Geomalla Triaxial

Tabla 24 *Tracción Ultima de la Geomalla Triaxial – T - 01*

Tesis:	EVALUACIÓN DE	EL COMPO MENTO RE									
DATOS PA	ARA EL ENSAYO	VILIVIO ICI			CON	a Low		1, 00			
Referencia:	ASTM D-6637				V >>					JV -	
Mètodo	В				*				P	-51	
Muestra:	T - 01			ONLIN	IFDCID	- NI	<u> </u>				300
Tipo:	Geomalla Triaxial	•		Oldi	IERSIDA	DE	el Co	usco	1981	100 P	D
	es de la geomalla:	SA L		ESIS:	EVALUAC	COLTAC	L COM	PORTA	MIENTO		co -
Ancho (cm)	20	The state of the s			CC	N GEOL	TALLA	DE PAV	IMENTO	REFOR	ZADO
Altura (cm)	30	7		ESISIA.	ROSMER	Y CON	DO 121 P	HAMAN	1	ER	
Espesor (mm)	1.2		E	ISAYO:	TRACCIO	N ULTI	MA GEO ASTM	MAUA D663	METOD:	OB	
Fecha	: 04/07/24		F	FCHA:	660M	7-20		T	01		
		DATOS OB'	TENID	OS EN	EL ENS	AYO					
Carga (Kg)	Esfuerzo (kg/cm2)	€			Carg	a (Kg)	Esfue	rzo (l	kg/cm2	2)	ε
0	0.000	0.000			1.	50		62.5	00		0.047
20	8.333	0.005			1'	70		70.8	33		0.055
40	16.667	0.011			1	90		79.1	67		0.065
60	25.000	0.017			2	10		87.5	00		0.074
80	33.333	0.023			2:	30		95.8	33		0.085
100	41.667	0.029			2.	50	1	104.1	167		0.096
120	50.000	0.036			2'	70	1	112.5	500		0.108
140	58.333	0.043			2	90	1	120.8	333		0.121
			_		2	93	1	22.0	083		0.123
140	Curva Esfue	erzo vs De	forma	ación	unitar	ia en	Geon	nalla	Triax	ial T-	01
Estuerzo (Kg/cm2) 130 120 110 00 100 080 080 090 090 090 090 090 090 090 0											
30 20 10 0 0.00	0.01 0.02 0.03	0.04 0.05	0.06 Deform	0.07	0.08 Unitari	0.09 a (€)	0.10	0.11	0.12	0.13	0.14

Tabla 25

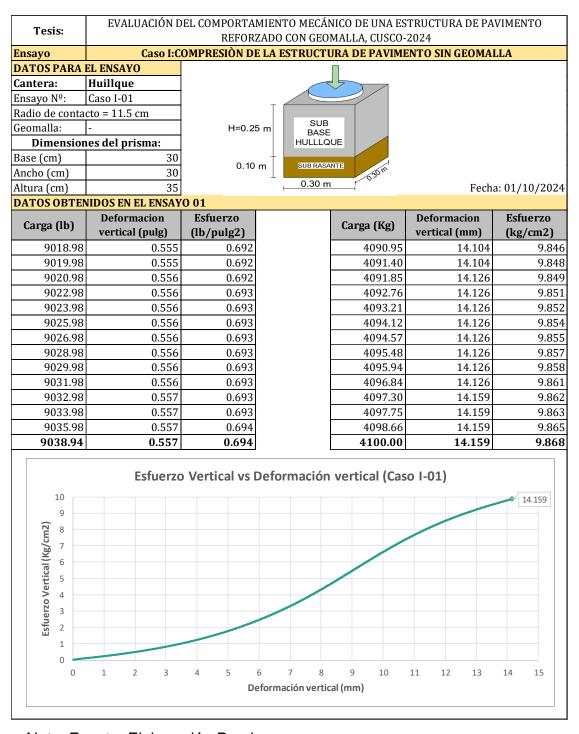
Tracción Ultima de la Geomalla Triaxial – T - 02

Tesis	:	EVAL) MECÁNI ON GEOM				TURA
DATOS	S PA	RA EL 1	ENSAYO									
Referenc	ia :	ASTM I	0-6637	V								
Mètodo		В		All real		S	太子。					
Muestra:		T - 02						0				
Tipo:		Geomal	lla Triaxia	al	UNIVERSI	DATE NAC	IONAL S	INOTINA MAG	O ABAD		D.A.	
Dimensi	one	s de la	geomalla	a: 🗀	1000	FACULTAD	DE I	SCO NGENIERIA C	IUIL			
Ancho (cm	1)		2	0	DE UN	A ESTRUC	TURA DI	PORTAMIENTO E PAVIMENTO USCO-2024	REFORZ	ADO	2	3
Altura (cn	1)		3) TESU	ROSM	ERY CONT	DEI H	AMANI	ER			100
Espesor (n	nm)		1	HOE	SIRA. GEO	MALLA	TKIAXI	RAND SUCH METODI D6637 AL T-02	OB		1	(a) Interes
Fe	cha	: 04/07	/24	FEC	HA: 04-	07 - 20	24	<u> </u>				
					OBTE	NIDOS		L ENSAY(
Carga (K	-	Esfuerz	o (kg/cm ²		ε		C	arga (Kg)	Esfuer			ε
	0		0.00	_	0.000			170			833	0.045
	20		8.33	_	0.005			190			167	0.051
	40		16.66	_	0.011			210			500	0.057
	60		25.00	_	0.016			230			833	0.064
	80		33.33		0.021			250		104.		0.071
1	100		41.66		0.026			270		112.	500	0.078
	120		50.00		0.031			290		120.		0.085
	L40		58.33	3	0.036		L	310		129.	167	0.094
1	160		66.66	7	0.042			323		134.	583	0.100
		(Curva Esfu	ıerzo	vs Def	ormaci	ón uni	itaria en (Geoma	lla Tria:	xial T-0	2
140												
130											1	
120												
110												
100												
_ 00												
g/cm2												
(Kg/8)												
Esfuerzo (K												
sfuer 60				/								
40												
30												
20												
10												
0	/											
(0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11
					D	eformad	ión Un	itaria (∈)				

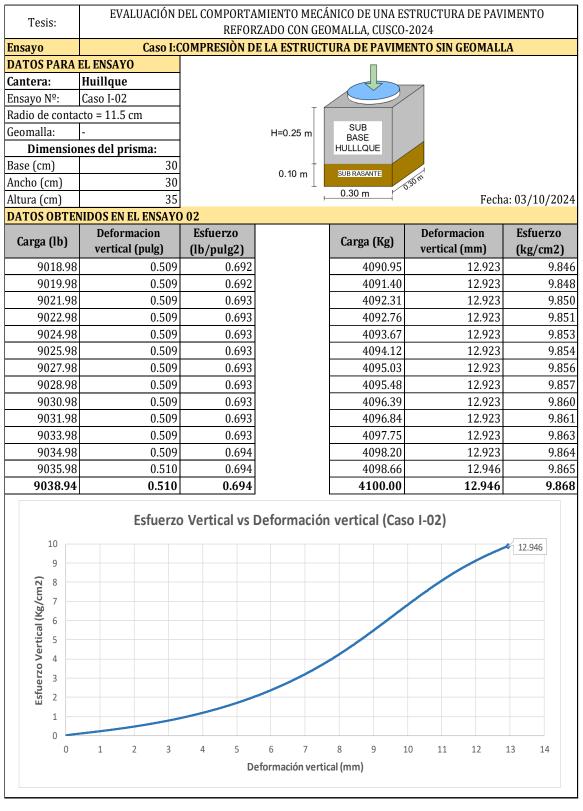
Tabla 26 *Tracción Ultima de la Geomalla Triaxial – T - 03*

DATOS PARA EL ENSAYO			
Mètodo B Muestra: T - 03 Tipo: Geomalla Triaxial Dimensiones de la geomalla: Ancho (cm) 20 Altura (cm) 30 Espesor (mm) 1.2 Fecha: 04/07/24			
Muestra: T - 03 Tipo: Geomalla Triaxial Dimensiones de la geomalla: Ancho (cm) 20 Altura (cm) 30 Espesor (mm) 1.2 Fecha: 04/07/24 DATOS OBTENIDOS EN EL Carga (kg) Esfuerzo (kg/cm2) \$\varepsilon\$ Carga (kg) Carga (kg			
Tipo: Geomalla Triaxial Dimensiones de la geomalla: Ancho (cm) 20 Altura (cm) 30 Espesor (mm) 1.2 Fecha: 04/07/24 DATOS OBTENIDOS EN EL Carga (Kg) Esfuerzo (kg/cm2) ε Carga (Kg) ε Carga (Kg) (Kg) ε Carga (Kg) ε Carga (Kg) (Kg) (Kg) ε Carga (Kg) (Kg) (Kg) ε Carga (Kg) (Kg) (Kg) (Kg) (Kg) (Kg) (Kg) (Kg)			
Dimensiones de la geomalla: Ancho (cm) 20 30			
Ancho (cm) 20 Altura (cm) 30 Espesor (mm) 1.2 Fecha: 04/07/24			
Altura (cm) 30 Espesor (mm) 1.2 Fecha: 04/07/24 DATOS OBTENIDOS EN EL Carga (Kg) Esfuerzo (kg/cm²) ε Ca 0	*		
Techa: 04/07/24 DATOS OBTENIDOS EN EL Carga (Kg) Esfuerzo (kg/cm2) © Carga (Kg) © Carga (Kg) (Kg) © Carga (Kg) (Kg) © Carga (Kg) (Kg) (Kg) © Carga (Kg) (Kg) (Kg) (Kg) (Kg) © Carga (Kg) (Kg) (Kg) (Kg) (Kg) (Kg) (Kg) (Kg)			17
Secha: 04/07/24 DATOS OBTENIDOS EN EL Carga (Kg) Esfuerzo (kg/cm2) ε		BALIDA	
DATOS OBTENIDOS EN EL Carga (Kg) Esfuerzo (kg/cm2) ε 0 0.000 0.000 20 8.333 0.006 40 16.667 0.011 60 25.000 0.017 80 33.333 0.023 100 41.667 0.029 120 50.000 0.036 140 58.333 0.042 Curva Esfuerzo vs Deformación unita Curva Esfuerzo vs Deformación unita)		
Carga (Kg) Esfuerzo (kg/cm2) ε 0 0.000 0.000 20 8.333 0.006 40 16.667 0.011 60 25.000 0.017 80 33.333 0.023 100 41.667 0.029 120 50.000 0.036 140 58.333 0.042 Curva Esfuerzo vs Deformación unita 140 130 120 110 100 (Camb Sy) 80 80 80 80 80 80 80 80 80 80 80 80 80 8			11-
0 0.000 0.000 20 8.333 0.006 40 16.667 0.011 60 25.000 0.017 80 33.333 0.023 100 41.667 0.029 120 50.000 0.036 140 58.333 0.042 Curva Esfuerzo vs Deformación unita	ENSAY	0	
20 8.333 0.006 40 16.667 0.011 60 25.000 0.017 80 33.333 0.023 100 41.667 0.029 120 50.000 0.036 140 58.333 0.042 Curva Esfuerzo vs Deformación unita 140 130 120 110 100 (20 90 80 80 40 40	rga (Kg)	Esfuerzo (kg/cm2)	E
16.667 0.011	150	62.500	0.046
60 25.000 0.017 80 33.333 0.023 100 41.667 0.029 120 50.000 0.036 140 58.333 0.042 Curva Esfuerzo vs Deformación unita 140 130 120 110 100 (CU) 80 80 80 40	170	70.833	0.053
80 33.333 0.023 100 41.667 0.029 120 50.000 0.036 140 58.333 0.042 Curva Esfuerzo vs Deformación unita 140 130 120 110 100 100 100 100 100 100 100 10	190	79.167	0.061
100 41.667 0.029 120 50.000 0.036 140 58.333 0.042 Curva Esfuerzo vs Deformación unita 140 130 120 110 100 (C) 80 80 80 40 40	210	87.500	0.070
120 50.000 0.036 140 58.333 0.042 Curva Esfuerzo vs Deformación unita 140 130 120 110 100 (7 90 80 80 40 40	230	95.833	0.080
Curva Esfuerzo vs Deformación unita 140 130 120 110 100 (7) 80 80 70 00 100 100 100 100 100 100 100 100	250	104.167	0.091
Curva Esfuerzo vs Deformación unita 140 130 120 110 100 100 80 70 60 40 40	270	112.500	0.103
Estrerzo (Kg/cm2) 130 120 110 100 100 70 60 40 40	290	120.833	0.128
Estrerzo (Kg/cm2) 130 120 110 100 100 70 60 90 40 40	297	123.750	0.144
20 10 0	ria en Go	eomalla Triaxial T-0	1
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10		0.13 0.14 0.15 0.16	0.17 0.18
Deformación Unita	0.11 0.12		

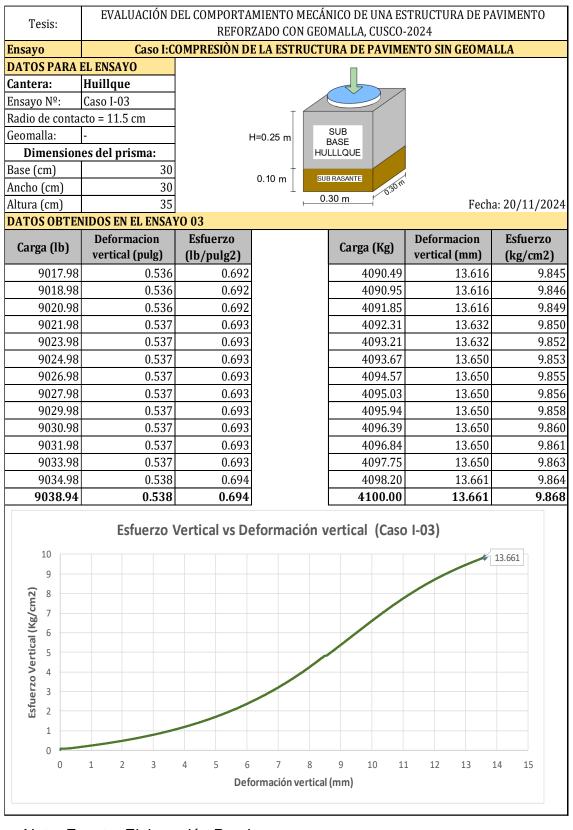
Tabla 27

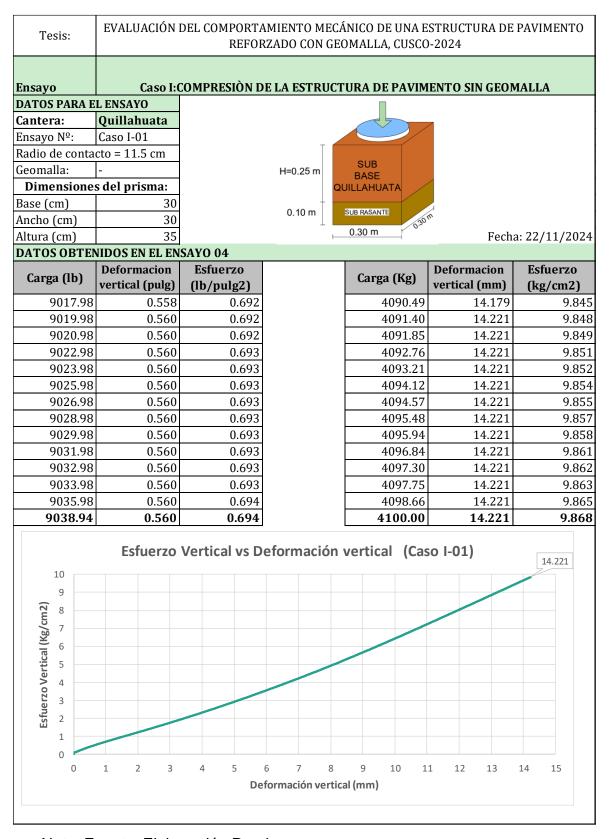

Tracción Ultima de la Geomalla Triaxial – Procesamiento de datos

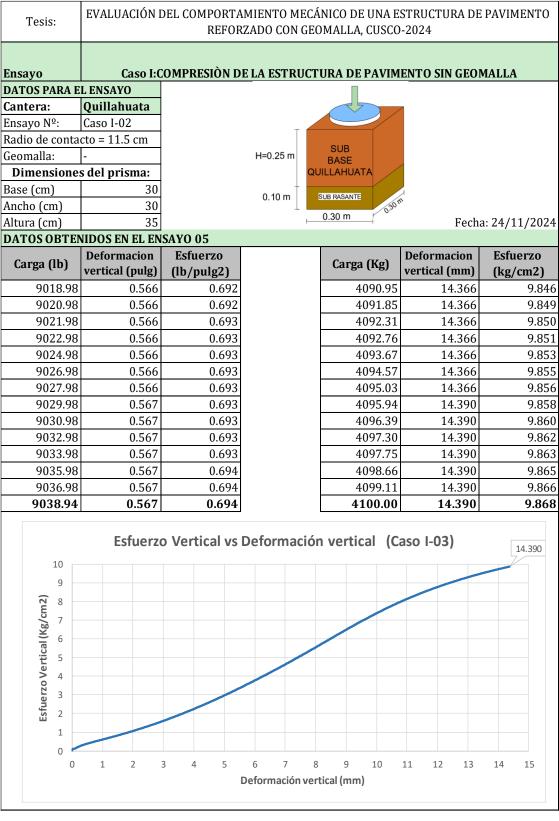
		Resis	tencia a la 1	racción última=	14.51		156.08
T3	2.91	0.23	5	26.32	14.13	8.30	170.29
T2	3.17	0.23	5	26.32	15.48	8.38	184.76
T1	2.87	0.23	5	26.32	13.93	12.31	113.18
	Fp (KN)	То	Nr	Nt	αf (KN/m)	€ (%)	J sec
			Pro	cesamientos de l	Datos		
T3	297	27.13	335	131	L.33	0.083004	
T2	323	29.8	513	135	5.33	0.083760	
T1	293	36.9	189	122	2.08	0.123063	
	Fp(Kg)	Posiciór		Esfuerzo (kg/cm2) ∈			
			Datos	de la Maquina U	niversal		
				elonga α_f = furel númento probace ancho, design ϵ_p = se	$J_{sec} = \frac{(\alpha_f)}{(\alpha_f)}$: módulo de tracción soción correspondiente erza máxima menos de elementos de (m o ft) dividido por dos. Esta es la fuerza N/m (lbf/ft.) a una cada, y; gún la ecuación 4, la epondiente con respec	x100)	cada por lad de ntos lad de lal
Ancho d	el rollo (b)			2.85	m		
Número	de elementos de t	tracción (Nc)		75			
				Datos Iniciales			


10.5 Compresión de la Estructura de Pavimento (Data obtenida maquina universal)

10.5.1 Caso I: Estructura de Pavimento sin Reforzamiento


Tabla 28Caso I – 1º Ensayo - Subbase Huillque


Tabla 29Caso I – 2º Ensayo - Subbase Huillque


Tabla 30Caso I – 3º Ensayo - Subbase Huillque

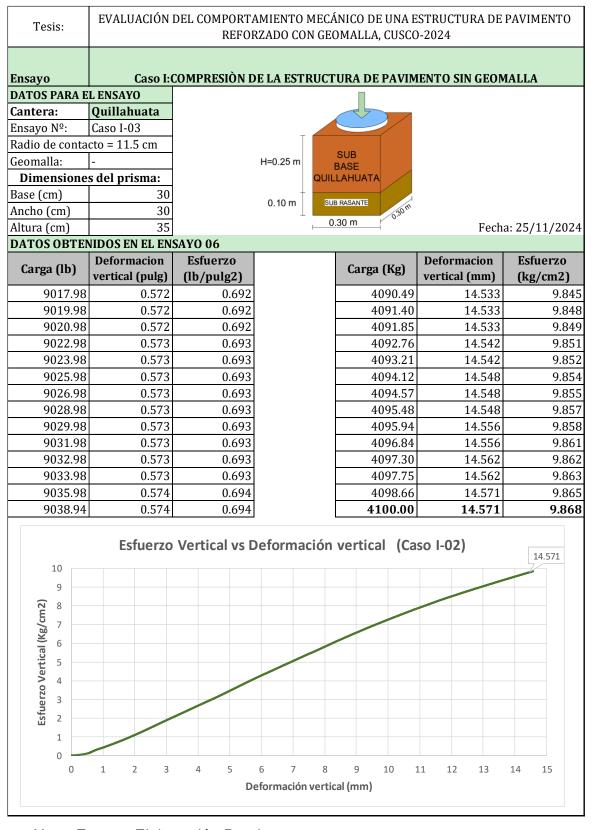
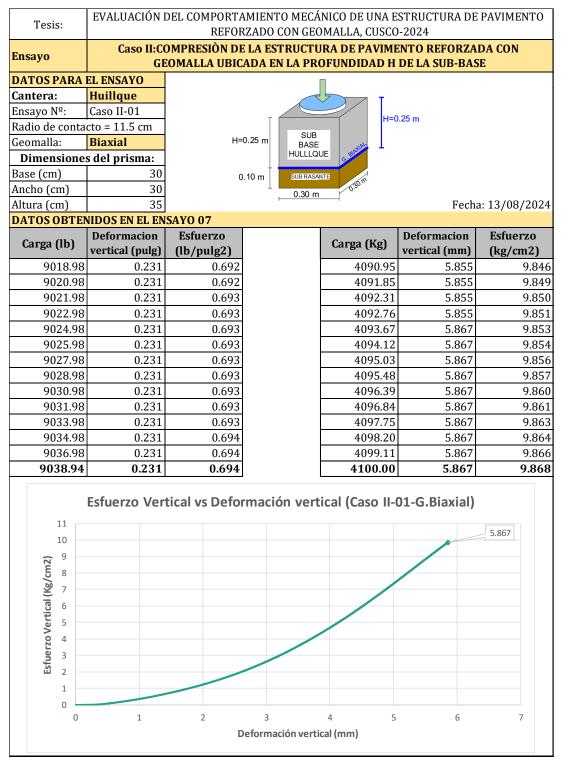

Tabla 31Caso I – 1º Ensayo – Subbase Quillahuata

Tabla 32Caso I – 2º Ensayo – Subbase Quillahuata


Tabla 33Caso I – 3º Ensayo – Subbase Quillahuata

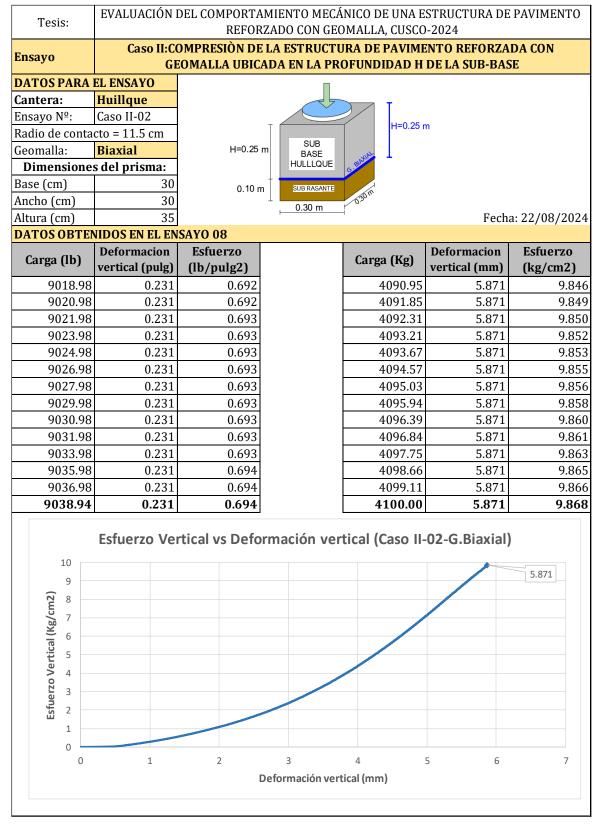
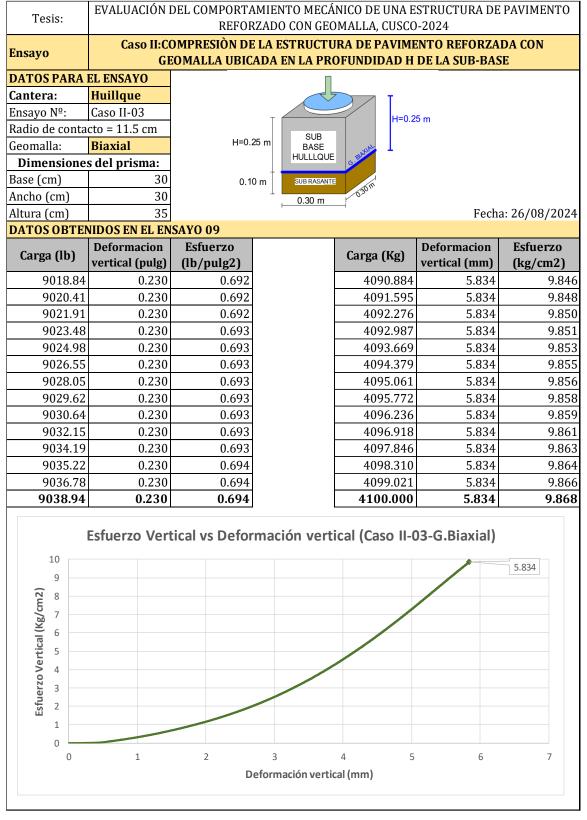

10.5.2 Caso II: Estructura de Pavimento Reforzada con Geomalia a una profundidad H de la Subbase

Tabla 34


Caso II – 1º Ensayo – Subbase Huillque – G. Biaxial

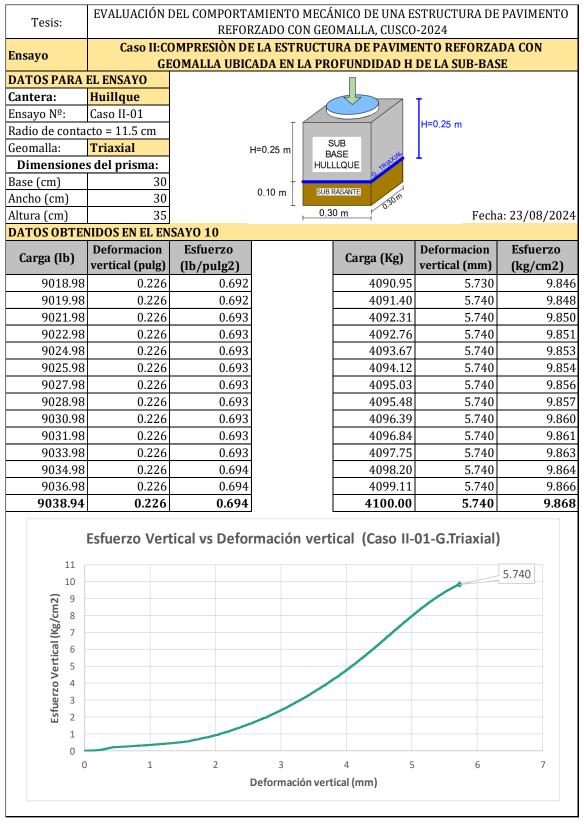

Tabla 35Caso II – 2º Ensayo – Subbase Huillque – G. Biaxial

Tabla 36Caso II – 3º Ensayo – Subbase Huillque – G. Biaxial

Tabla 37Caso II – 1º Ensayo – Subbase Huillque – G. Triaxial

Tabla 38Caso II – 2º Ensayo – Subbase Huillque – G. Triaxial

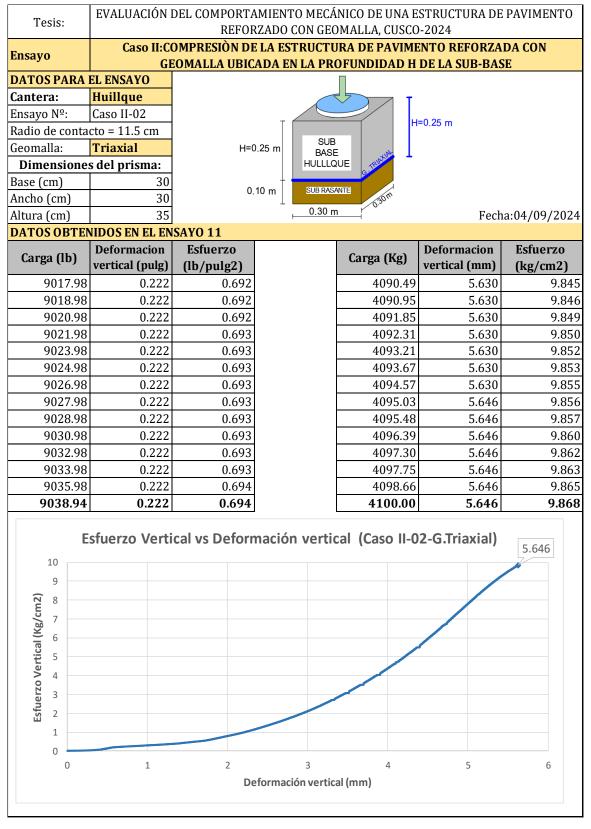
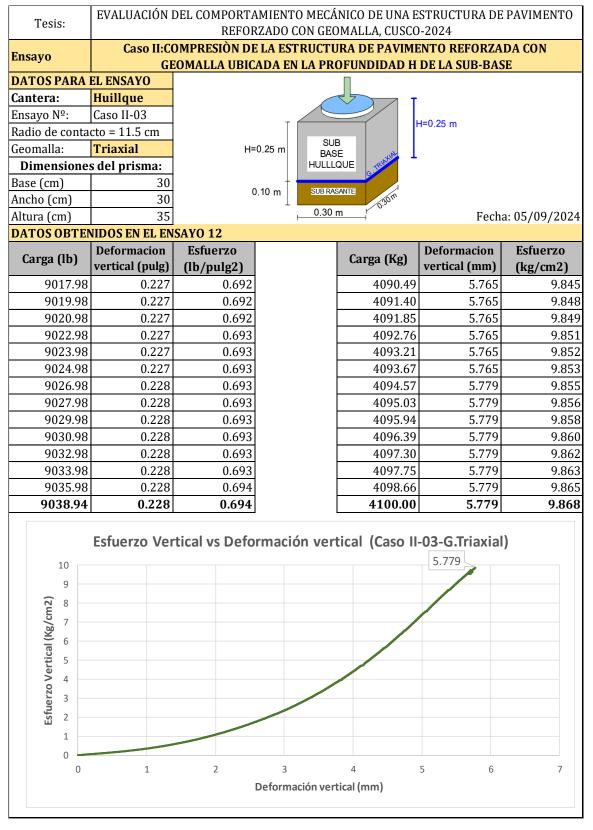



Tabla 39

Caso II – 3º Ensayo – Subbase Huillque – G. Triaxial

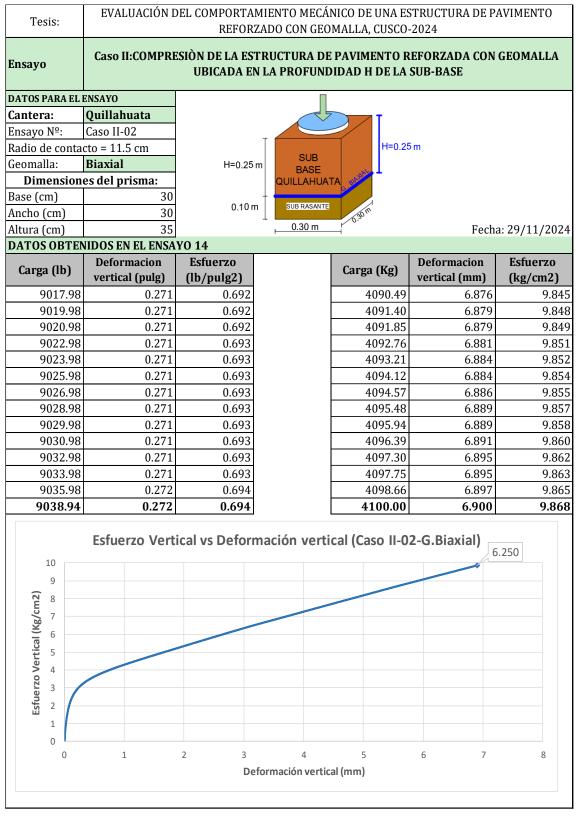


Tabla 40Caso II – 1º Ensayo – Subbase Quillahuata – G. Biaxial

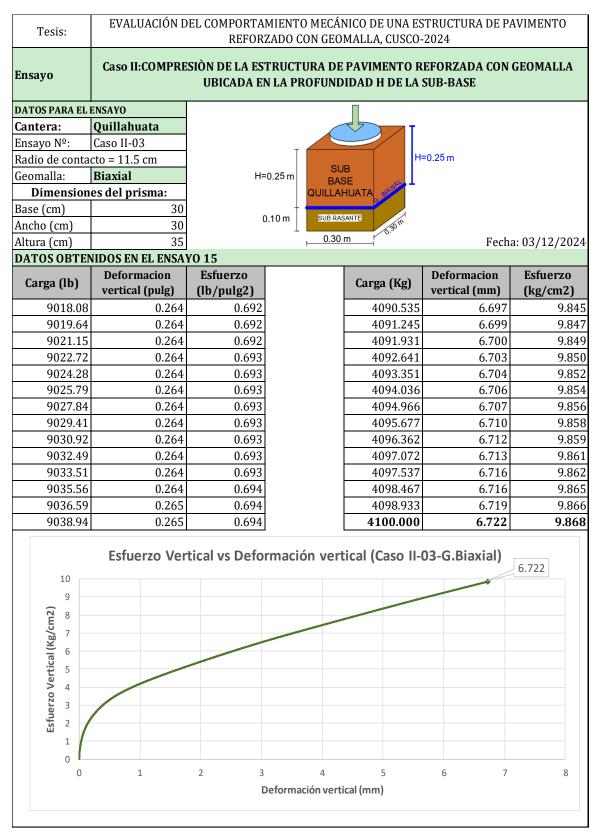

Tesis:	EVALUACIÓN DEL COMPORTAMIENTO MECÁNICO DE UNA ESTRUCTURA DE PAVIMENTO REFORZADO CON GEOMALLA, CUSCO-2024						
Ensayo	Caso II:COMPRESIÒN DE LA ESTRUCTURA DE PAVIMENTO REFORZADA CON GEOMALLA UBICADA EN LA PROFUNDIDAD H DE LA SUB-BASE						
DATOS PARA EL I	ENSAYO						
	Quillahuata						
,	Caso II-01		T (
Radio de conta		H=0.25 m					
	Biaxial	H=0.25 m BASE					
Dimension	es del prisma:		QUILLA	HUATA NOTE OF THE PROPERTY OF			
Base (cm)	30	0.10 m					
Ancho (cm)	30						
Altura (cm)	35	Fecha: 27/11/2024					
DATOS OBTEN	IIDOS EN EL ENSA	YO 13					
Carga (lb)	Deformacion	Esfuerzo		Carga	a (Kg)	Deformacion	Esfuerzo
	vertical (pulg)	(lb/pulg2)				vertical (mm)	(kg/cm2)
9018.98	0.264	0.692			1090.95	6.709	9.846
9020.98	0.264		0.692 40			6.711	9.849
9021.98	0.264				1092.31	6.715	9.850
9023.98	0.264	0.693	4093.21			6.715	9.852
9024.98	0.264	0.693		4093.67		6.718	9.853
9026.98	0.265	0.693			1094.57	6.722	9.855
9027.98	0.265	0.693			1095.03	6.722	9.856
9028.98	0.265	0.693			1095.48	6.724	9.857
9030.98	0.265	0.693			1096.39	6.728	9.860
9031.98	0.265	0.693			1096.84	6.728	9.861
9033.98	0.265	0.693			1097.75	6.730	9.863
9034.98	0.265	0.694			1098.20	6.730	9.864
9036.98	0.265	0.694			1099.11	6.734	9.866
9038.94	0.265	0.694		4	100.00	6.737	9.868
11 10	Esfuerzo Ve	rtical vs Defo	ormación	vertical (Caso II-	01-G.Biaxial)	6.737
Esfuerzo Vertical (Kg/cm2)							
3/8g 7							
3) IB 7							
.t. 9							
Ner 5							
4 LZO							
stue 3							
1							
0	1	2	3	4	5	6 7	8
			Deformació	n vertical (mm	1)		

Tabla 41

Caso II – 2º Ensayo – Subbase Quillahuata – G. Biaxial

Tabla 42Caso II – 3º Ensayo – Subbase Quillahuata – G. Biaxial

Tabla 43Caso II – 1º Ensayo – Subbase Quillahuata – G. Triaxial

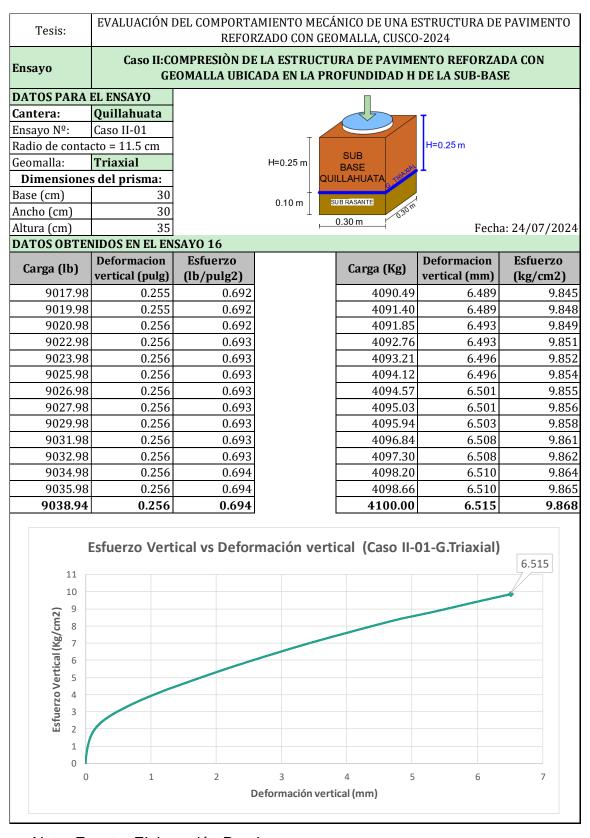


Tabla 44

Caso II – 2º Ensayo – Subbase Quillahuata – G. Triaxial

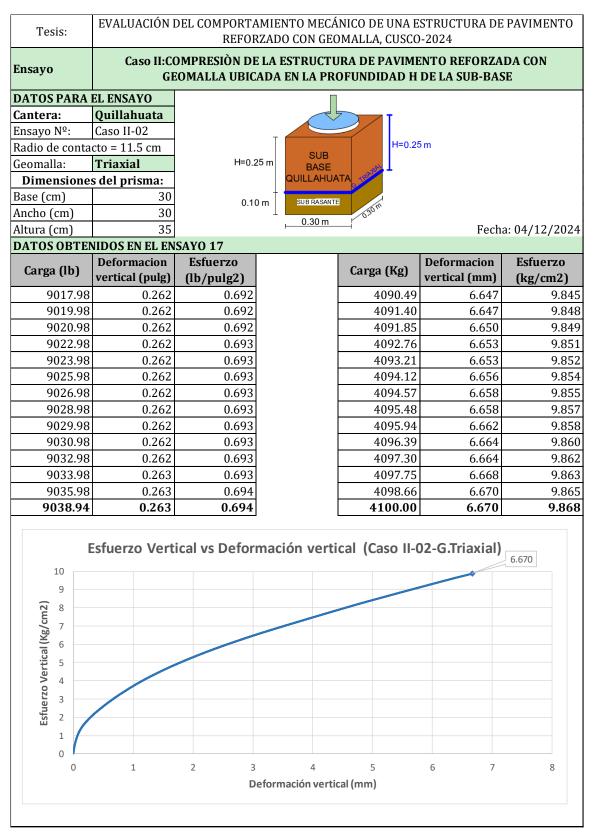
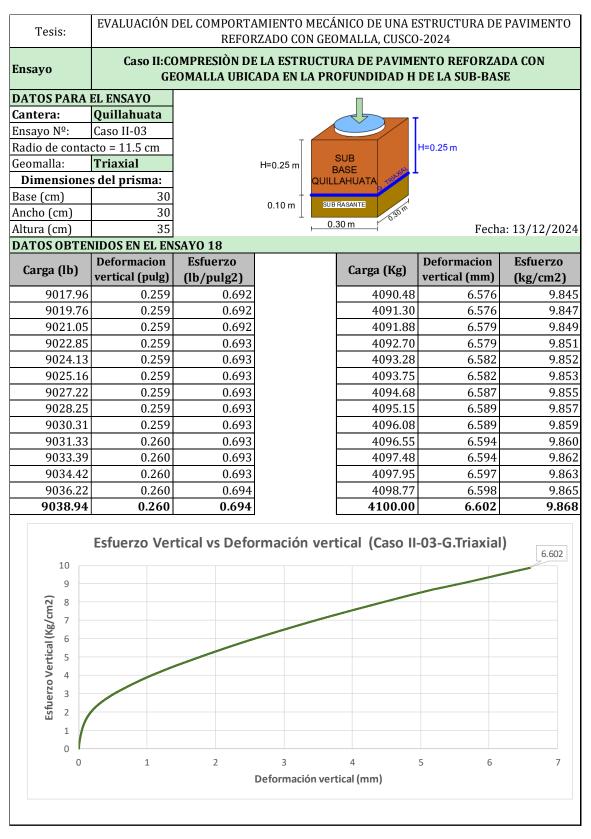



Tabla 45

Caso II – 3º Ensayo – Subbase Quillahuata – G. Triaxial

10.5.3 Caso III: Estructura de Pavimento Reforzada con Geomalia a una profundidad H/2 de la Subbase

Tabla 46

Caso III – 1º Ensayo – Subbase Huillque – G. Biaxial

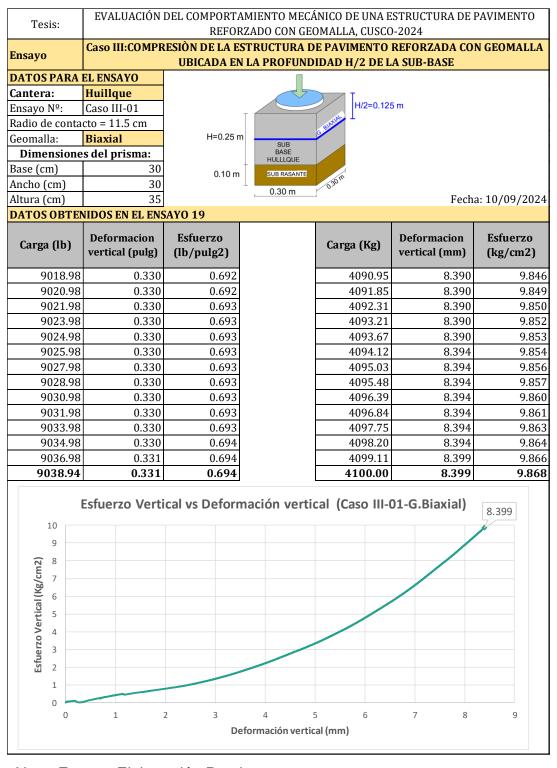


Tabla 47

Caso III – 2º Ensayo – Subbase Huillque – G. Biaxial



Tabla 48

Caso III – 3º Ensayo – Subbase Huillque – G. Biaxial

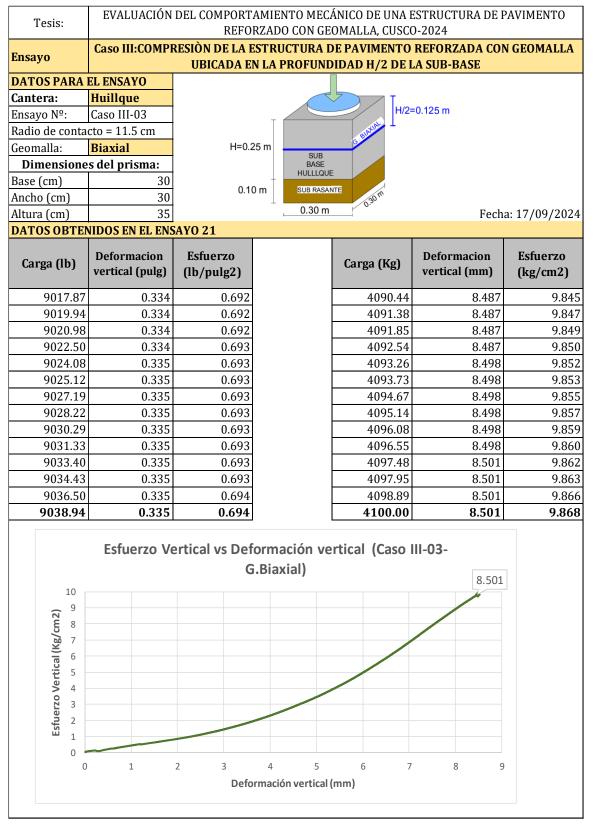


Tabla 49

Caso III – 1º Ensayo – Subbase Huillque – G. Triaxial

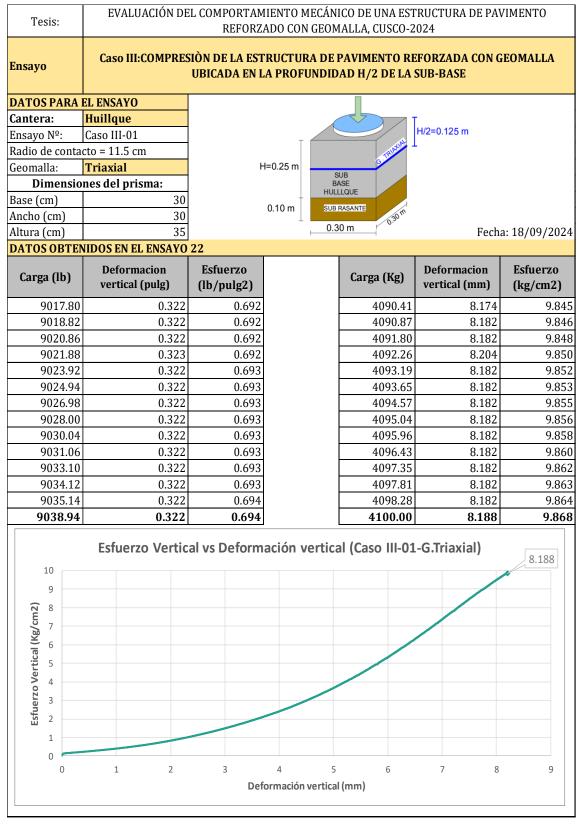


Tabla 50

Caso III – 2º Ensayo – Subbase Huillque – G. Triaxial

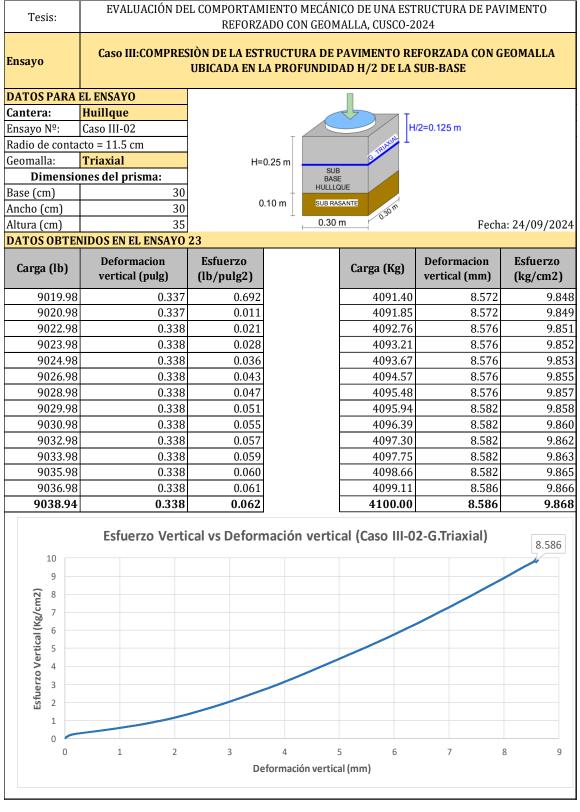
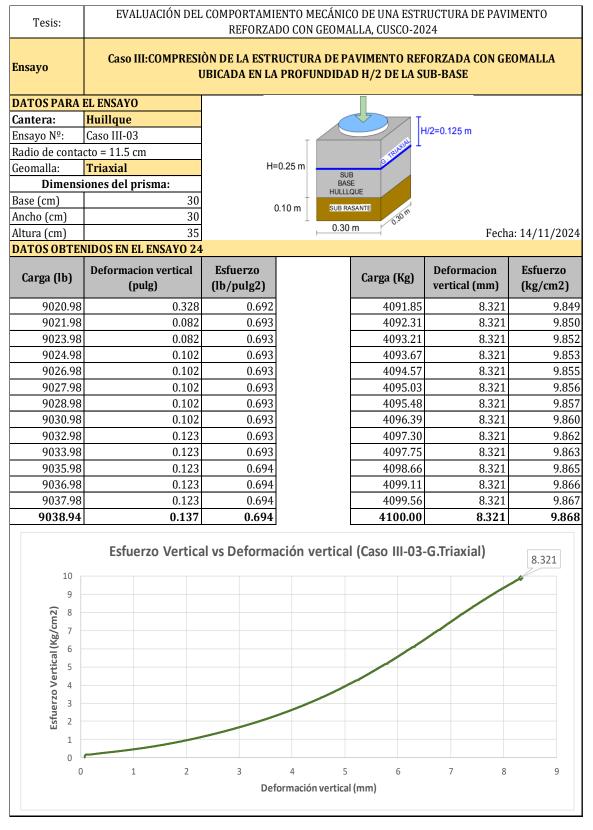
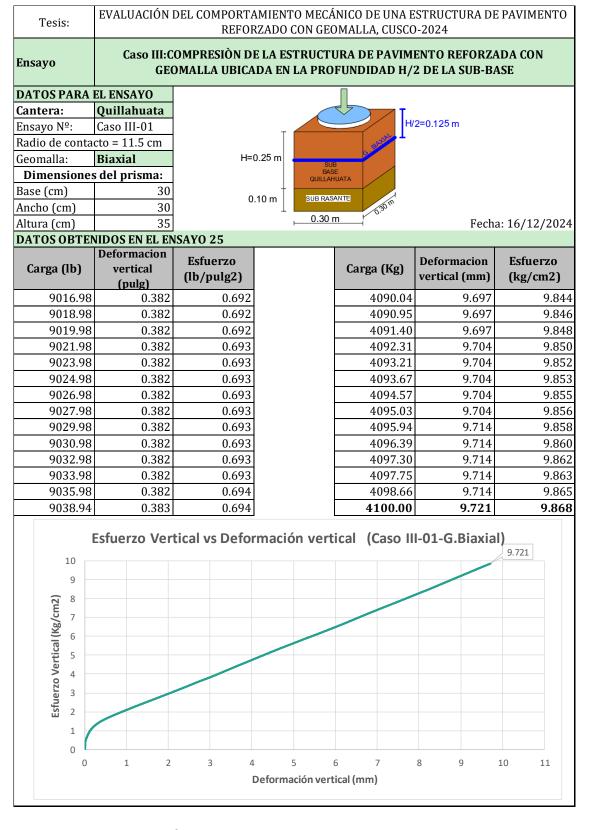
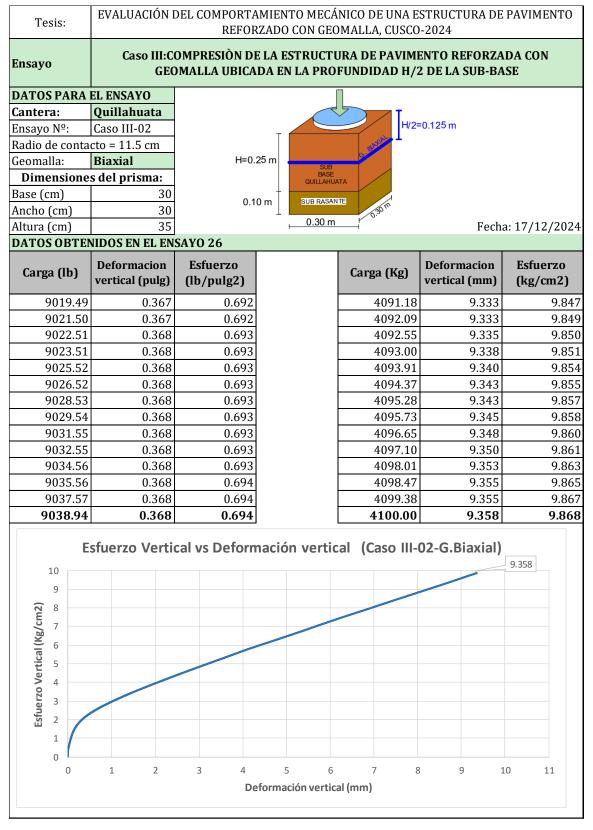
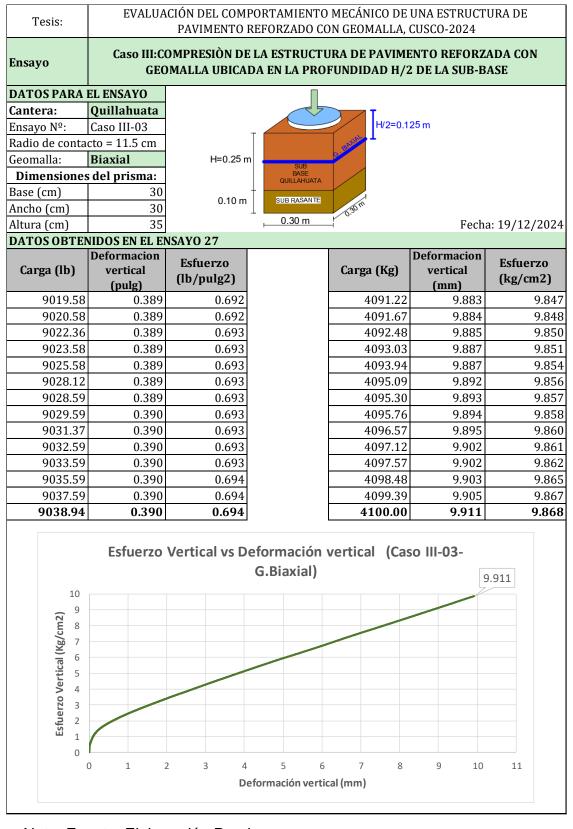




Tabla 51


Caso III – 3º Ensayo – Subbase Huillque – G. Triaxial


Tabla 52Caso III – 1º Ensayo – Subbase Quillahuata – G. Biaxial

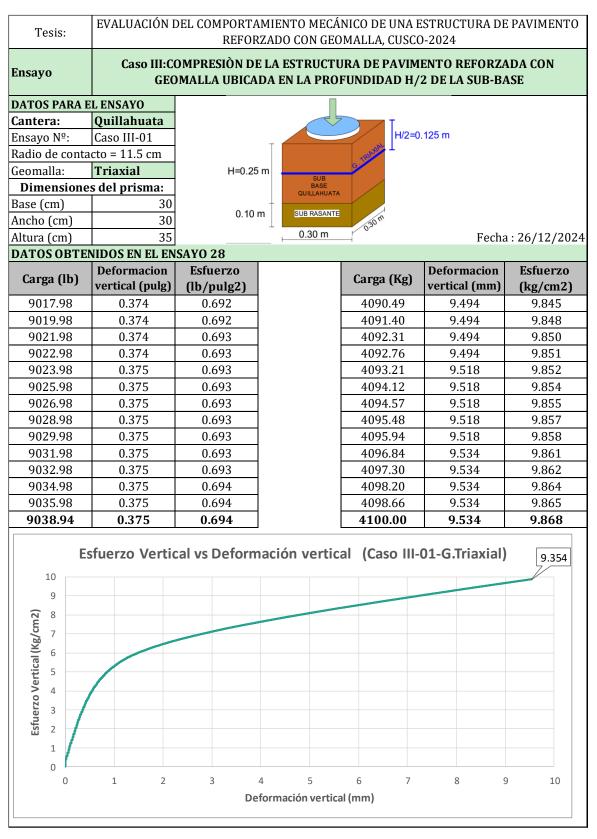

Tabla 53Caso III – 2º Ensayo – Subbase Quillahuata – G. Biaxial

Tabla 54Caso III – 3º Ensayo – Subbase Quillahuata – G. Biaxial

Tabla 55Caso III – 1º Ensayo – Subbase Quillahuata – G. Triaxial

Tabla 56Caso III – 2º Ensayo – Subbase Quillahuata – G. Triaxial

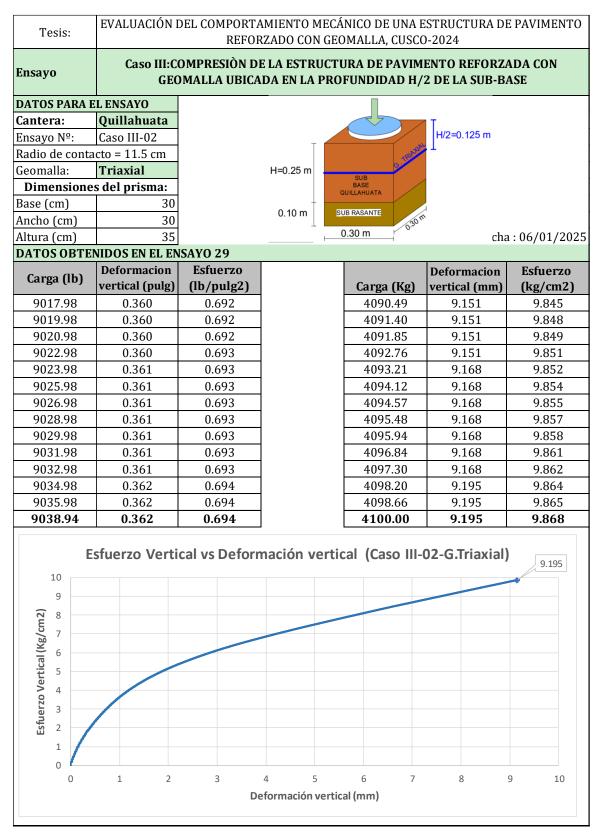
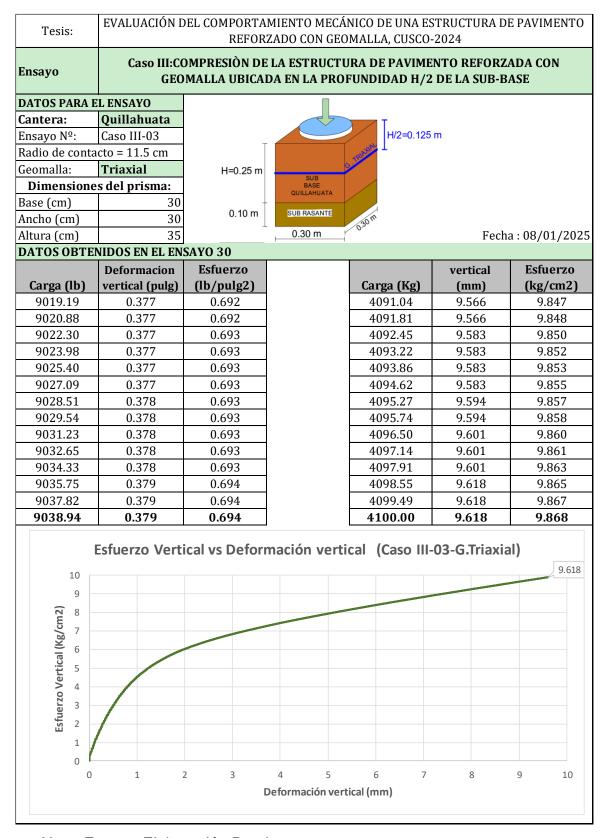
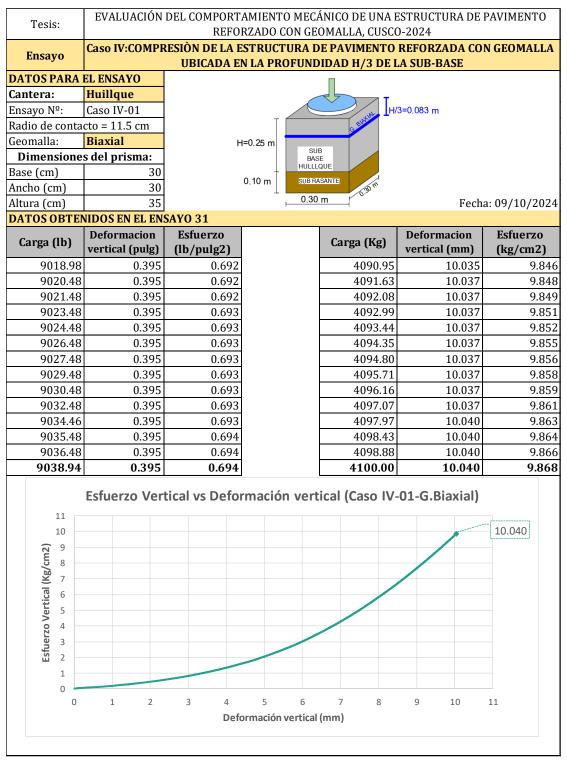



Tabla 57


Caso III – 3º Ensayo – Subbase Quillahuata – Triaxial

10.5.4 Caso IV: Estructura de Pavimento Reforzada con Geomalia a una profundidad H/3 de la Subbase

Tabla 58

Caso IV – 1º Ensayo – Subbase Huillque – G. Biaxial

Tabla 59Caso IV – 2º Ensayo – Subbase Huillque – G. Biaxial

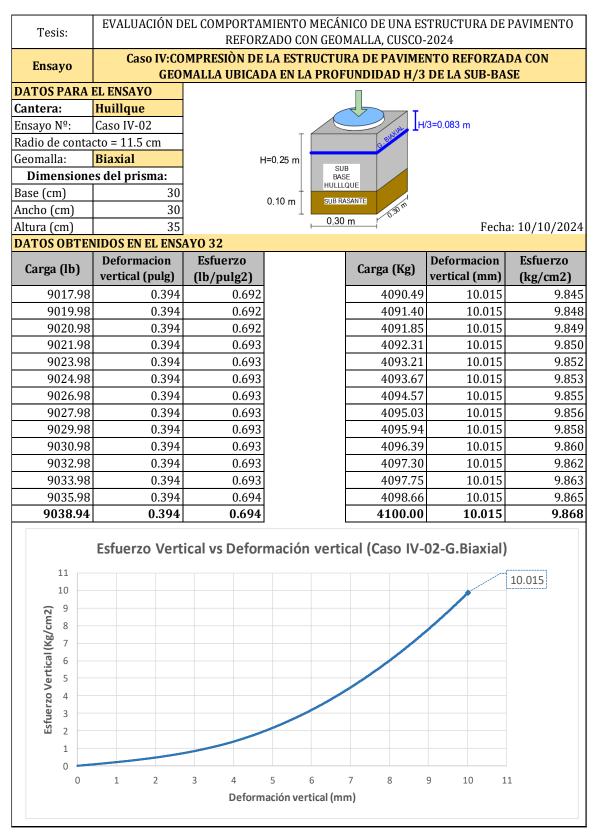


Tabla 60

Caso IV – 3º Ensayo – Subbase Huillque – G. Biaxial

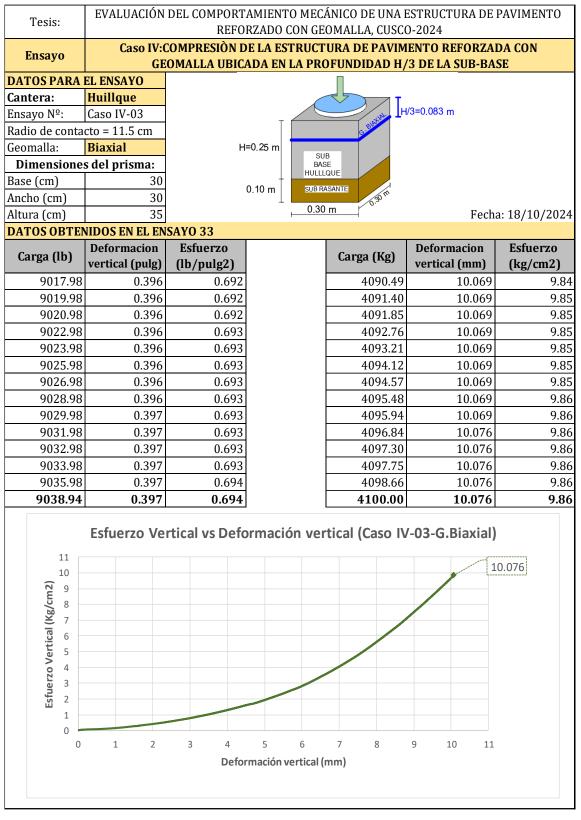
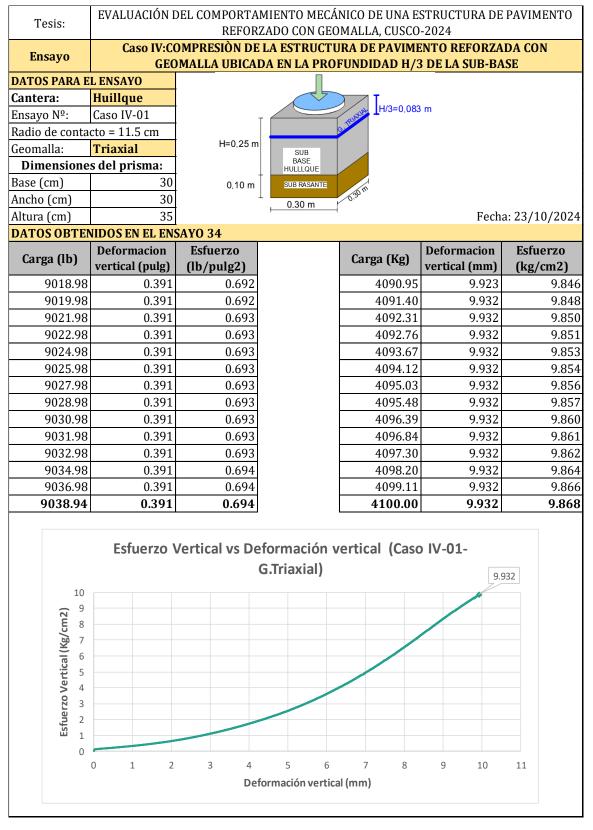
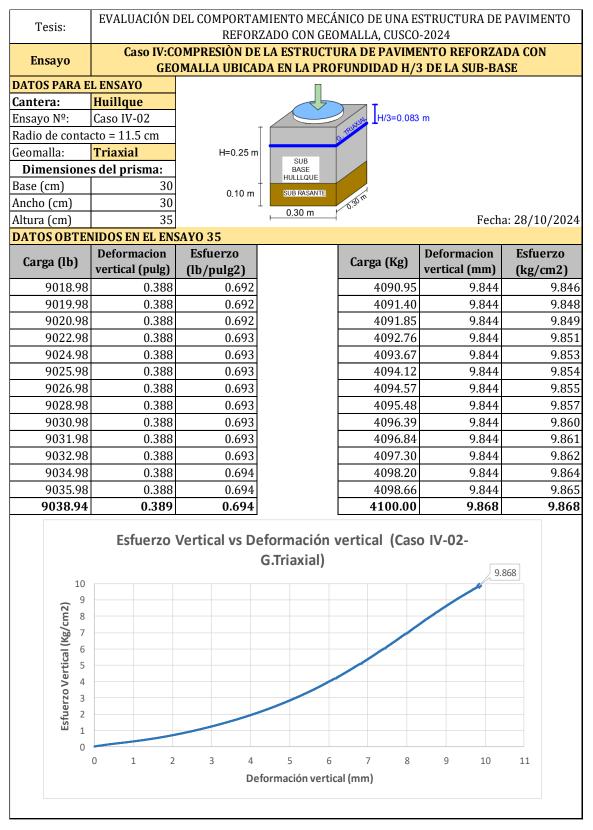




Tabla 61

Caso IV – 1º Ensayo – Subbase Huillque – G. Triaxial

Tabla 62Caso IV – 2º Ensayo – Subbase Huillque – G. Triaxial

Tabla 63Caso IV – 3º Ensayo – Subbase Huillque – G. Triaxial

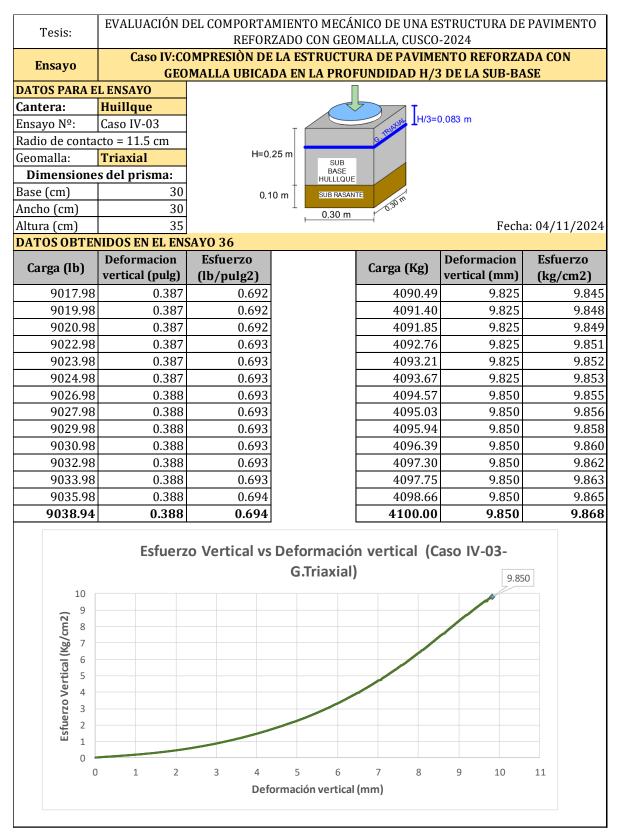
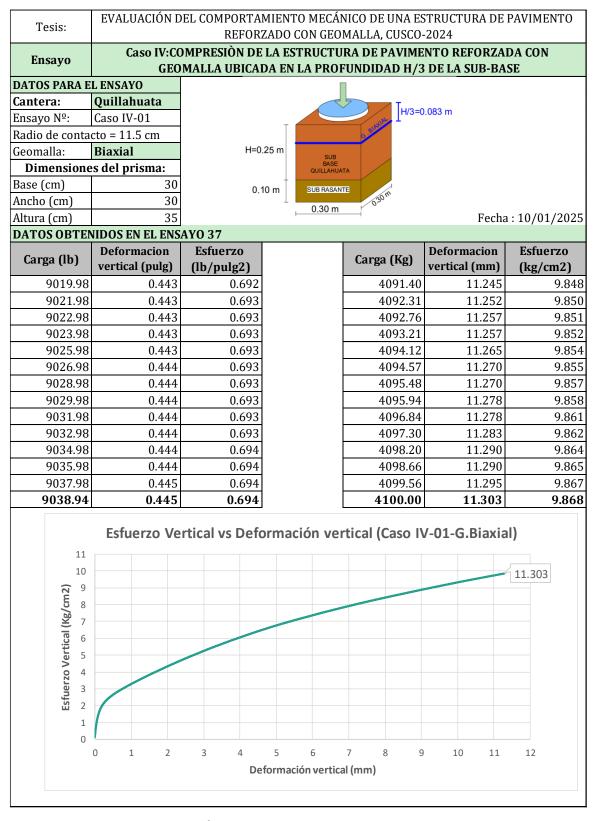
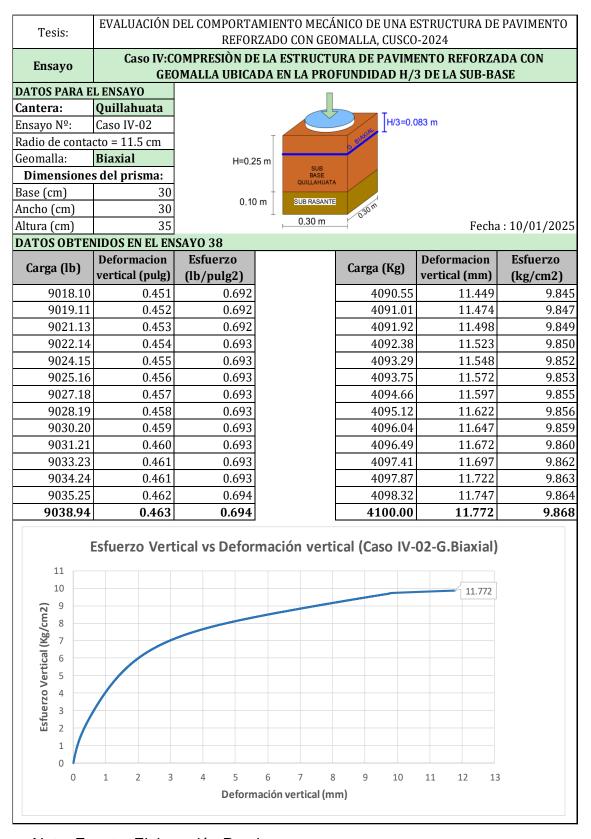




Tabla 64

Caso IV – 1º Ensayo – Subbase Quillahuata – G. Biaxial

Tabla 65Caso IV – 2º Ensayo – Subbase Quillahuata – G. Biaxial

Tabla 66Caso IV – 3º Ensayo – Subbase Quillahuata – G. Biaxial

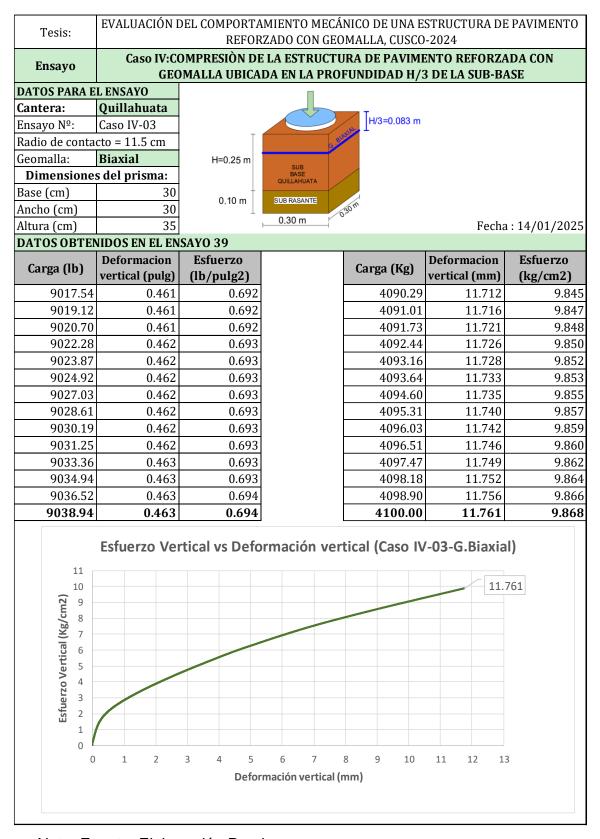


Tabla 67

Caso IV – 1º Ensayo – Subbase Quillahuata – G. Triaxial

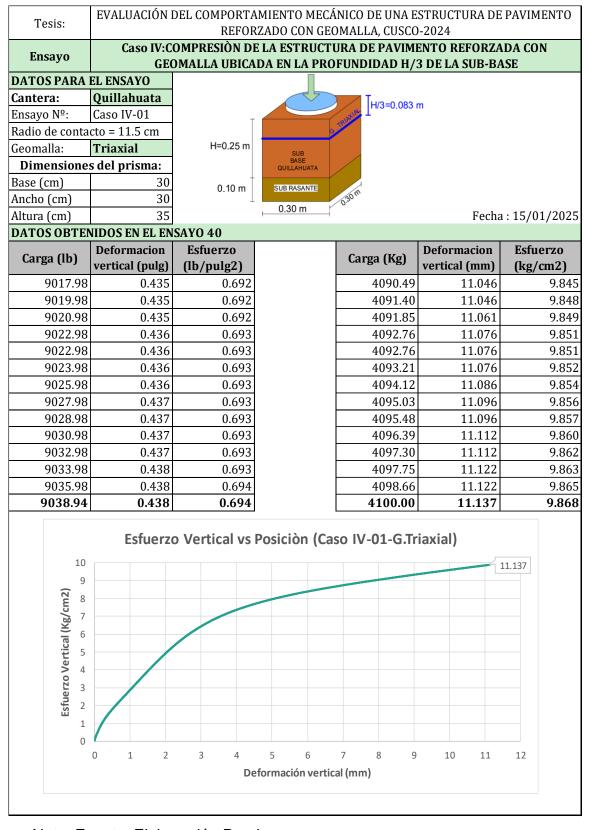


Tabla 68

Caso IV – 2º Ensayo – Subbase Quillahuata – G. Triaxial

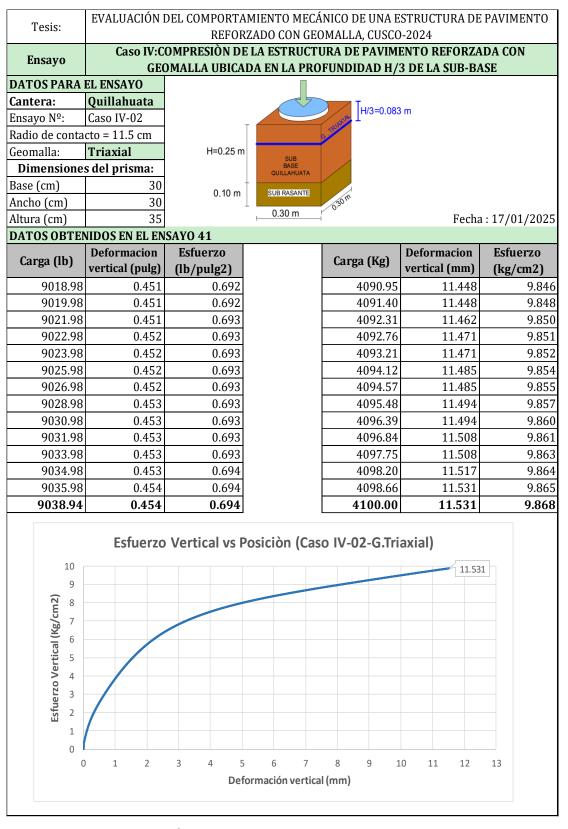
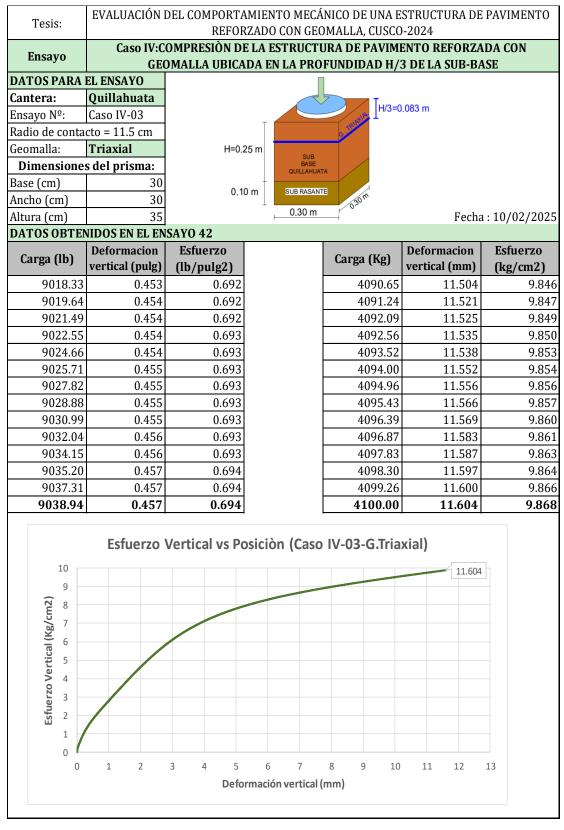



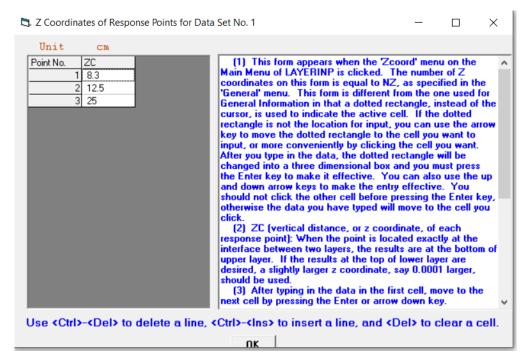
Tabla 69

Caso IV – 3º Ensayo – Subbase Quillahuata – G. Triaxial

10.5.5 Compresión de la Estructura de Pavimento (Data obtenida strain gauges)

10.5.5.1 **KENPAVE**

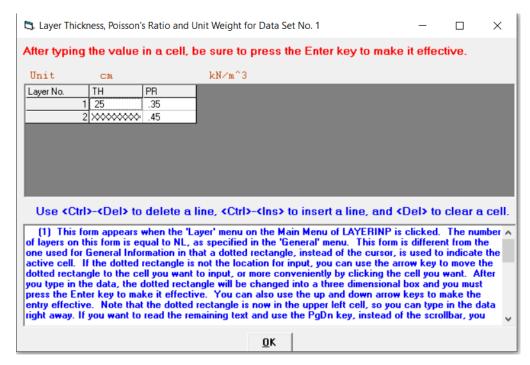
Para poder modelar y obtener los datos de KENPAVE se procedió la siguiente manera:


Ilustración 1

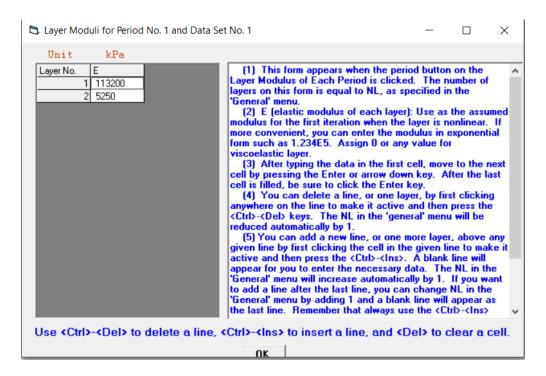
Condiciones de análisis

General Information of LAYERINP for Set No. 1					
TITLE HUILQUE					
Type of material (1=linear, 2=nonlinear, 3=viscoelastic, 4=combined)	(MATL)	1			
Damage analysis (0=no, 1=yes with summary only, 2=yes with detatiled printout) (NDAMA)					
Number of periods per year	(NPY)	1			
Number of load groups	(NLG)	1			
Tolerance for numerical integration	(DEL)	0.001			
Number of layers	(NL)	2	<u>0</u> K		
Number of Z coordinates for analysis	(NZ)	3	_		
Maximum cycles of numerical integration	(ICL)	80			
Type of responses (1=displacements only, 5=plus stresses, 9=plus strains)	(NSTD)	9			
All layer interfaces bonded (1=yes, 0=if some are frictionless)	(NBOND)	1			
Number of layers for bottom tension	(NLBT)	1			
Number of layers for top compression	(NLTC)	1			
System of units (0=English, 1=SI)	(NUNIT)	1			
(1) This form appears when the 'General' on the Main Menu of LAYERINP is clicked. You can override any of the default values by typing in a new value. You can use the Tab key to move the cursor from one textbox to the next or just click on the textbox before typing. The use of click has the advantage that you don't have to delete the default before typing in the data you want. If you want to read the remaining text, you can use the scrollbar. You can also use the PgDn key after clicking this textbox to make it active. (2) TITLE (title of run): Any title or comment can be typed on one line. The title should not be longer than 68 characters including spaces. If you make a mistake in typing, use the Del key to erase any typographical errors. When the total length reaches 68, no additional characters can be added. No comma should be used in TITLE. Use colon or semicolon instead. (3) MATL (types of material): 1 when all layers are linear elastic, 2 when some layers are nonlinear					

Nota. Fuente: Adaptado de KENPAVE

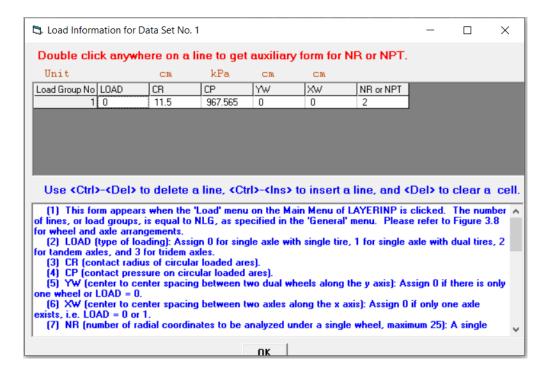

Profundidades a analizar

Nota. Fuente: Adaptado de KENPAVE


Ilustración 3

Espesor y coeficiente de poisson

Nota. Fuente: Adaptado de KENPAVE


Modulo de elasticidad

Nota. Fuente: Adaptado de KENPAVE

Ilustración 5

Datos de carga y radio de contacto

Nota. Fuente: Adaptado de KENPAVE

Esfuerzo Vertical de la Cantera de Huillque en KENPAVE

```
NUMBER OF PROBLEMS TO BE SOLVED = 1
TITLE -huillqueeeeee
MATL = 1 FOR LINEAR ELASTIC LAYERED SYSTEM
NDAMA = 0, SO DAMAGE ANALYSIS WILL NOT BE PERFORMED
NUMBER OF PERIODS PER YEAR (NPY) = 1
NUMBER OF LOAD GROUPS (NLG) = 1
TOLERANCE FOR INTEGRATION (DEL) -- = 0.001
NUMBER OF LAYERS (NL)----- = 2
NUMBER OF Z COORDINATES (NZ)----- = 3
LIMIT OF INTEGRATION CYCLES (ICL) - = 80
COMPUTING CODE (NSTD)---- = 9
SYSTEM OF UNITS (NUNIT)----- 1
Length and displacement in cm, stress and modulus in kPa
unit weight in kN/m^3, and temperature in C
THICKNESSES OF LAYERS (TH) ARE: 25
POISSON'S RATIOS OF LAYERS (PR) ARE: 0.35 0.45
VERTICAL COORDINATES OF POINTS (ZC) ARE: 8.3 12.5 25
ALL INTERFACES ARE FULLY BONDED
FOR PERIOD NO. 1 LAYER NO. AND MODULUS ARE: 1 1.132E+05 2 5.250E+03
LOAD GROUP NO. 1 HAS 1 CONTACT AREA
CONTACT RADIUS (CR)----- = 11.5
CONTACT PRESSURE (CP)---- = 967.565
RADIAL COORDINATES OF 2 POINT(S) (RC) ARE: 0 0
PERIOD NO. 1 LOAD GROUP NO. 1
           VERTICAL VERTICAL VERTICAL
  RADIAL
COORDINATE COORDINATE DISPLACEMENT STRESS
            8.30000 0.69283 717.690
  0.00000
  0.00000 12.50000 0.67403 474.753
  0.00000 25.00000 0.62965 57.687
```

Nota. Fuente: Adaptado de KENPAVE

Este procedimiento se aplicó también para la cantera de Quillahuata todos los datos obtenidos fueron usados en los cálculos presentados en los ítems 5.5.2 al 5.5.5.

10.5.5.2 Sustento del calculo de los esfuerzos

Se desarrolla las ecuaciones del Apéndice B - Pavement Analysis and Desing - donde se visualiza el sustento teórico del programa KENPAVE, Se tiene que considerar:

Sea $\rho = r/H$ y $\lambda = z/H$, donde H es la distancia desde la superficie hasta el limite superior de la capa mas inferior (subrasante) . La siguiente sustitución:

$$\phi_i = \frac{H^3 J_0(mp)}{m^2} \left[A_i e^{-m(\lambda_i - \lambda)} - B_i e^{-m(\lambda - \lambda_{i-1})} + C_i m \lambda e^{-m(\lambda_i - \lambda)} - D_i m \lambda e^{-m(\lambda - \lambda_{i-1})} \right] (B.3)$$

Es una función de esfuerzo para la capa *i* que satisface la ecuación B.1, en la que:

- J₀ es una función de Bessel del primer tipo y orden 0
- ♣ A, B, C, D son constantes de integración que deben determinarse a partir de las condiciones de frontera y continuidad

El subíndice i varía de 1 a n y se refiere a las cantidades correspondientes a la capa i

Al sustituir la Ecuación B.3 en las ecuaciones B.2 se obtiene:

$$(\sigma_z^*)_i = -mJ_0(m\rho)\{[A_i - C_i(1 - 2\nu_i - m\lambda)]e^{-m(\lambda_i - \lambda)} + [B_i + D_i(1 - 2\nu_i + m\lambda)]e^{-m(\lambda - \lambda_{i-1})}\}$$
(B.4a)

$$(\sigma_r^*)_i = \left[mJ_0(m\rho) - \frac{J_1(m\rho)}{\rho} \right] \{ [A_i + C_i(1+m\lambda)] e^{-m(\lambda_i - \lambda)} + [B_i - D_i(1-m\lambda)] \times e^{-m(\lambda - \lambda_{i-1})} \} + 2\nu_i \, mJ_0(m\rho) [C_i e^{-m(\lambda_i - \lambda)} - D_i e^{-m(\lambda - \lambda_{i-1})}]$$
(B.4b)

$$(\sigma_t^*)_i = \frac{J_1(m\rho)}{\rho} \{ [A_i + C_i(1+m\lambda)] e^{-m(\lambda_i - \lambda)} + [B_i - D_i(1-m\lambda)] e^{-m(\lambda - \lambda_{i-1})} \}$$

$$+ 2\nu_i \, m J_0(m\rho) [C_i e^{-m(\lambda_i - \lambda)} - D_i e^{-m(\lambda - \lambda_{i-1})}]$$
(B.4c)

$$(\tau_{rz}^*)_i = mJ_1(m\rho)\{[A_i + C_i(2\nu_i + m\lambda)]e^{-m(\lambda_i - \lambda)} - [B_i - D_i(2\nu_i - m\lambda)]e^{-m(\lambda - \lambda_{i-1})}\}$$
(B.4d)

$$(w^*)_i = -\frac{1+\nu_1}{E_i} J_0(m\rho) \{ [A_i - C_i(2-4\nu_i - m\lambda)] e^{-m(\lambda_i - \lambda)} - [B_i + D_i(2-4\nu_i + m\lambda)] e^{-m(\lambda - \lambda_{i-1})}$$
(B.4e)

$$(u^*)_i = \frac{1 + \nu_i}{E_i} J_1(m\rho) \{ [A_i + C_i(1 + m\lambda)] e^{-m(\lambda_i - \lambda)} + [B_i - D_i(1 - m\lambda)] e^{-m(\lambda - \lambda_{i-1})} \}$$
(B.4f)

Para poder hallar las constantes de integración se utilizarán las condiciones de contorno:

4 En la superficie superior, cuando i = 1 y $\lambda = 0$, las condiciones de frontera son:

$$(\sigma_z^*)_1 = -mJ_0(m\rho) \tag{B.8a}$$

$$(\tau_{rz}^*)_1 = 0$$
 (B.8b)

Estas condiciones resultan en 2 ecuaciones:

$$\begin{bmatrix} e^{-m\lambda_1} & 1 \\ e^{-m\lambda_1} & -1 \end{bmatrix} \begin{Bmatrix} A_1 \\ B_1 \end{Bmatrix} + \begin{bmatrix} -(1-2\nu_1)e^{-m\lambda_1} & 1-2\nu_1 \\ 2\nu_1e^{-m\lambda_1} & 2\nu_1 \end{bmatrix} \begin{Bmatrix} C_1 \\ D_1 \end{Bmatrix} = \begin{Bmatrix} 1 \\ 0 \end{Bmatrix}$$
(B.9)

Con esta matriz se tiene 2 ecuaciones para 4 incógnitas, para encontrar las ecuaciones faltantes y resolver el sistema, para ello se basan en el supuesto de que las capas están completamente unidas, con el mismo esfuerzo vertical, esfuerzo cortante, desplazamiento vertical y desplazamiento radial en cada punto a lo largo de la interfaz. Por lo tanto, cuando $\lambda = \lambda i$ y las condiciones de continuidad son:

$$(\sigma_z^*)_i = (\sigma_z^*)_{i+1}$$
 (B.10a)

$$(\tau_{rz}^*)_i = (\tau_{rz}^*)_{i+1}$$
 (B.10b)

$$(w^*)_i = (w^*)_{i+1}$$
 (B.10c)

$$(u^*)_i = (u^*)_{i+1}$$
 (B.10d)

Realizando el reemplazo en las ecuaciones anteriores se tiene el siguiente sistema:

$$\begin{bmatrix} 1 & F_i & -(1-2\nu_i - m\lambda_i)F_i & (1-2\nu_i + m\lambda_i)F_i \\ 1 & -F_i & 2\nu_i + m\lambda_i & (2\nu_i - m\lambda_i)F_i \\ 1 & F_i & 1 + m\lambda_i & -(1-m\lambda_i)F_i \\ 1 & -F_i & -(2-4\nu_i - m\lambda_i)F_i & (2-4\nu_i + m\lambda_i)F_i \end{bmatrix} \begin{cases} A_i \\ B_i \\ C_i \\ D_i \end{cases}$$

$$=\begin{bmatrix} F_{i+1} & 1 & -(1-2\nu_{i+1}-m\lambda_i)F_{i+1} & 1-2\nu_{i+1}+m\lambda_i \\ F_{i+1} & -1 & (2\nu_{i+1}+m\lambda_i)F_{i+1} & 2\nu_{i+1}-m\lambda_i \\ R_iF_{i+1} & R_i & (1+m\lambda_i)R_iF_{i+1} & -(1-m\lambda_i)R_i \\ R_iF_{i+1} & -R_i & -(2-4\nu_{i+1}-m\lambda_i)R_iF_{i+1} & (2-4\nu_{i+1}+m\lambda_i)R_i \end{bmatrix} \begin{bmatrix} A_{i+1} \\ B_{i+1} \\ C_{i+1} \\ D_{i+1} \end{bmatrix}$$
(B.11)

Considerando que los esfuerzos y desplazamientos deben desaparecer conforme λ tiende a infinito, por lo que se puede concluir a partir de la Ec. B.3 que, para la última capa donde i=n

$$A_n = C_n = 0 \tag{B.13}$$

Teniendo todas estas condiciones se tiene un sistema compatible determinada, para encontrar los esfuerzos y desplazamientos debidos a una carga constante q distribuida sobre un área circular de radio a, se emplea el método de transformada de Hankel. La forma transformada de dicha carga es:

$$\bar{f}(m) = \int_0^\alpha q\rho J_0(m\rho) \, d\rho = \frac{q\alpha}{m} J_1(m\alpha) \tag{B.5}$$

Donde $\alpha = \frac{a}{H}$

La inversión de Hankel de $\bar{f}(m)$ es:

$$q(\rho) = \int_0^\infty \bar{f}(m)mJ_0(m\rho)\,dm = q\alpha \int_0^\infty J_0(m\rho)J_1(m\alpha)\,dm \tag{B.6}$$

Si ${\it R}$ es el esfuerzo o desplazamiento en la Ecuación B.4 debido a la carga $-m J_0(m\rho)$ y ${\it R}$ es el valor debido a la carga q, y la tensión se considera negativa, entonces:

$$R = q\alpha \int_0^\infty \frac{R^*}{m} J_1(m\alpha) dm \tag{B.7}$$

Teniendo toda la información se describe el procedimiento seguido:

- ♣ Se procederá a calcular las constantes de integración (A₁, B₁, C₁, D₁, B₂, D₂) con las ecuaciones B.9 y B.11; estas constantes se hallarán para valores de "m".
- ♣ Luego se reemplazará todos estos valores en la ec. B.4.a, de esta manera se halla el esfuerzo normalizado. De acuerdo a la ec. B.7 se realizará una integración numérica para varios valores de "m" hasta lograr una convergencia, dicha convergencia se da cuando las integraciones no son significativas para el valor R.
- ♣ Al ser un procedimiento iterativo, se utilizará un software en este caso MATLAB usando el siguiente código:

```
function sigma z = calcular esfuerzos puntos()
   % Parámetros del sistema de dos capas (unidades: kPa y cm)
   q =967.565;
              % Magnitud de la carga (kPa)
   a = 11.5;
                 % Radio del área cargada (cm)
   H = 25;  % Altura total del sistema (cm)
   h1 = 25; % Espesor de la capa 1 (cm)
   % Propiedades de los materiales (en kPa)
   E1 = 113200; % Módulo elástico capa 1 (kPa)
   E2 = 5250; % Módulo elástico capa 2 (kPa)
              % Coeficiente de Poisson capa 2
   nu2 = 0.45;
   % Factor de conversión cm a m
   meter_scale = 0.01;
```

```
% Solicitar puntos de evaluación al usuario
      fprintf('\nIngrese las coordenadas de los puntos a evaluar (en
cm):\n');
      fprintf('Formato: [r1 z1; r2 z2; ...; rn zn]\n');
      fprintf('Ejemplo: [0 0; 15 30; 30 50]\n\n');
      puntos_cm = input('Coordenadas: ');
      % Validar entrada
      if isempty(puntos_cm)
          puntos_cm = [0 0; 15 30; 30 50]; % Puntos por defecto
      end
      % Convertir puntos a metros
      puntos = puntos_cm * meter_scale;
      num puntos = size(puntos, 1);
      % Pre-asignar vector para resultados
      sigma_z_kPa = zeros(num_puntos, 1);
      % Parámetros de integración
                    % Valor máximo de m para integración
      m max = 50;
      dm = 0.1;
                    % Paso de integración
      % Bucle para cada punto
      for p = 1:num puntos
          r = puntos(p, 1);
          z = puntos(p, 2);
          % Calcular valores adimensionales
          rho = r / (H * meter_scale);
          lambda = z / (H * meter_scale);
```

```
% Determinar capa actual
          if z <= h1 * meter_scale</pre>
              layer = 1;
              lambda_i = h1 * meter_scale / (H * meter_scale);
              lambda_i_1 = 0;
              E = E1;
              nu = nu1;
          else
              layer = 2;
              lambda_i = 1;
              lambda_i_1 = h1 * meter_scale / (H * meter_scale);
              E = E2;
              nu = nu2;
          end
          % Integración numérica
          integral_sz = 0;
          m = dm;
          while m < m_max
              % Resolver constantes A,B,C,D
              [A1, B1, C1, D1, A2, B2, C2, D2] = solve_constants(m,
h1*meter_scale/(H*meter_scale), E1, nu1, E2, nu2);
              % Usar constantes de la capa actual
              if layer == 1
                  A = A1; B = B1; C = C1; D = D1;
              else
                  A = A2; B = B2; C = C2; D = D2;
              end
              % Calcular sigma_z* (B.4a)
              J0 = besselj(0, m*rho);
              exp1 = exp(-m*(lambda_i - lambda));
```

```
exp2 = exp(-m*(lambda - lambda_i_1));
            term1_sz = (A - C*(1-2*nu - m*lambda)) * exp1;
            term2_sz = (B + D*(1-2*nu + m*lambda)) * exp2;
             sigma_z_star = -m * J0 * (term1_sz + term2_sz);
            % Factor de Hankel
            J1 = besselj(1, m*a*meter_scale/(H*meter_scale));
             integrand sz = sigma z star * J1 / m;
            % Integración trapezoidal
            if m == dm
                integral_sz = integral_sz + integrand_sz;
            else
                integral_sz = integral_sz + 2*integrand_sz;
            end
            m = m + dm;
         end
         % Calcular esfuerzo vertical final (kPa)
         sigma_z_kPa(p) = q * (a*meter_scale/(H*meter_scale)) *
(integral_sz * dm/2);
     end
     % Mostrar resultados en tabla
     fprintf('\nResultados de esfuerzos verticales (σ_z):\n');
     fprintf('----\n');
     fprintf(' r (cm) z (cm) \sigma_z (kPa)\n');
     fprintf('-----\n');
     for p = 1:num_puntos
         fprintf('%8.2f %8.2f %12.4f\n', puntos_cm(p,1), puntos_cm(p,2),
sigma_z_kPa(p));
     end
     fprintf('----\n');
```

```
% Devolver resultados
    sigma_z = [puntos_cm, sigma_z_kPa];
   % Opcional: Graficar puntos evaluados sobre perfil de esfuerzos
   graficar_perfil_con_puntos(H, h1, a, puntos_cm, sigma_z_kPa);
end
function graficar_perfil_con_puntos(H, h1, a, puntos_cm, sigma_z_kPa)
   % Crear malla para perfil completo
    r_plot = linspace(0, 2*a, 50);
    z_plot = linspace(0, H, 50);
    [R, Z] = meshgrid(r_plot, z_plot);
   % Calcular esfuerzos para toda la malla (versión simplificada)
   % NOTA: En una implementación real, deberías calcular esto propiamente
   Sigma = zeros(size(R));
    for i = 1:numel(R)
        r = R(i) * 0.01; % cm a m
        z = Z(i) * 0.01; % cm a m
       % Aquí iría el cálculo completo como en la función principal
       % Para este ejemplo, usamos una aproximación
        Sigma(i) = 100 * exp(-(r^2 + (z-0.15)^2)/0.05);
    end
   % Graficar
    figure;
    contourf(R, Z, Sigma, 20, 'LineColor', 'none');
   hold on;
   % Marcar puntos evaluados
    scatter(puntos_cm(:,1), puntos_cm(:,2), 100, 'r', 'filled');
   % Etiquetar puntos con valores
```

```
for p = 1:size(puntos_cm, 1)
          text(puntos\_cm(p,1)+2, puntos\_cm(p,2), ...
              sprintf('σ_z=%.1f kPa', sigma_z_kPa(p)), ...
              'Color', 'white', 'FontWeight', 'bold');
      end
      colorbar;
      title('Distribución de Esfuerzos Verticales (kPa)');
      xlabel('Radio (cm)');
      ylabel('Profundidad (cm)');
      axis equal;
      % Línea de interfaz entre capas
      yline(h1, '--w', 'LineWidth', 1.5);
      text(a, h1+3, 'Interfaz Capa 1-2', 'Color', 'white');
      hold off;
  end
  function [A1, B1, C1, D1, A2, B2, C2, D2] = solve constants(m, lambda1,
E1, nu1, E2, nu2)
      % (El contenido de esta función permanece igual que en el código
anterior)
      % Para la capa 2 (inferior)
      A2 = 0;
      C2 = 0;
      % Matriz de coeficientes (8x8)
      M = zeros(8,8);
      R = zeros(8,1);
      % Condiciones de superficie (B.9)
      M(1,1) = \exp(-m*lambda1); M(1,2) = 1;
      M(1,3) = -(1-2*nu1)*exp(-m*lambda1); M(1,4) = (1-2*nu1);
```

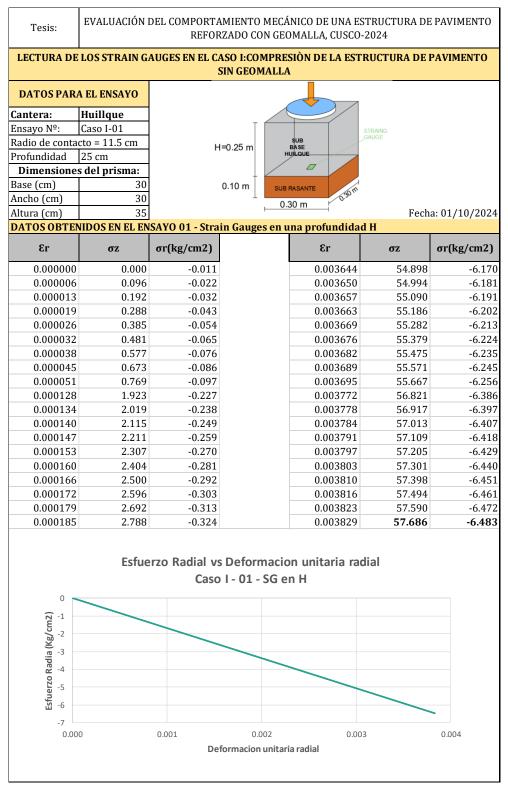
```
M(2,3) = 2*nu1*exp(-m*lambda1); M(2,4) = 2*nu1;
      R(1) = 1; % (\sigma_z^*)_1 = -mJ_0(m\rho)
      R(2) = 0; \% (\tau_rz^*)_1 = 0
      % Condiciones de interfaz (B.11)
      F = \exp(-m*(lambda1 - 0));
      R i = (E1/E2) * (1+nu2)/(1+nu1);
      % Continuidad de σ z
      M(3,1:4) = [1, F, -(1-2*nu1-m*lambda1), (1-2*nu1+m*lambda1)*F];
      M(3,5:8) = -[F, 1, -(1-2*nu2-m*lambda1)*F, (1-2*nu2+m*lambda1)];
      % Continuidad de \tau rz
      M(4,1:4) = [1, -F, 2*nu1+m*lambda1, (2*nu1-m*lambda1)*F];
      M(4,5:8) = -[F, -1, (2*nu2+m*lambda1)*F, 2*nu2-m*lambda1];
      % Continuidad de w
      M(5,1:4) = [1, F, 1+m*lambda1, -(1-m*lambda1)*F];
      M(5,5:8) = -[R i*F, R i, (1+m*lambda1)*R i*F, -(1-m*lambda1)*R i];
      % Continuidad de u
      M(6,1:4) = [1, -F, -(2-4*nu1-m*lambda1), -(2-4*nu1+m*lambda1)*F];
      M(6,5:8) = -[R_i*F, -R_i, -(2-4*nu2-m*lambda1)*R_i*F, -(2-4*nu2-m*lambda1)*R_i*F]
4*nu2+m*lambda1)*R_i];
      % Condiciones para la capa 2
      M(7,5) = 1; % A2 = 0
      M(8,7) = 1; \% C2 = 0
      % Resolver el sistema
      constants = M \setminus R;
```

 $M(2,1) = \exp(-m*lambda1); M(2,2) = -1;$

```
% Extraer constantes
A1 = constants(1);
B1 = constants(2);
C1 = constants(3);
D1 = constants(4);
B2 = constants(6);
D2 = constants(8);
end
```

Esfuerzo Vertical de la Cantera de Huillque en MATLAB

Command Window					
New to MATI	LAB? See re	sources for Getting Started.			
Resultados de esfuerzos verticales (σ_z) :					
r (cm)	z (cm)	σ_z (kPa)			
0.00	8.30	-716.9051			
0.00	12.50	-474.1543			
0.00	25.00	-57.0952			
ans =					
0	8.3000	-716.9051			
0	12.5000	-474.1543			
0	25.0000	-57.0952			


Nota. Fuente: Adaptado de MATLAB

Como se visualiza en la Ilustración 14 y 15 los esfuerzos verticales son muy similares.

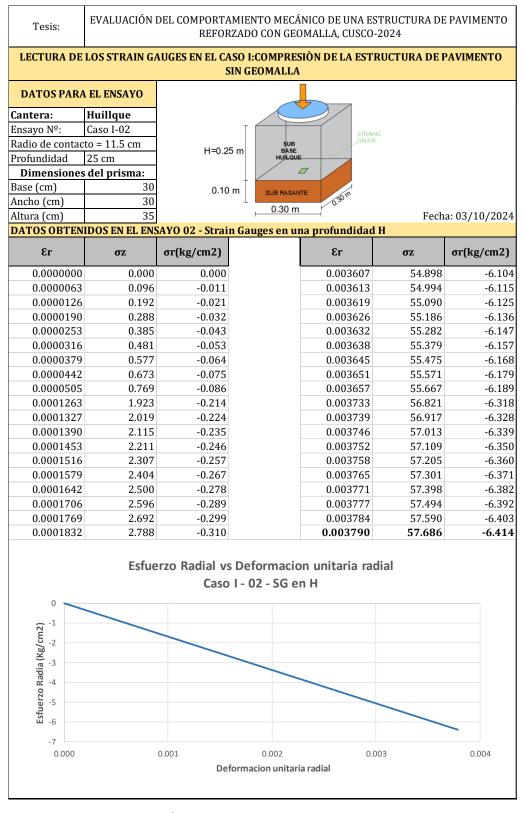
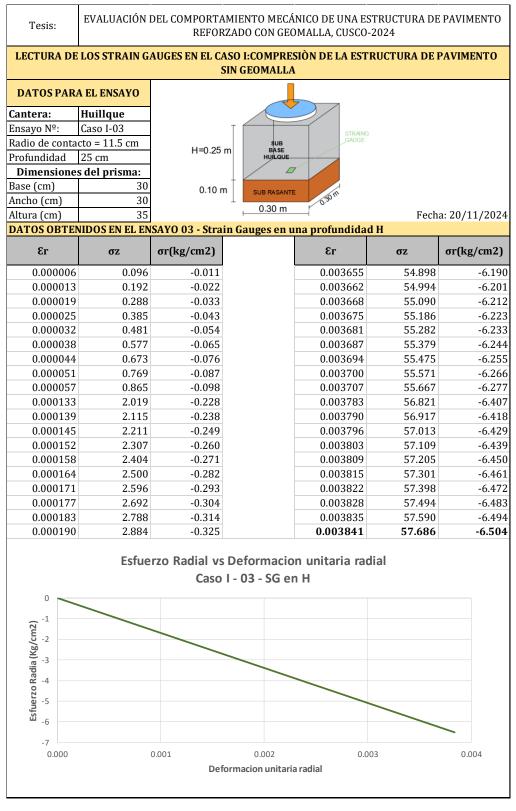
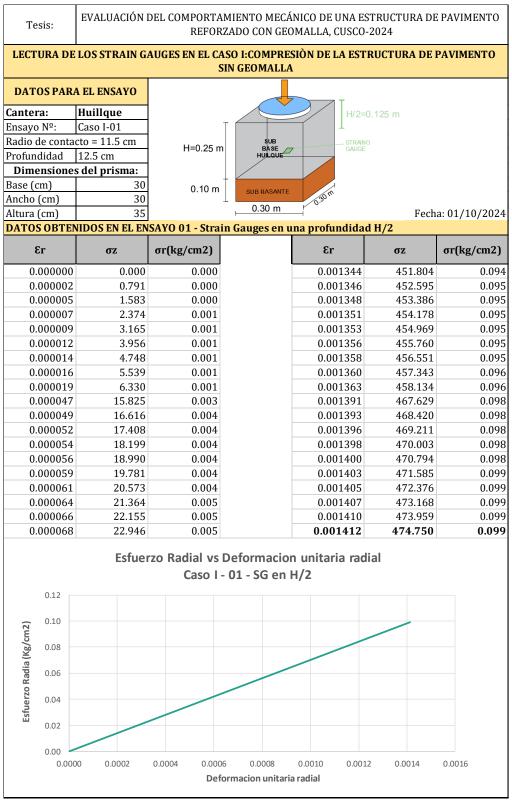
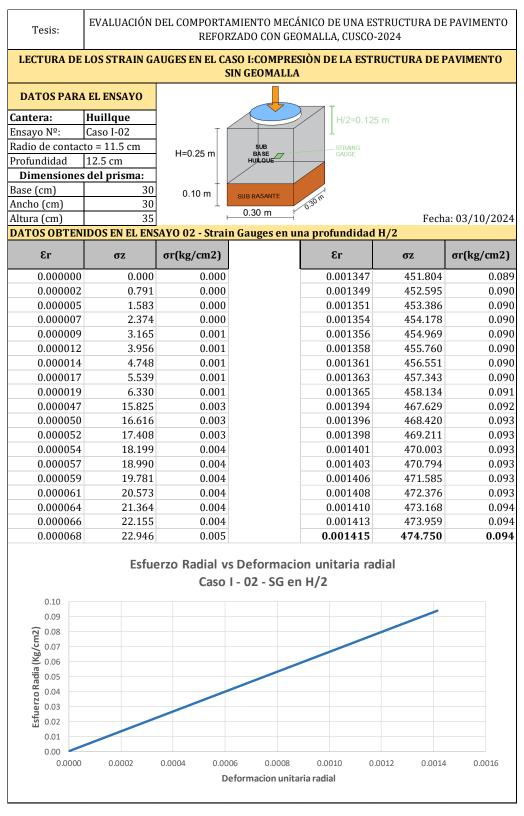
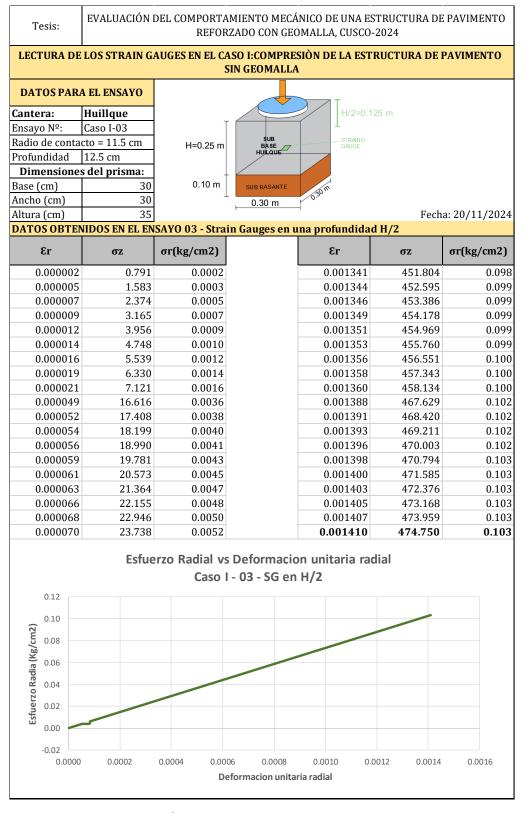

10.5.6 Caso I: Estructura de Pavimento sin Reforzamiento

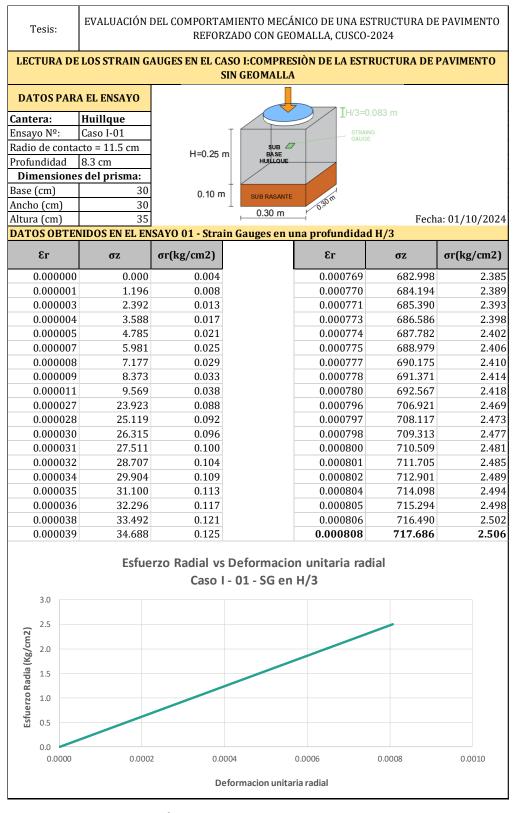
Tabla 70


Caso I – 1º Ensayo - Subbase Huillque strain gauge en interfaz


Tabla 71Caso I – 2º Ensayo - Subbase Huillque strain gauge en interfaz


Tabla 72Caso I – 3º Ensayo - Subbase Huillque strain gauge en interfaz


Tabla 73Caso I – 1º Ensayo - Subbase Huillque strain gauge en h/2


Tabla 74Caso I – 2º Ensayo - Subbase Huillque strain gauge en h/2

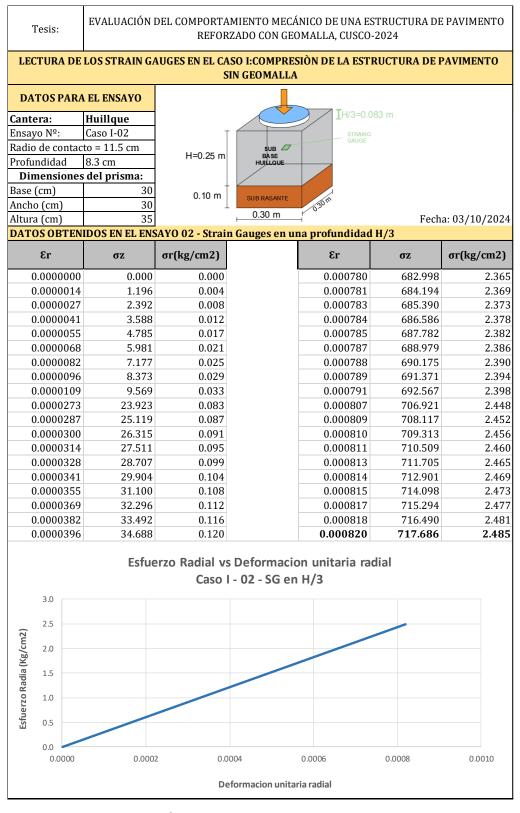

Tabla 75Caso I – 3º Ensayo - Subbase Huillque strain gauge en h/2

Tabla 76Caso I – 1º Ensayo - Subbase Huillque strain gauge en h/3

Tabla 77Caso I – 2º Ensayo - Subbase Huillque strain gauge en h/3

Tabla 78Caso I – 3º Ensayo - Subbase Huillque strain gauge en h/3

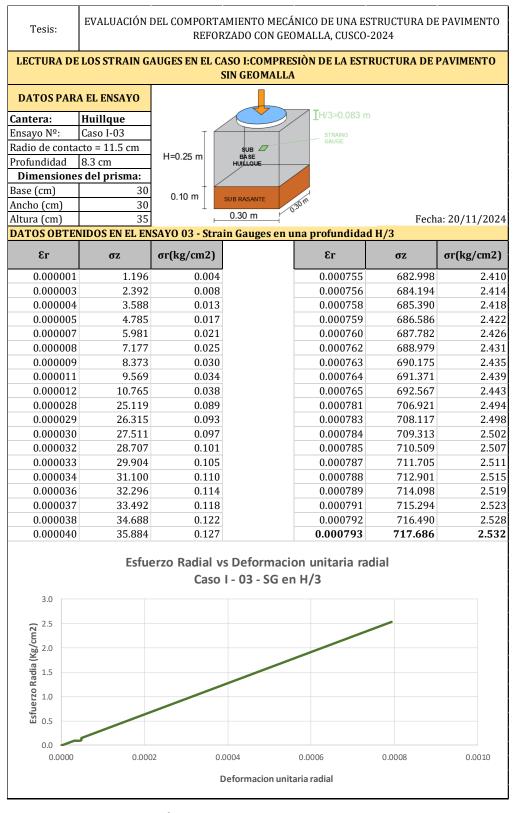


Tabla 79

Caso I – 1º Ensayo – Subbase Quillahuata strain gauge en interfaz

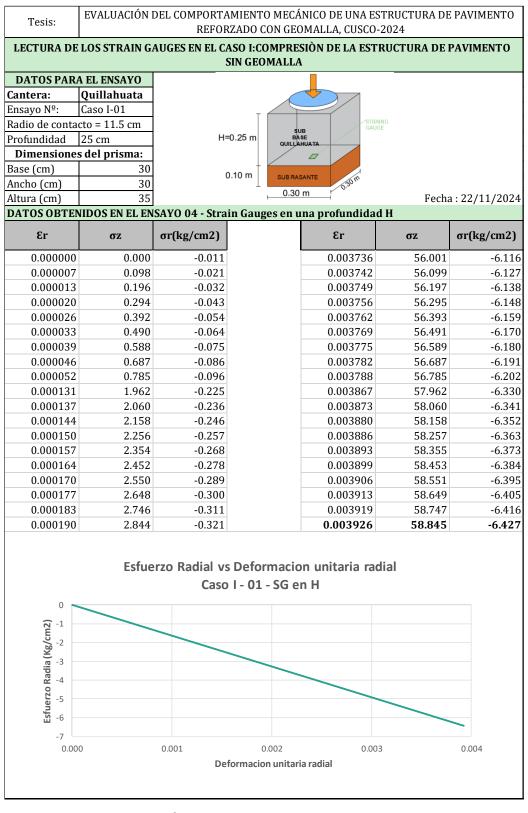


Tabla 80

Caso I – 2º Ensayo – Subbase Quillahuata strain gauge en interfaz

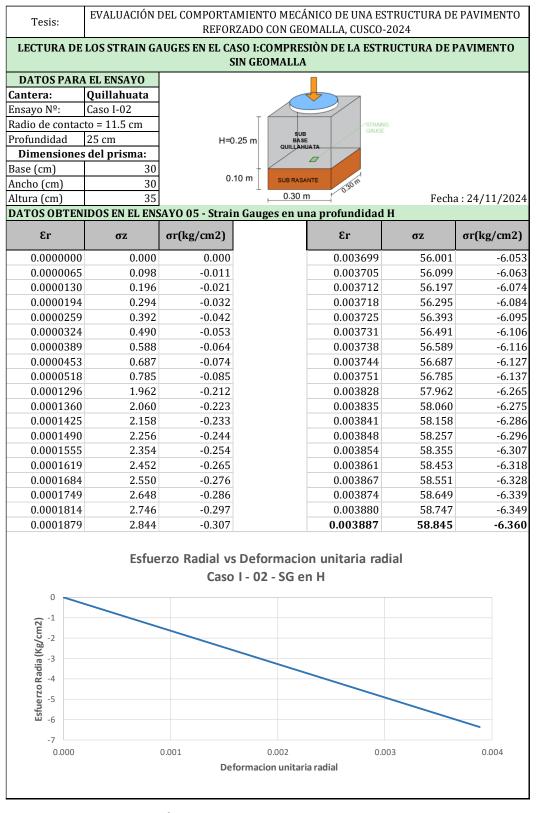


Tabla 81

Caso I – 3º Ensayo – Subbase Quillahuata strain gauge en interfaz

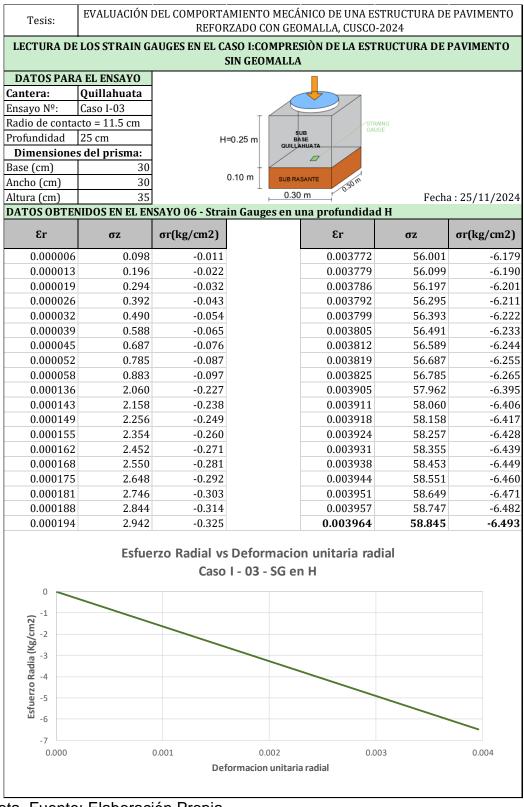
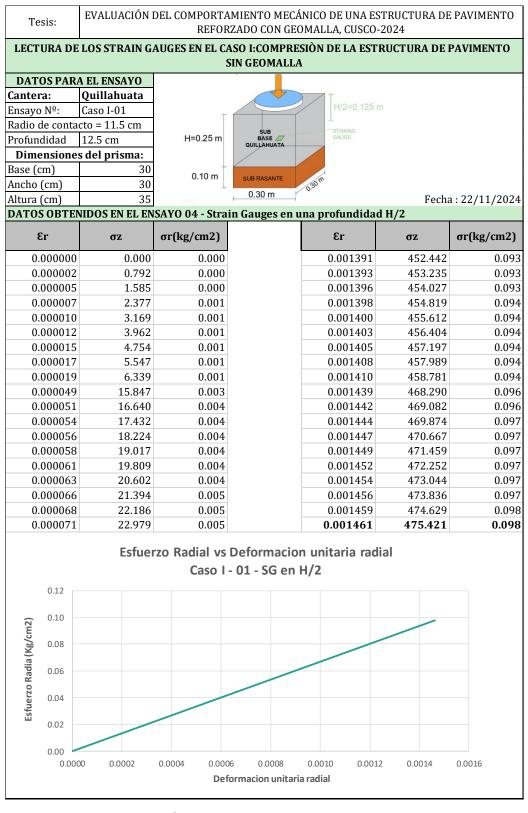
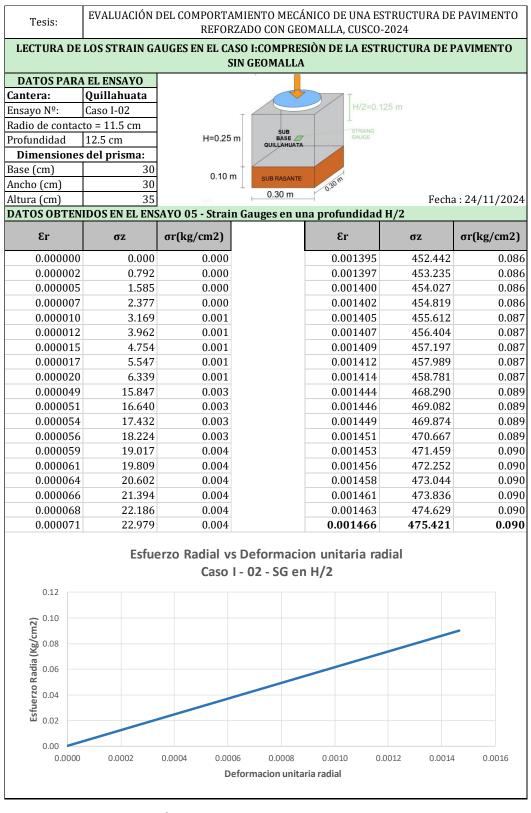
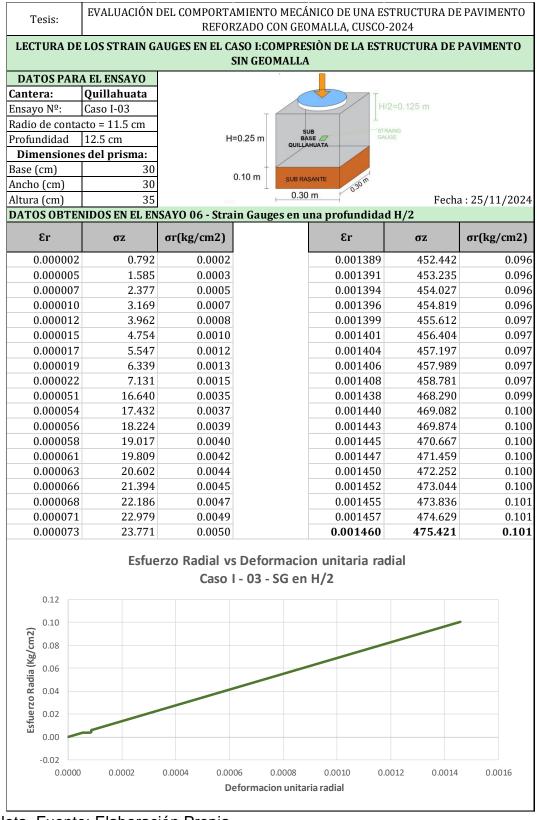
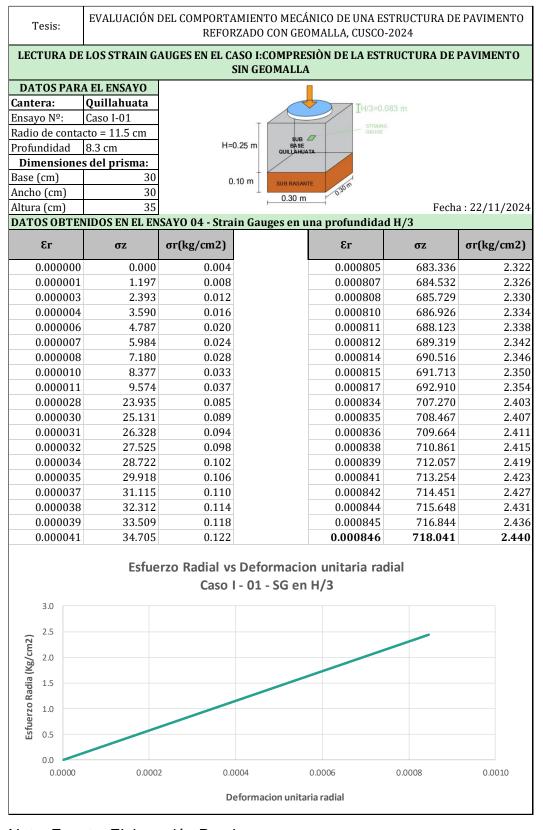
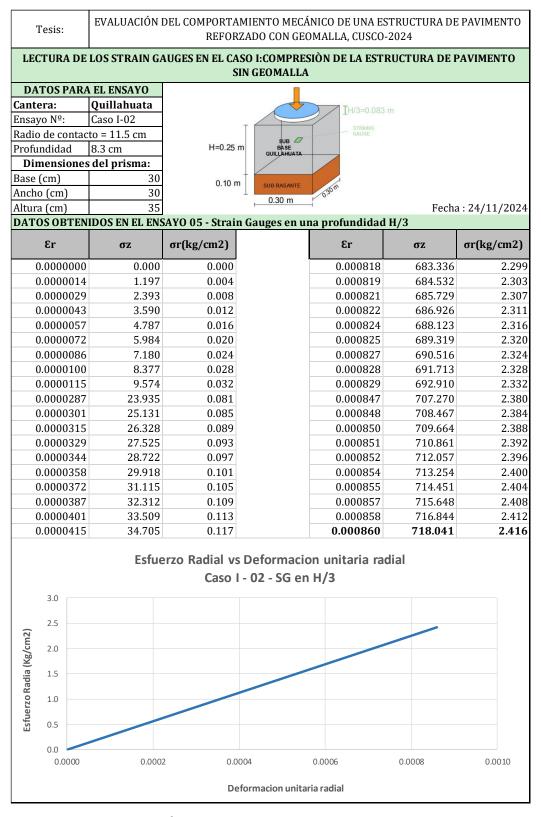




Tabla 82


Caso I – 1º Ensayo – Subbase Quillahuata strain gauge en h/2


Tabla 83Caso I – 2º Ensayo – Subbase Quillahuata strain gauge en h/2


Tabla 84Caso I – 3º Ensayo – Subbase Quillahuata strain gauge en h/2

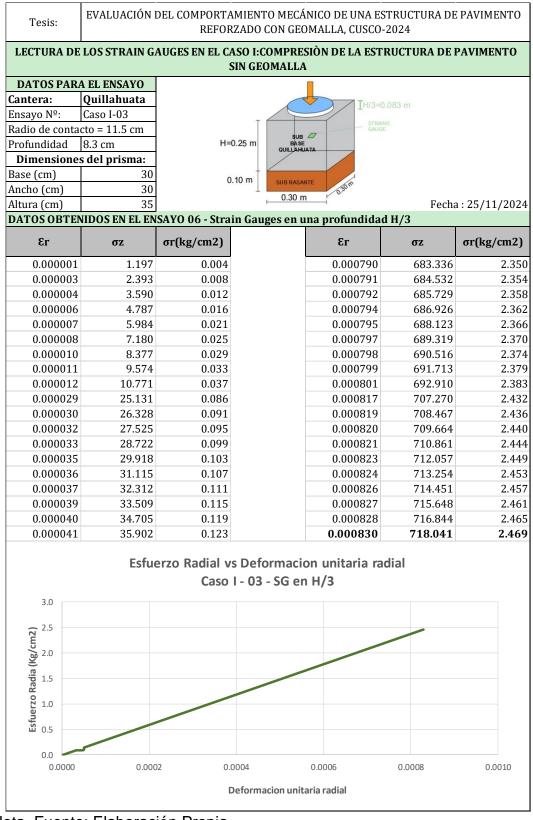

Tabla 85Caso I – 1º Ensayo – Subbase Quillahuata strain gauge en h/3

Tabla 86Caso I – 2º Ensayo – Subbase Quillahuata strain gauge en h/3

Tabla 87Caso I – 3º Ensayo – Subbase Quillahuata strain gauge en h/3

10.5.7 Caso II: Estructura de Pavimento Reforzada con Geomalia a una profundidad H de la Subbase

Tabla 88

Caso II – 1º Ensayo – Subbase Huillque – G. Biaxial

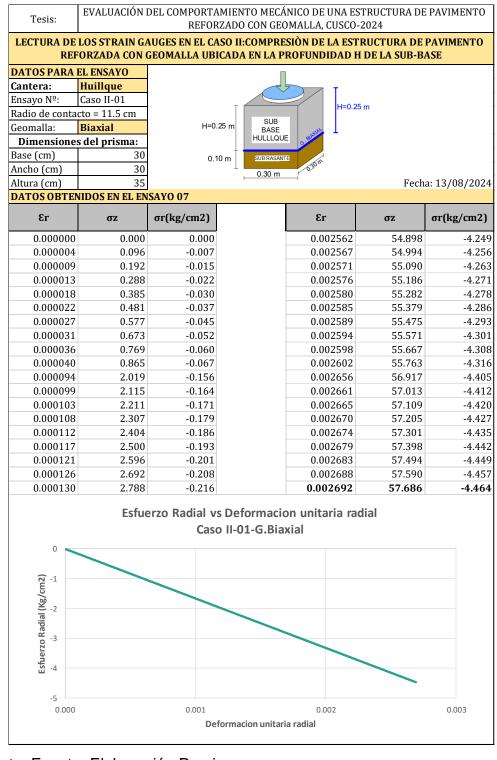
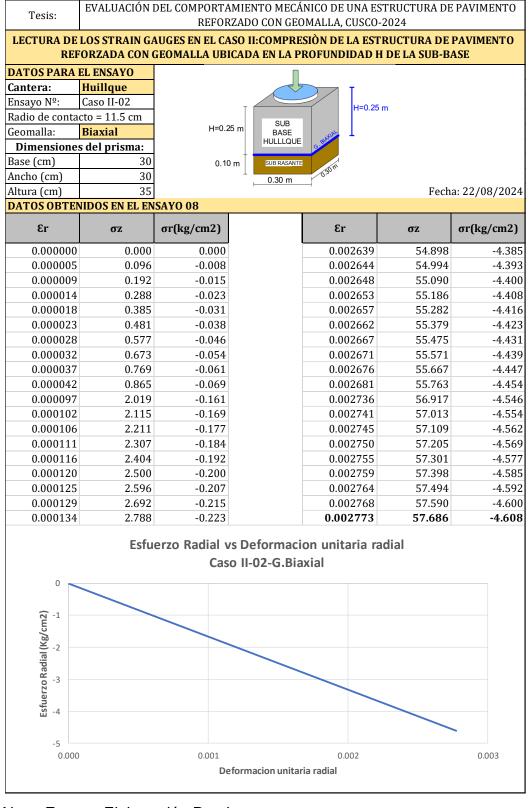
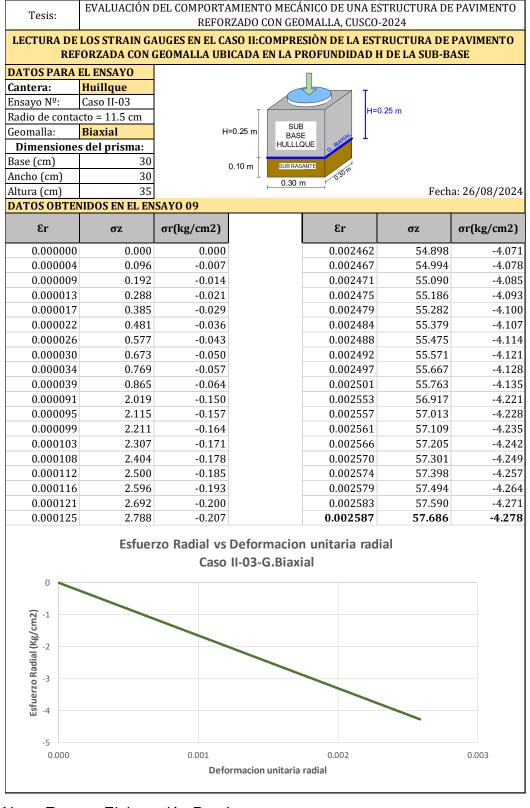




Tabla 89

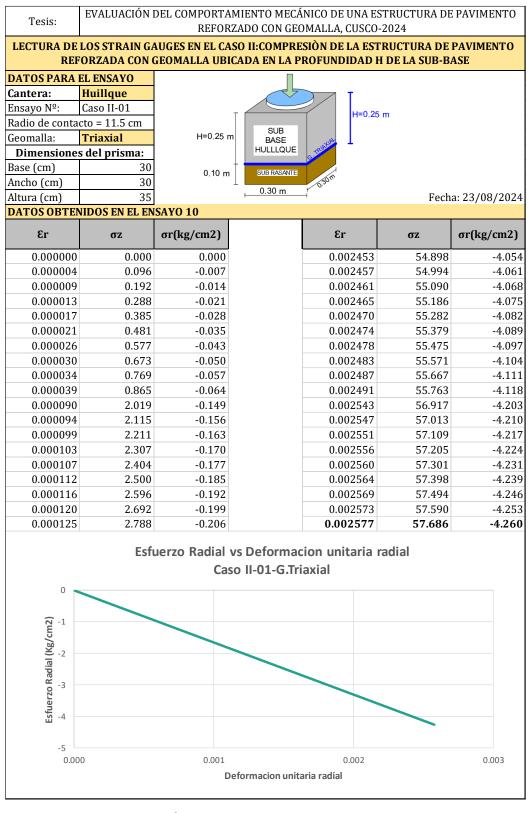

Caso II – 2º Ensayo – Subbase Huillque – G. Biaxial

Tabla 90Caso II – 3º Ensayo – Subbase Huillque – G. Biaxial

Tabla 91Caso II – 1º Ensayo – Subbase Huillque – G. Triaxial

Tabla 92Caso II – 2º Ensayo – Subbase Huillque – G. Triaxial

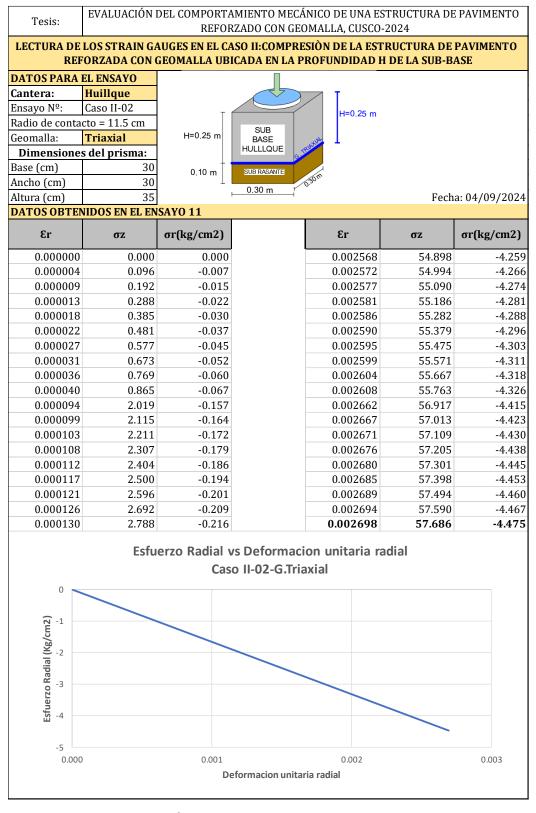


Tabla 93

Caso II – 3º Ensayo – Subbase Huillque – G. Triaxial

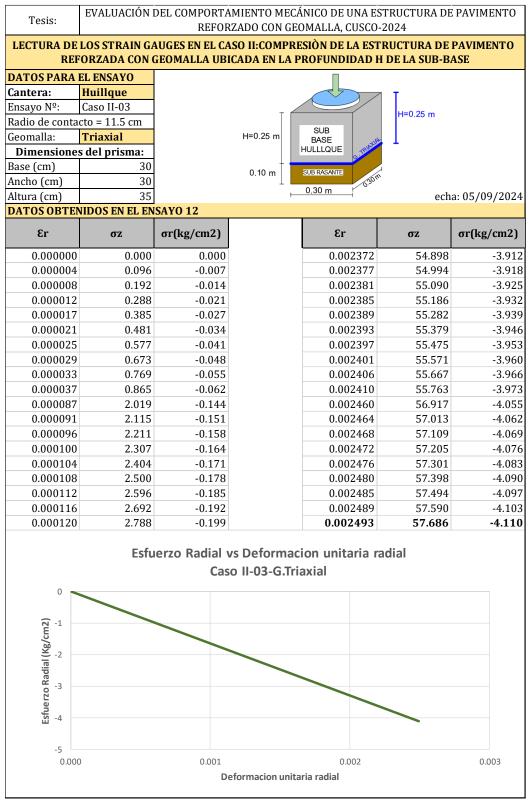


Tabla 94

Caso II – 1º Ensayo – Subbase Quillahuata – G. Biaxial

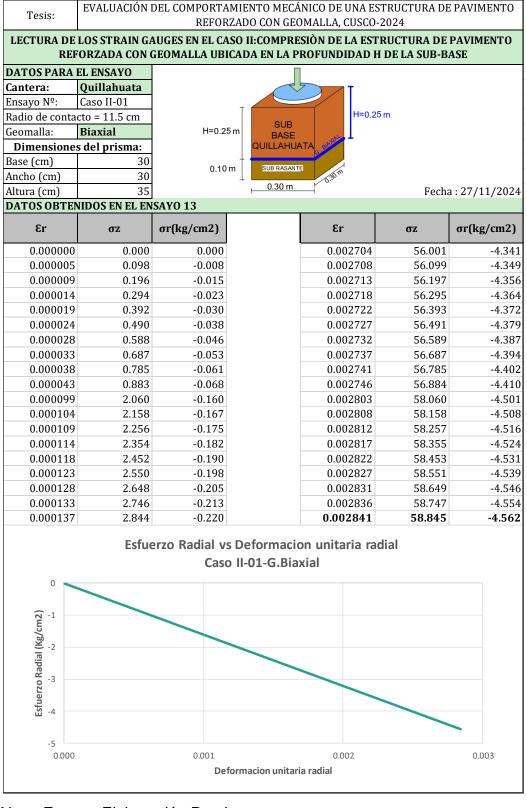
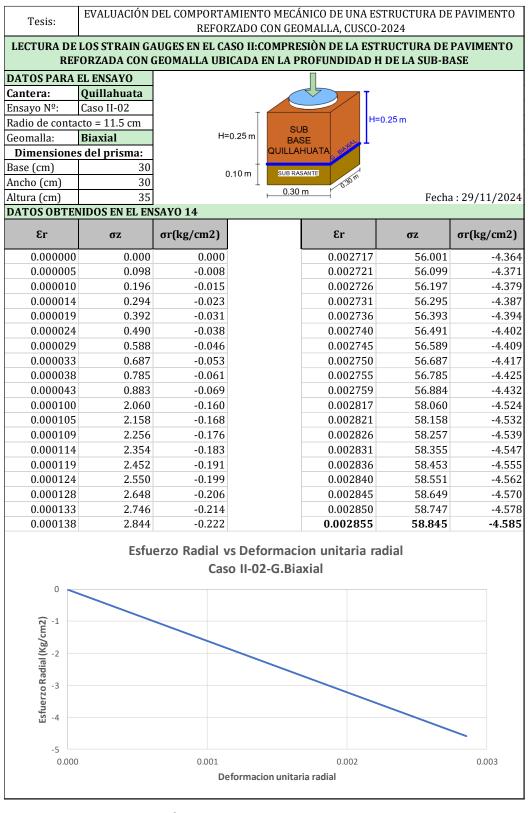



Tabla 95

Caso II – 2º Ensayo – Subbase Quillahuata – G. Biaxial

Tabla 96Caso II – 3º Ensayo – Subbase Quillahuata – G. Biaxial

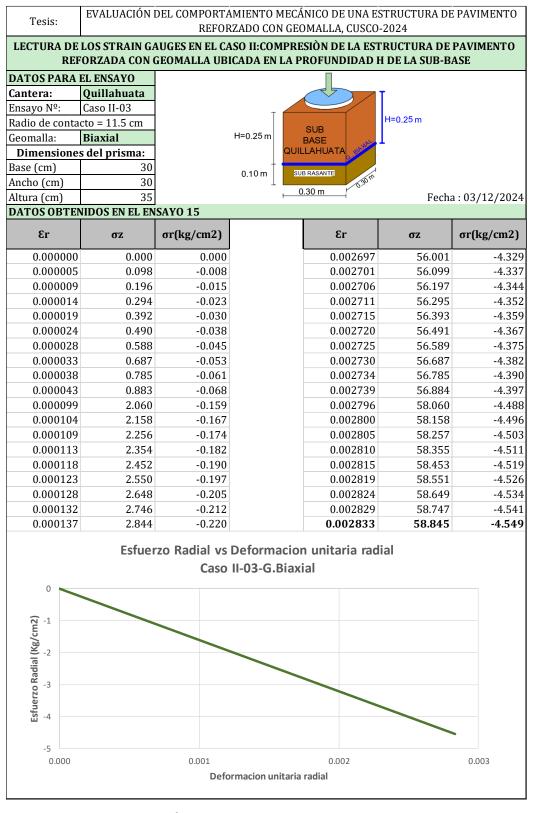


Tabla 97

Caso II – 1º Ensayo – Subbase Quillahuata – G. Triaxial

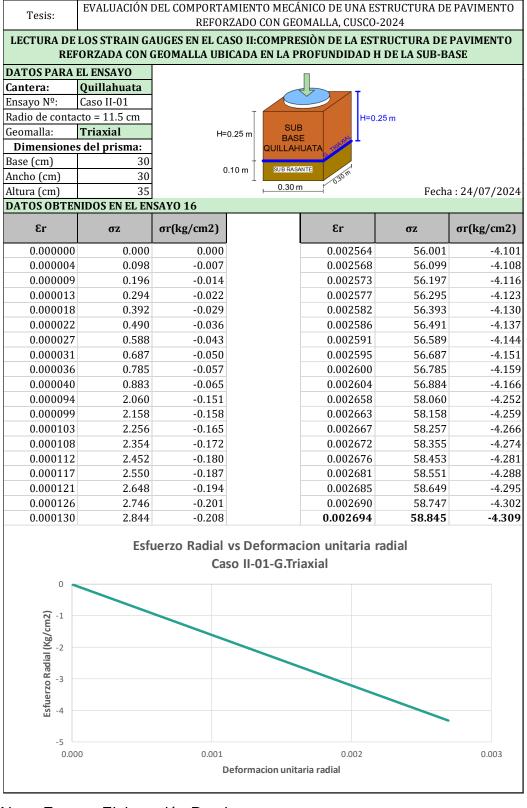


Tabla 98

Caso II – 2º Ensayo – Subbase Quillahuata – G. Triaxial

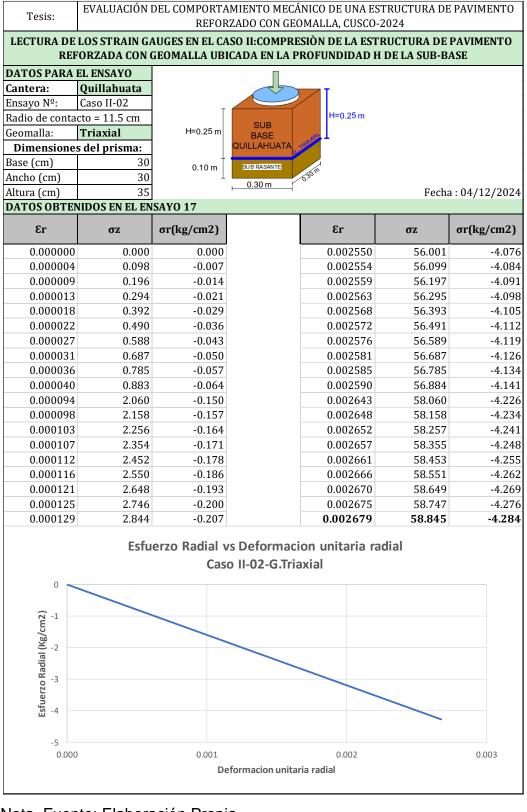
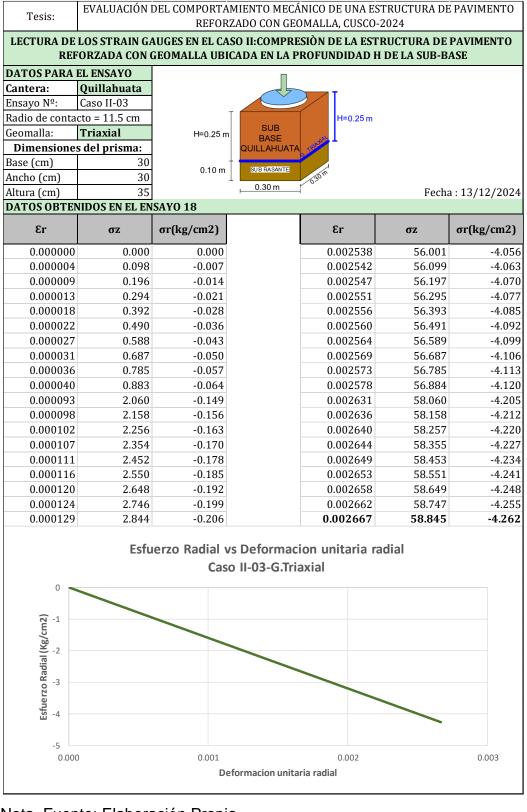



Tabla 99

Caso II – 3º Ensayo – Subbase Quillahuata – G. Triaxial

10.5.8 Caso III: Estructura de Pavimento Reforzada con Geomalia a una profundidad H/2 de la Subbase

Tabla 100

Caso III – 1º Ensayo – Subbase Huillque – G. Biaxial

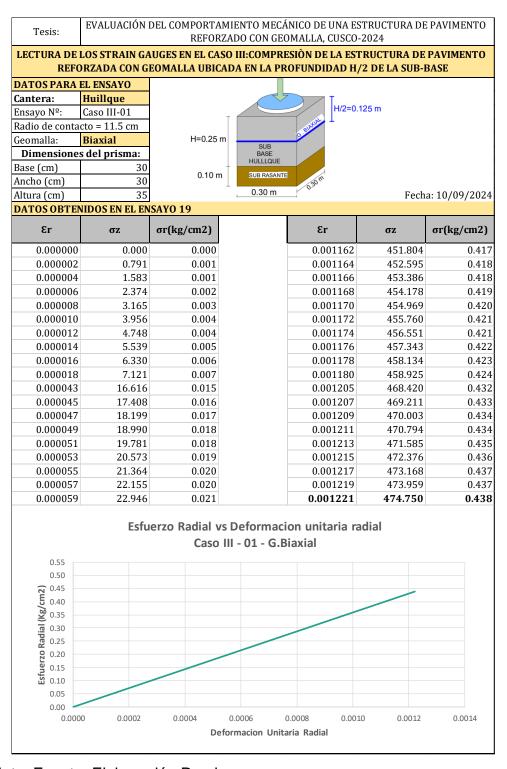


Tabla 101

Caso III – 2º Ensayo – Subbase Huillque – G. Biaxial

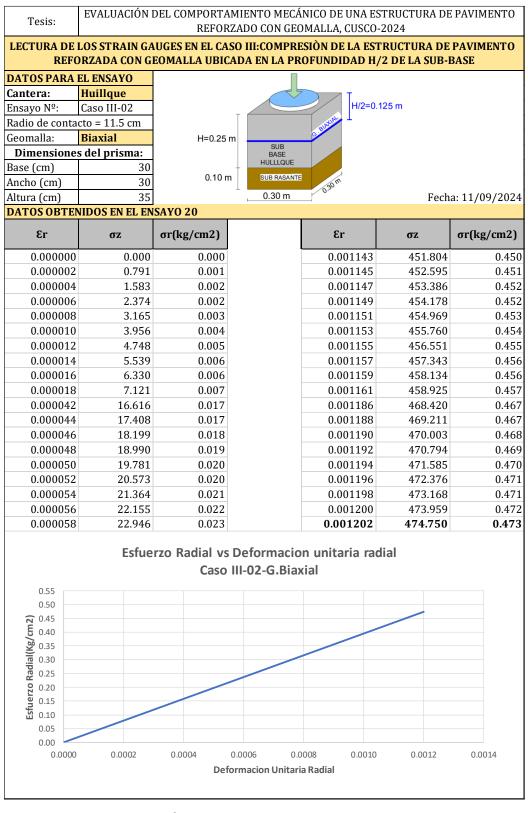


Tabla 102

Caso III – 3º Ensayo – Subbase Huillque – G. Biaxial

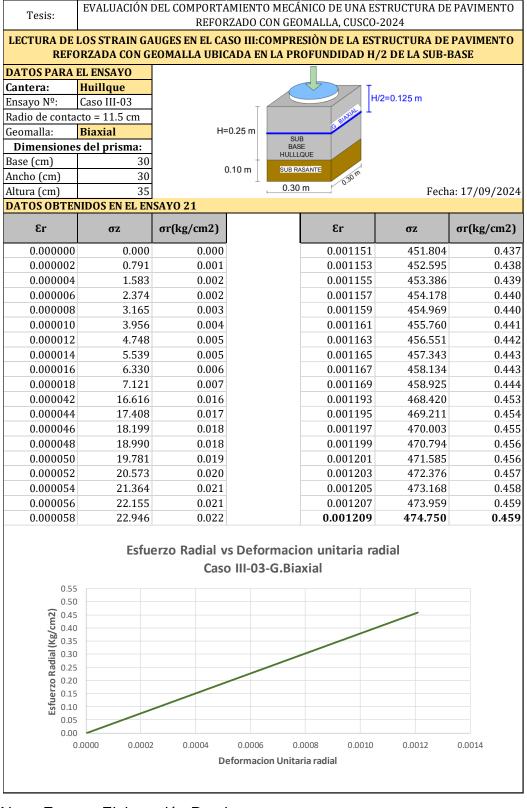


Tabla 103

Caso III – 1º Ensayo – Subbase Huillque – G. Triaxial

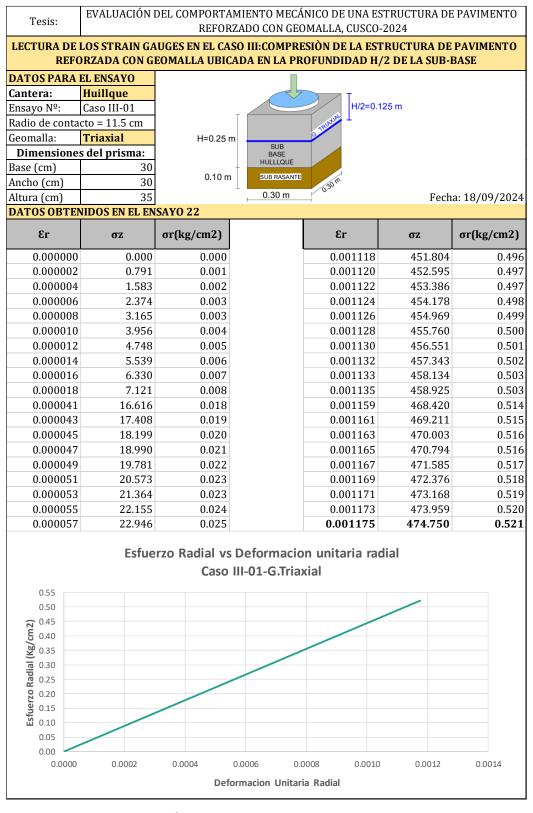


Tabla 104

Caso III – 2º Ensayo – Subbase Huillque – G. Triaxial

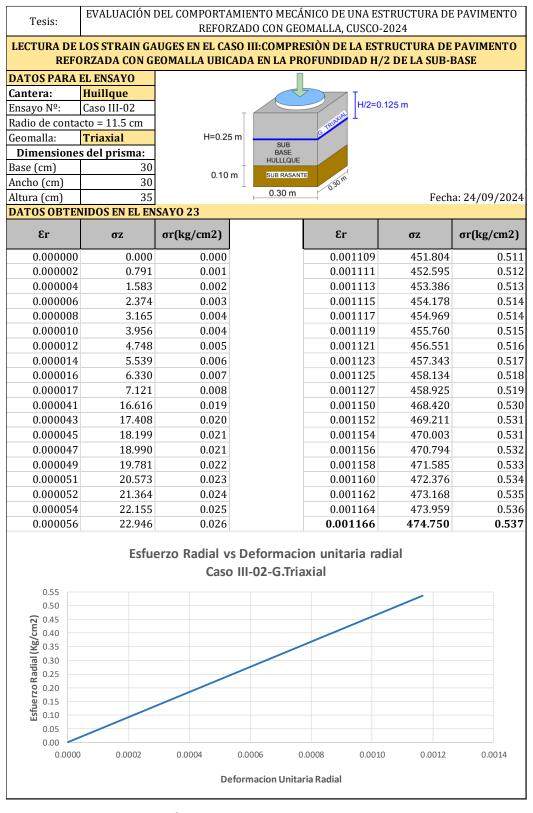


Tabla 105

Caso III – 3º Ensayo – Subbase Huillque – G. Triaxial

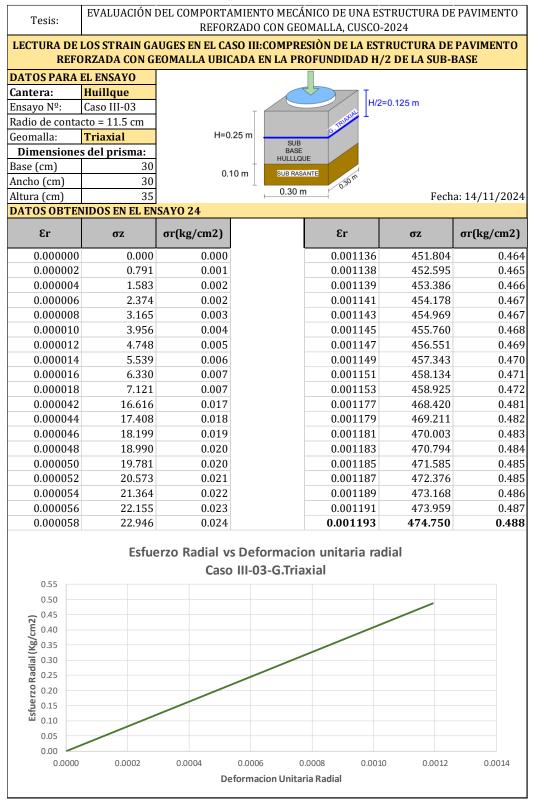


Tabla 106

Caso III – 1º Ensayo – Subbase Quillahuata – G. Biaxial

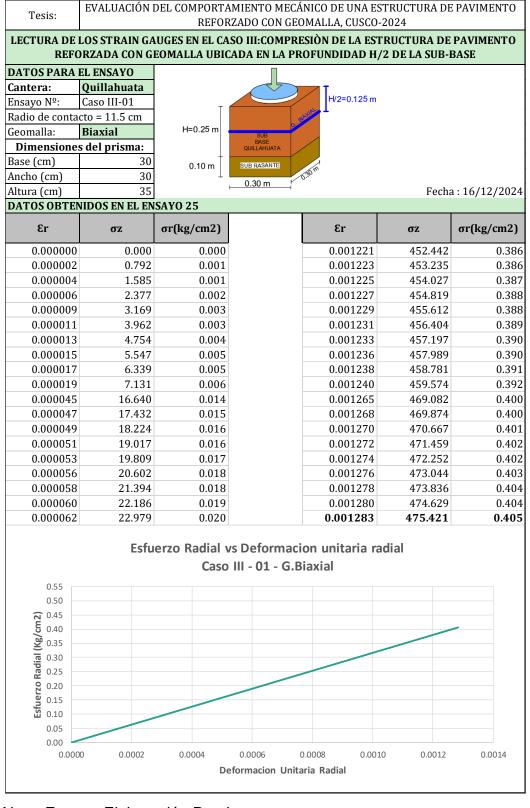


Tabla 107
Caso III – 2º Ensayo – Subbase Quillahuata – G. Biaxial

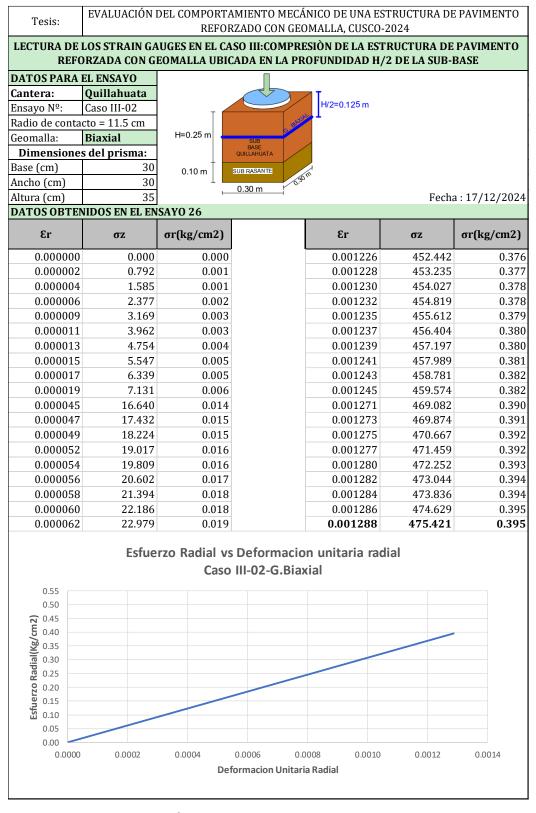


Tabla 108

Caso III – 3º Ensayo – Subbase Quillahuata – G. Biaxial

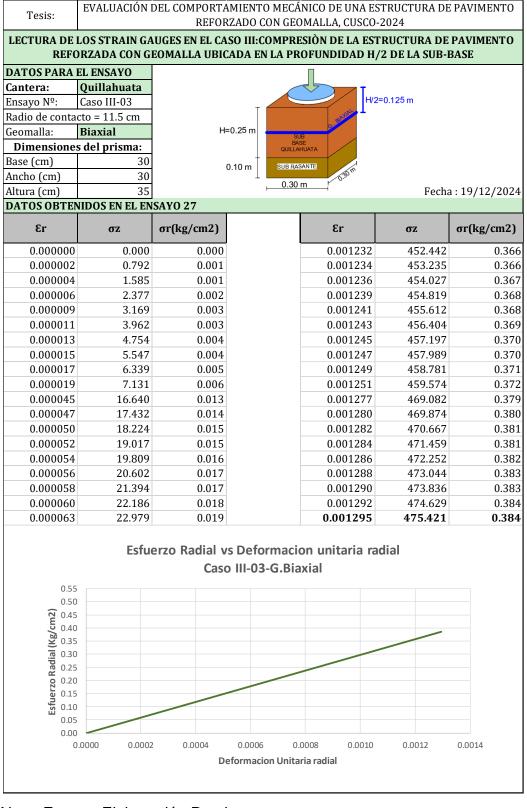


Tabla 109

Caso III – 1º Ensayo – Subbase Quillahuata – G. Triaxial

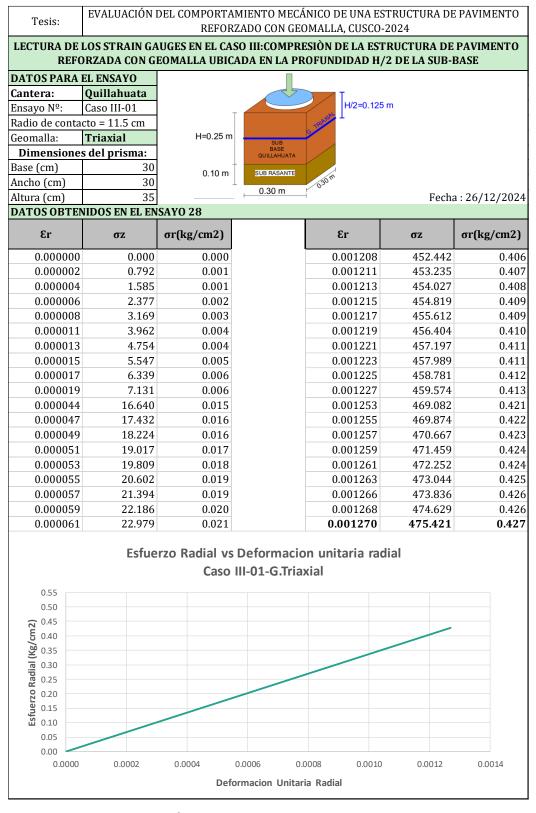


Tabla 110

Caso III – 2º Ensayo – Subbase Quillahuata – G. Triaxial

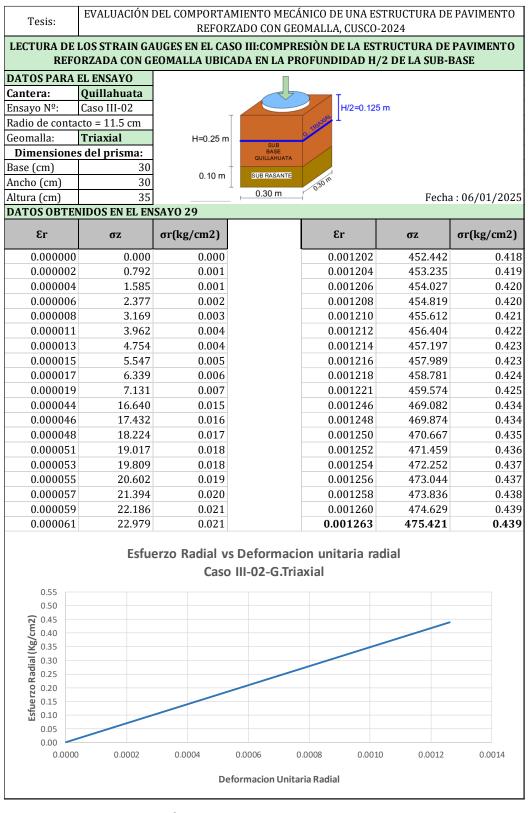
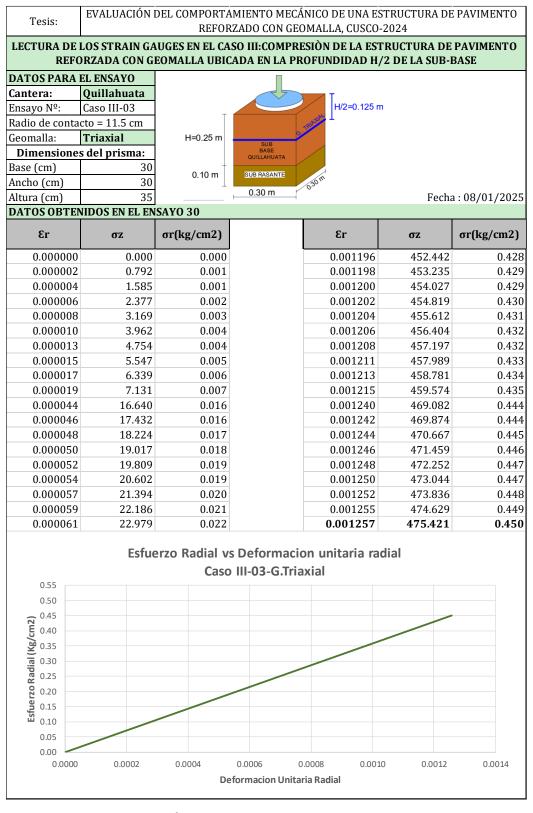



Tabla 111

Caso III – 3º Ensayo – Subbase Quillahuata – Triaxial

10.5.9 Caso IV: Estructura de Pavimento Reforzada con Geomalia a una profundidad H/3 de la Subbase

Tabla 112

Caso IV – 1º Ensayo – Subbase Huillque – G. Biaxial

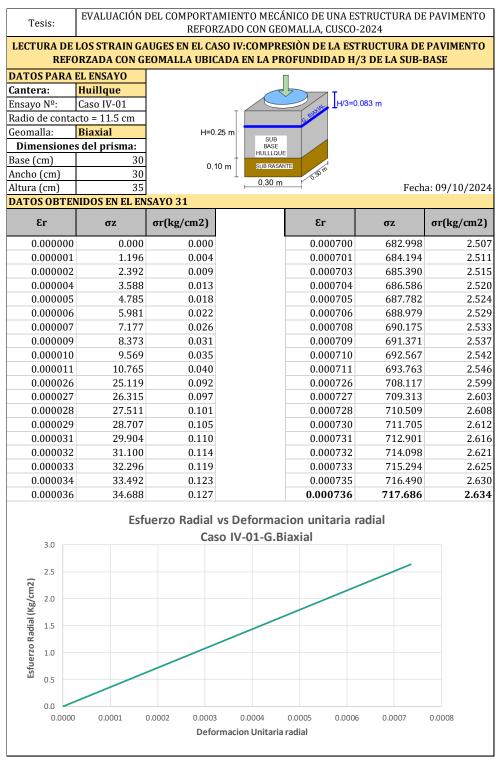


Tabla 113

Caso IV – 2º Ensayo – Subbase Huillque – G. Biaxial

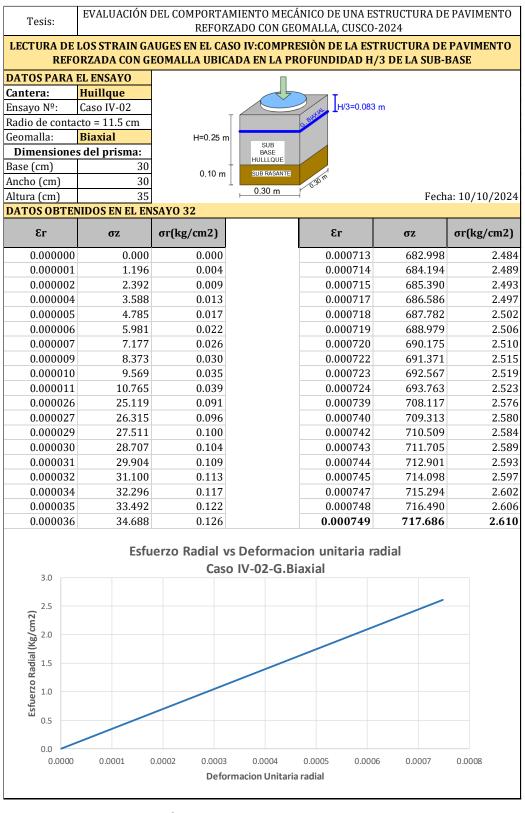


Tabla 114

Caso IV – 3º Ensayo – Subbase Huillque – G. Biaxial

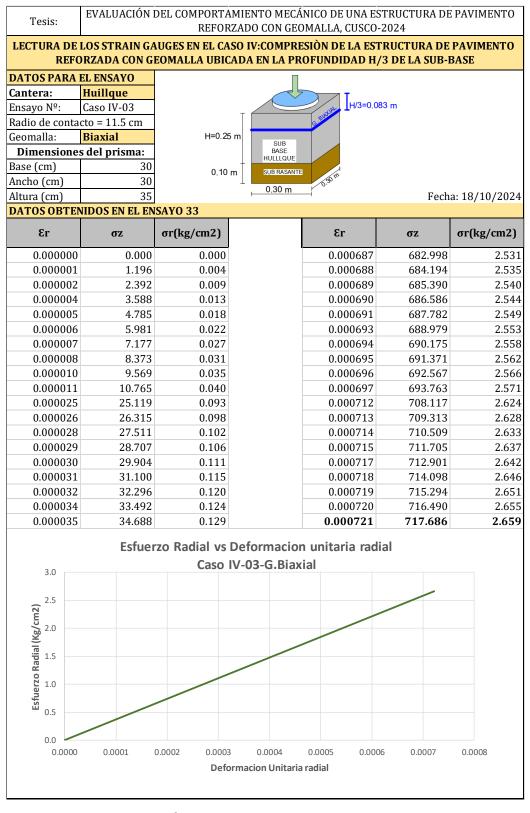


Tabla 115
Caso IV – 1º Ensayo – Subbase Huillque – G. Triaxial

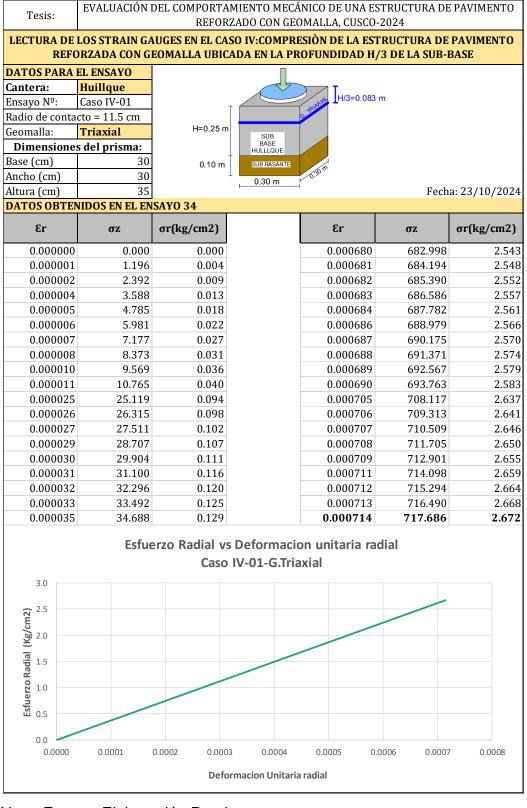


Tabla 116

Caso IV – 2º Ensayo – Subbase Huillque – G. Triaxial

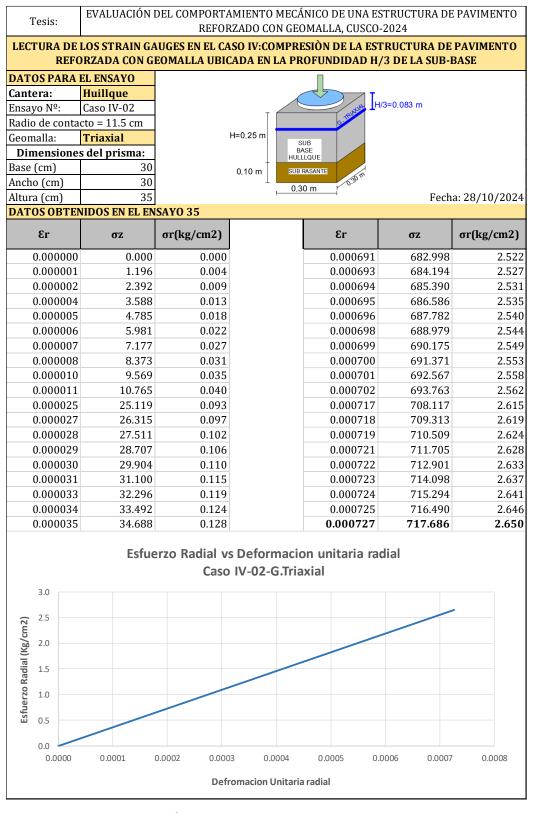


Tabla 117

Caso IV – 3º Ensayo – Subbase Huillque – G. Triaxial

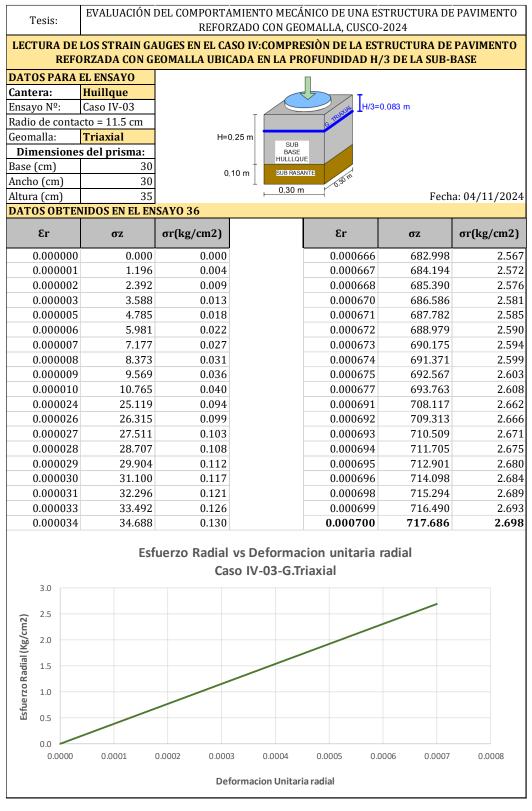


Tabla 118

Caso IV – 1º Ensayo – Subbase Quillahuata – G. Biaxial

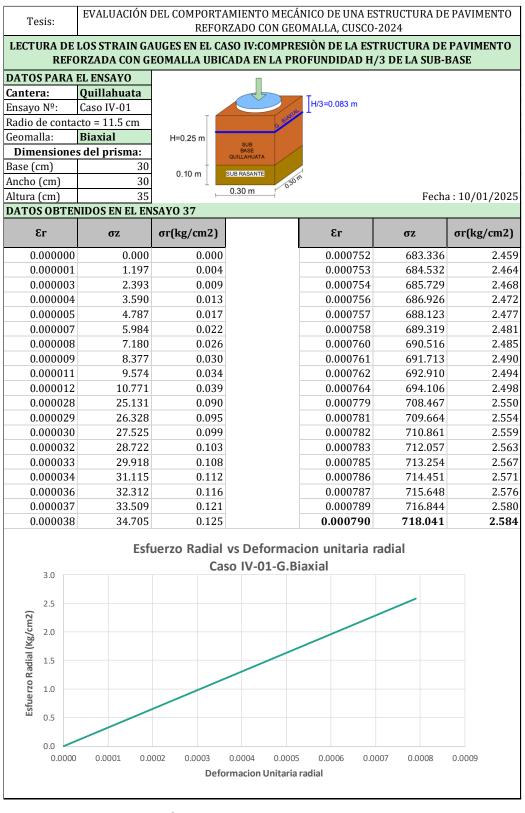


Tabla 119
Caso IV – 2º Ensayo – Subbase Quillahuata – G. Biaxial

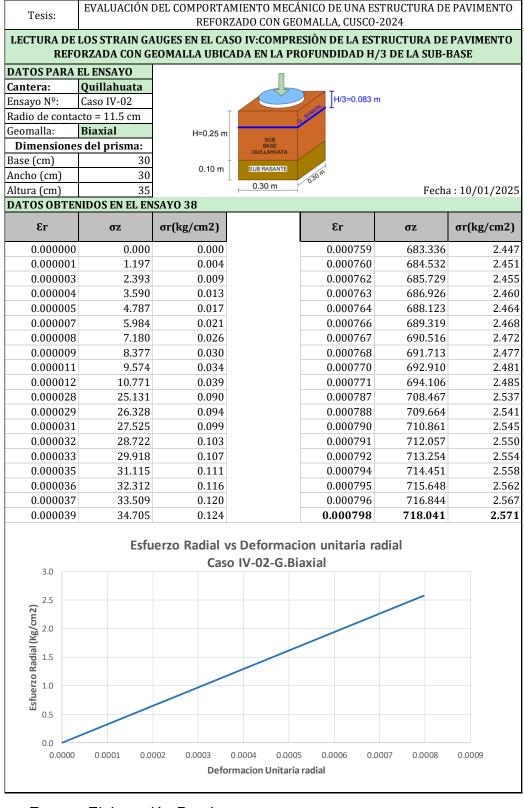


Tabla 120
Caso IV – 3º Ensayo – Subbase Quillahuata – G. Biaxial

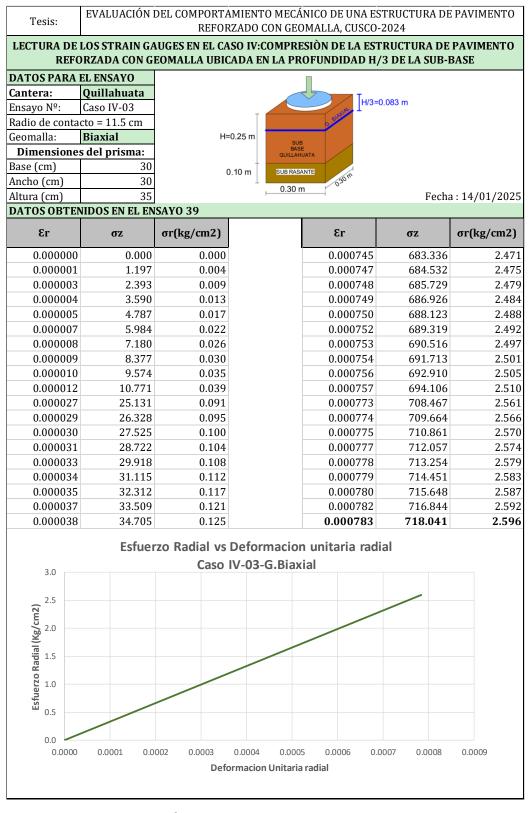


Tabla 121
Caso IV – 1º Ensayo – Subbase Quillahuata – G. Triaxial

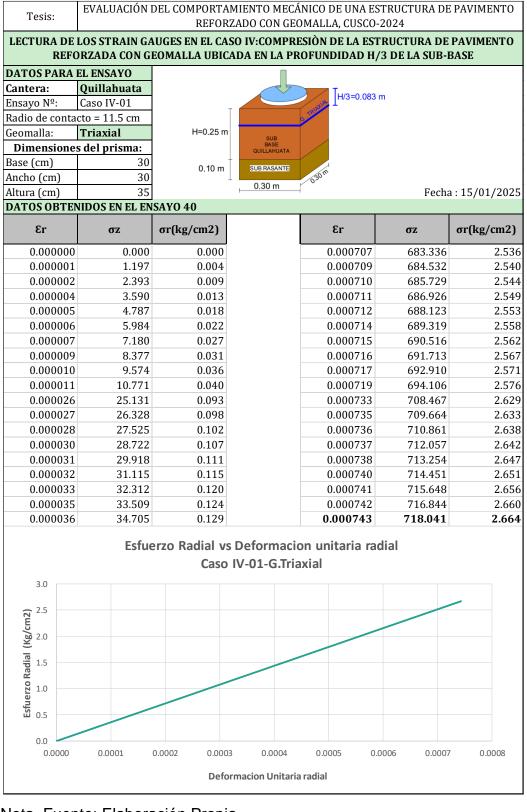


Tabla 122
Caso IV – 2º Ensayo – Subbase Quillahuata – G. Triaxial

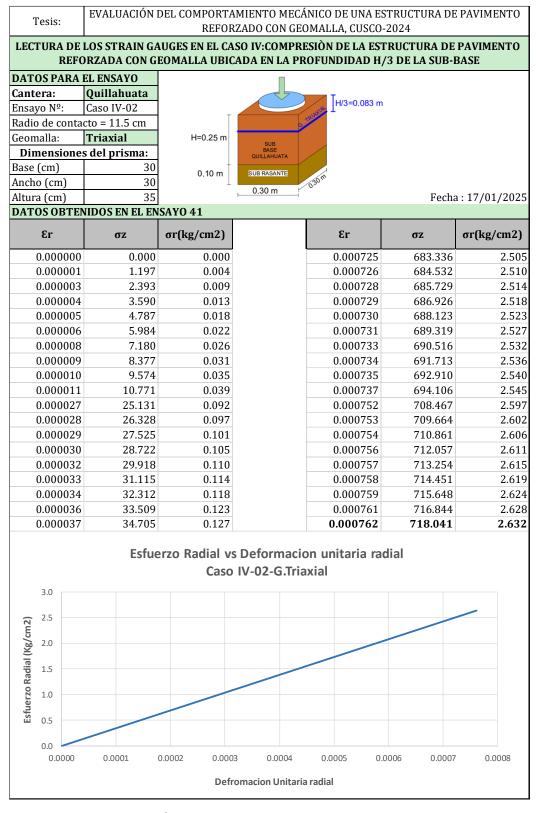
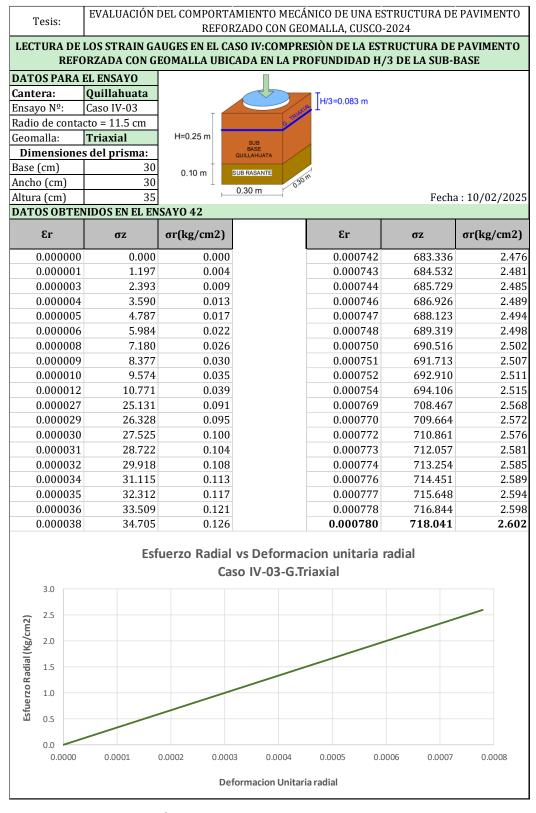
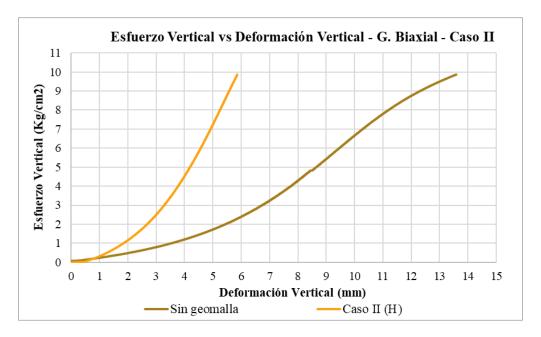



Tabla 123
Caso IV – 3º Ensayo – Subbase Quillahuata – G. Triaxial

10.6 Recalculo de espesor de la Subrasante reforzada

Considerando la metodología de diseño de pavimentos flexibles reforzados, se introduce el concepto de BCR (Base Course Reduction) o Factor de reducción de la capa Base, definido como el porcentaje de disminución en el espesor de dicha capa debido a la incorporación de un refuerzo geosintetico (geomalla). Este valor se determina mediante la siguiente expresión:

$$BCR = \frac{q_{ult(reforzado)}}{q_{ult(\sin reforzar)}}$$


En el presente estudio, al no alcanzarse la falla del espécimen, se tomará como referencia la mayor deformación vertical registrada en los casos reforzados para establecer las cargas últimas correspondientes. Posteriormente para determinar los nuevos espesores se reemplazarán los valores hallados de los respectivos BCR en la ecuación 6 tomando como datos previos los presentados en el capítulo 5.3 de la tesis.

$$d_{3(Reforzado)} = \frac{SN_u - a_1d_1 - a_2d_2m_2}{BCR \, a_3m_3} \dots (6)$$


10.6.1 Cantera Huillque

A continuación, se presentan los gráficos comparativos del comportamiento estructural sin refuerzo (Caso I) frente al comportamiento de la estructura reforzada con geomalla biaxial y triaxial, representada por los Casos II, III y IV.

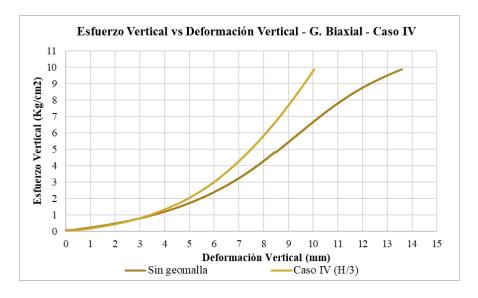

Gráfico 4Caso I vs Caso II – C. Huillque – G. Biaxial

Gráfico 5Caso I vs Caso III – C. Huillque – G. Biaxial

Gráfico 6Caso I vs Caso IV – C. Huillque – G. Biaxial

De los gráficos 4, 5 y 6 se obtuvieron las cargas ultimas para poder determinar los BCR de cada uno de los casos:

Tabla 124BCR – C. Huillque – G. Biaxial

BCR (Factor de reducción del espesor de la capa Sub base)			
	Deformación vertical	q _{ultima}	BCR
Caso I	5.86	2.29	1
	8.55	4.88	1
	10.04	6.72	1
Caso II	5.86	9.87	4.30
Caso III	8.55	9.87	2.02
Caso IV	10.04	9.87	1.47

Gráfico 7Caso I vs Caso II – C. Huillque – G. Triaxial

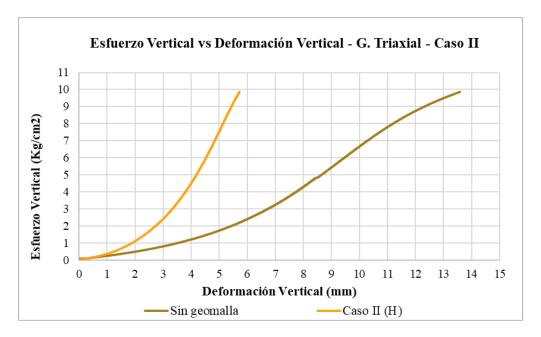
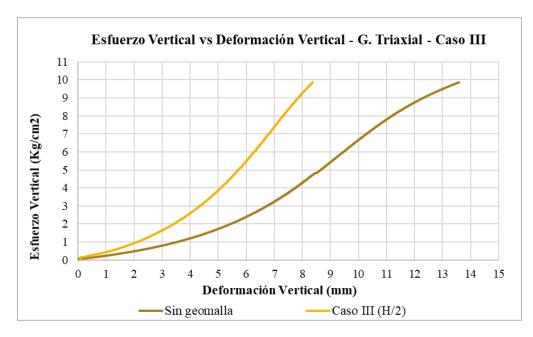
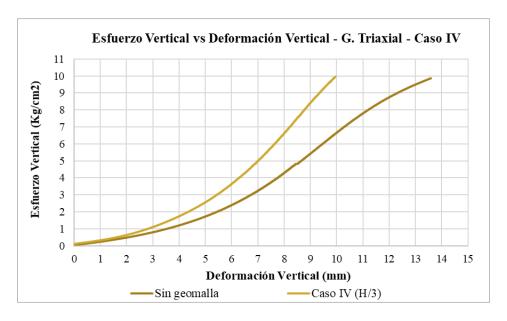




Gráfico 8

Caso I vs Caso III - C. Huillque - G. Triaxial

Gráfico 9Caso I vs Caso IV — C. Huillque – G. Triaxial

De los gráficos 7,8 y 9 se obtuvieron las cargas ultimas para poder determinar los BCR de cada uno de los casos:

Tabla 125BCR – C. Huillque – G. Triaxial

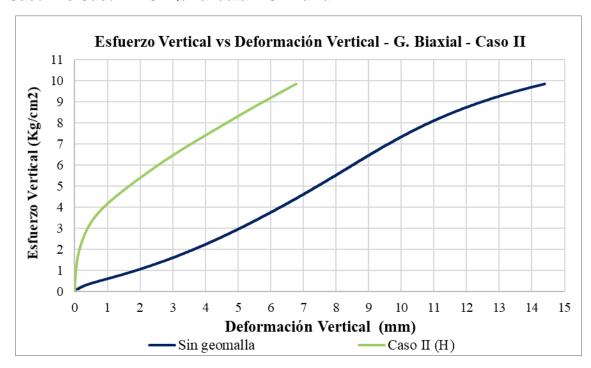
BCR (redu Factor de reducción del espesor de la capa Sub base cción de la capa Sub base)			
	Deformación vertical	q _{ultima}	BCR
Caso I	5.722	2.19	1
	8.365	4.73	1
	9.883	6.51	1
Caso II	5.72	9.87	4.50
Caso III	8.37	9.87	2.09
Caso IV	9.88	9.87	1.52

Entonces el recalculo de espesor se muestra en la siguiente tabla, cabe aclarar que el diseño en estos casos se basa en deformaciones verticales admisibles (y no en carga de falla), por lo que se requiere más espesor para que la estructura no supere una deformación límite bajo cargas crecientes.

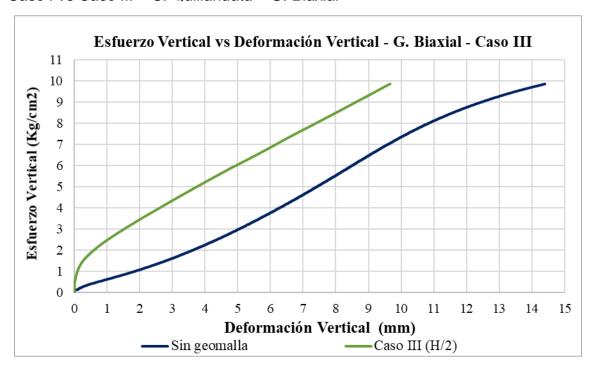
Tabla 126

Recalculo de espesor - C. Huillque

$d_{3(Reforzado)}$			
	G. Biaxial	G. Triaxial	
Caso II	$10.46cm \cong 15cm$	10.00 <i>cm</i>	
Caso III	$22.25cm \cong 25cm$	$21.58cm \cong 25cm$	
Caso IV	$30.66cm \cong 35cm$	$29.78cm \cong 30cm$	


Nota. Fuente: Elaboración Propia

La cantera Huillque muestra que el uso de geomallas (especialmente triaxiales) puede reducir significativamente el espesor de subbase en condiciones de carga moderada (Caso II). Sin embargo, en condiciones más exigentes (III y IV), el espesor debe aumentar a pesar del refuerzo para cumplir con los criterios de deformación admisible. Esto demuestra que el refuerzo es más efectivo en secciones delgadas o bajo cargas moderadas.


10.6.2 Cantera Quillahuata

A continuación, se presentan los gráficos comparativos del comportamiento estructural sin refuerzo (Caso I) frente al comportamiento de la estructura reforzada con geomalla biaxial y triaxial, representada por los Casos II, III y IV.

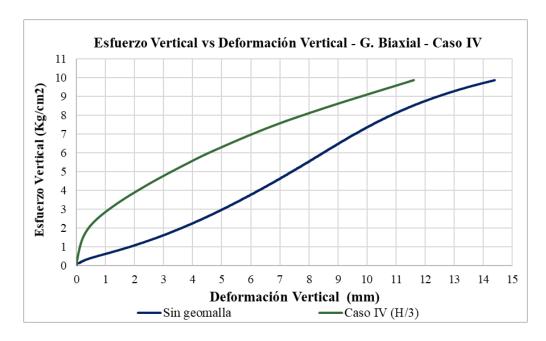

Gráfico 10Caso I vs Caso II – C. Quillahuata – G. Biaxial

Gráfico 11Caso I vs Caso III – C. Quillahuata – G. Biaxial

Gráfico 12Caso I vs Caso IV – C. Quillahuata – G. Biaxial

De los gráficos 10,11 y 12 se obtuvieron las cargas ultimas para poder determinar los BCR de cada uno de los casos:

Tabla 127BCR – C. Quillahuata – G. Biaxial

BCR (Factor de reducción del espesor de la capa Sub base)			
	Deformación vertical	q ultima	BCR
Caso I	6.79	4.44	1
	9.66	7.06	1
	11.62	8.52	1
Caso II	6.79	9.87	2.22
Caso III	9.66	9.87	1.40
Caso IV	11.62	9.87	1.16

Gráfico 13 Caso I vs Caso II – C. Quillahuata – G. Triaxial

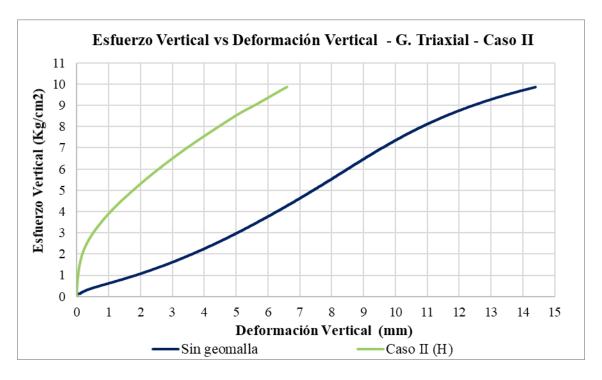


Gráfico 14

Caso I vs Caso III – C. Quillahuata – G. Triaxial

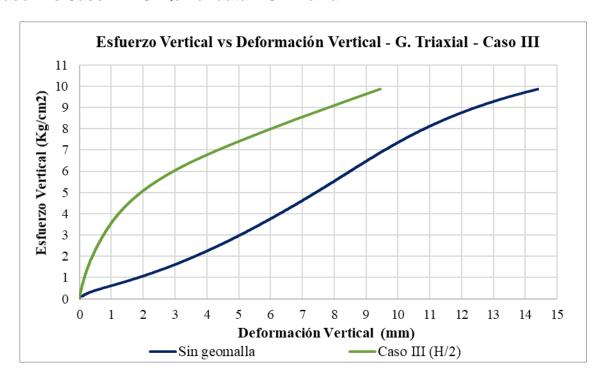
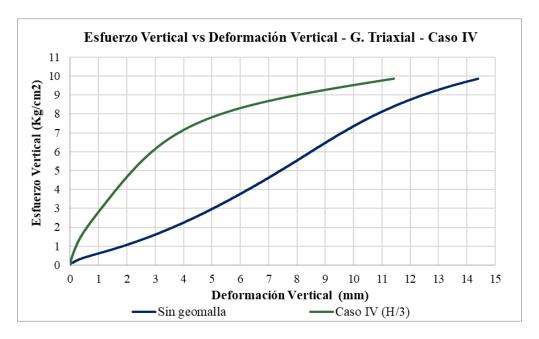



Gráfico 15

Caso I vs Caso IV — C. Quillahuata – G. Triaxial

De los gráficos 13,14 y 15 se obtuvieron las cargas ultimas para poder determinar los BCR de cada uno de los casos:

Tabla 128
BCR – C. Quillahuata – G. Triaxial

BCR (Factor de reducción del espesor de la capa Sub base)			
	Deformación vertical	q_{ultima}	BCR
Caso I	5.722	2.19	1
	8.365	4.73	1
	9.883	6.51	1
Caso II	5.72	9.87	4.50
Caso III	8.37	9.87	2.09
Caso IV	9.88	9.87	1.52

Entonces el recalculo de espesor se muestra en la siguiente tabla, cabe aclarar que el diseño en estos casos se basa en deformaciones verticales admisibles (y no en carga de falla), por lo que se requiere más espesor para que la estructura no supere una deformación límite bajo cargas crecientes.

Tabla 129

Recalculo de espesor - C. Quillahuata

$d_{3(Reforzado)}$		
	G. Biaxial	G. Triaxial
Caso II	$20.24cm \cong 25cm$	$19.53 \ cm \cong 20 cm$
Caso III	$32.02cm \cong 35cm$	$31.38cm \cong 35cm$
Caso IV	$38.87cm \cong 40cm$	$38.36cm \cong 40cm$

Nota. Fuente: Elaboración Propia

El uso de geomallas triaxiales en la cantera Quillahuata permite una reducción de espesor de hasta el 56% en condiciones moderadas (Caso II). Sin embargo, al aumentar las exigencias de carga (Casos III y IV), el refuerzo pierde efectividad relativa, y el espesor debe incrementarse para no superar la deformación límite. El comportamiento confirma que el refuerzo es más útil en diseños delgados o tránsito medio, pero menos determinante en condiciones pesadas.

10.7 Fotografías

Fotografía 1

Lavado de material de Subrasante

Nota. Tesista realizando el ensayo de cantidad de materiales finos que pasa del maíz N°200 por lavado del material de Subrasante, en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

Fotografía 2
Granulometría de Subbase Huillque

Nota. Tesistas mostrando la granulometría de la Cantera de Huiillque, en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

Fotografía 3 Granulometría de Subbase Quillahuata

Nota. Tesistas mostrando la granulometría de la Cantera de Quillahuata, en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

Fotografía 4

Limite Plástico - Subrasante

Nota. Tesista realizando el ensayo de Limite plástico realizando los gusanitos en una base de vidrio poroso, en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

Fotografía 5

Proctor Modificado

Nota. Tesista realizando el ensayo compactación del suelo utilizado una energía modificada precisamente compactando la tercera capa del material granular, en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

Fotografía 6

Moldes de CBR - Subrasante

Nota. Moldes del ensayo de CBR en fase de inmersión del material de Subrasante. Fuente: Elaboración Propia

Fotografía 7 CBR – Subrasante- Fase de Penetración

Nota. Tesista realizando el ensayo CBR en laboratorio en la fase de Penetración del molde de 56 golpes en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

Fotografía 8

Prueba de Abrasión – Subbase Quillahuata

Nota. Tesista vertiendo la muestra de agregado de la cantera de Quillahuata desde una bandeja verde hacia el tambor de la máquina de abrasión de los Ángeles en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

Fotografía 9

Prueba de equivalente de Arena – Subbase Huillque

Nota. Tesista realizando la prueba de Equivalente de Arena de las cantera de Huillque en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

Fotografía 10

Prueba de Tracción Ultima – Geomalla Biaxial

Nota. Tesista realizando la prueba de Tracción Ultima aplicando la normativa de ASTM D-6637 en la Maquina Universal INSTROM 600 DX en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

Fotografía 11

Prueba de Tracción Ultima – Geomalla Triaxial

Nota. Tesista realizando la prueba de Tracción Ultima aplicando la normativa de ASTM D-6637 en la Maquina Universal INSTROM 600 DX en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

Fotografía 12
Colocación de la Geomalla en la Caja Metálica

Nota. Tesista colocando la geomalla triaxial a una profundidad de H/3 usando como subbase la cantera de Quillahuata. Fuente: Elaboración Propia

Fotografía 13 Compactación de la Estructura de Pavimento

Nota. Tesista compactando la estructura de pavimento conformado por Subrasante y Subbase de Quillahuata, reforzado con geomalla triaxial a una profundidad de H/3 en la caja metálica. Fuente: Elaboración Propia

Fotografía 14
Colocación de la Caja Metálica en la Maquina Universal

Nota. Tesistas y compañeros de laboratorio cargando la caja metálica sobre la Maquina Universal INSTROM 600DX . Fuente: Elaboración Propia

Fotografía 15
Compresión de la Estructura de Pavimento

Nota. Tesista realizando la compresión de la estructura de pavimento aplicando una carga de 4.1Tn con la Maquina Universal INSTROM DX-6200 en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

Fotografía 16

Lectura de Galgas extensiométricas en la Compresión de la Estructura de Pavimento

Nota. En la laptop se puede observar las lecturas de las galgas extensiométricas atreves de un Dispositivo de Lectura de Strain Gauges en las instalaciones del Laboratorio de Mecánica de Suelos y Materiales - UNSAAC. Fuente: Elaboración Propia

10.8 Certificado de Laboratorio

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS Y MATERIALES

Av. de la cultura Nro. 733 - Escuela Profesional de Ingeniería Civil

CERTIFICADO DE USO DE LABORATORIO DE MECÁNICA DE SUELOS Y MATERIALES PARA TESIS DE INVESTIGACIÓN

EL QUE SUSCRIBE JEFE DE LABORATORIO DE MECÁNICA DE SUELOS Y MATERIALES DE LA FACULTAD DE INGENIERIA CIVIL

HACE CONSTAR:

Que los tesistas; conducentes a la obtención del título profesional de Ingeniero Civil; Bach. ROSMERY CONDORI MAMANI y Bach. FABRICIO FRANCISCO MIRANO SUCÑIER, hizo uso del laboratorio para ejecución de la tesis de investigación: "EVALUACIÓN DEL COMPORTAMIENTO MECÁNICO DE UNA ESTRUCTURA DE PAVIMENTOS REFORZADO CON GEOMALLA, CUSCO-2024".

Los ensayos que realizaron son los siguientes:

Nro	ENSAYO	NORMA	CANT.
01	Método de ensayo de análisis granulométrico por Medio del Hidrómetro	MTC E 109	01
02	Determinar el límite líquido, límite plástico e índice de plasticidad de suelos	MTC E 110 y MTC E 111	03
03	Método de ensayo para determinar la gravedad específica de sólidos de suelo mediante un picnómetro de agua	MTC E 113	01
04	Ensayo de Proctor Modificado	MTC E 115	03
05	Ensayo de CBR (California Bearing Ratio)	MTC E 132	03
06	Determinación del material más fino que el tamiz 75μ (N°200) en suelos	MTC E 137	03
07	Análisis granulométrico de suelos por tamizado	MTC E 107	02
08	Ensayo de equivalente en arena	MTC E 114	02
09	Abrasión los Ángeles (L.A.) al desgaste de los agregados de tamaños menores de 37,5 mm	MTC E 207	02
10	Determinación las propiedades de tracción de las geomallas mediante el método de tracción de una o múltiples costillas	ASTM D 6637	06
11	Compresión de la Estructura de Pavimentos sin Geomalla	-	06
12	Compresión de la Estructura de Pavimento Reforzado con Geomalla ubicada en la	-	12
13	Compresión de la Estructura de Pavimento Reforzado con Geomalla ubicada en la	-	12
14	Compresión de la Estructura de Pavimento Reforzado con Geomalla ubicada en la	-	12
15	Lectura de Galgas Extensiométricas – Compresión de la Estructura de Pavimento	-	06
16	Lectura de Galgas Extensiométricas – Compresión de la Estructura de Pavimento	-	12
17	Lectura de Galgas Extensiométricas – Compresión de la Estructura de Pavimento Reforzado con Geomalla ubicada en la profundidad H/2 de la Sub-Base	-	12
18	Lectura de Galgas Extensiométricas – Compresión de la Estructura de Pavimento Reforzado con Geomalla ubicada en la profundidad 2H/3 de la Sub-Base	-	12

Se le expide la presente constancia a solicitud escrita por los interesados; con fines académicos para la tesis de investigación.

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO Facultad de Ingeniería Civil Laboratorio de Mecánica de Suelos y Materiales Cusco, 31 de marzo del 2025

Ing. Luz Marlene Nieto Palomino
Jefe de Laboratorio